- 1. Let C be the curve that runs once counterclockwise around the boundary of the square with vertices $(0, 0)$, $(1,0), (1,1),$ and $(0,1)$. Find $\oint_C (x^2 + y) dx + (2xy^2 - xy) dy$.
- 2. For the given C and ${\bf F},$ find the counterclockwise circulation $\oint_C {\bf F}\cdot{\bf T}\,ds$ and the outward normal flux $\oint_C {\bf F}\cdot{\bf N}\,ds.$
	- (a) $\mathbf{F} = \langle xy^2, y^3 \rangle$, C is the boundary of the rectangle with vertices $(0, 0), (2, 0), (2, 3), (0, 3)$.
	- (b) $\mathbf{F} = \langle 6xy, 0 \rangle$, C is the boundary of the triangle with vertices (0,0), (1,0), and (0,2).
	- (c) $\mathbf{F} = \langle 2x + 3y, 4x + 5y \rangle$, C is the unit circle.
	- (d) $\mathbf{F} = \langle x^3 y^3, x^3 + y^3 \rangle$, C is the boundary of the quarter-disc $x^2 + y^2 \le 16$ in the first quadrant.
- 3. Let $C = C_1 \cup C_2 \cup C_3$, where C_1 is the line segment from $(-2,0)$ to $(0,0)$, C_2 is the line segment from $(0,0)$ to (√ 2, √ $Z_1 \cup C_2 \cup C_3$, where C_1 is the line segment from $(-2, 0)$ to $(0, 2)$, and C_3 is the shorter arc of the circle $x^2 + y^2 = 4$ from $(\sqrt{2}, 2)$ 2, √ 2) to $(-2,0)$.
	- (a) Find the outward flux of $\mathbf{F} = \langle 2x^3y^2 + y^3, x^2 2x^2y^3 \rangle$ around C.
	- (b) Find the counterclockwise circulation of $\mathbf{F} = \langle x^2 y^3, x^3 + y^4 \rangle$ around C.
	- (c) Find the work done by $\mathbf{F} = \langle -2y, 2x \rangle$ on a particle that travels once around C.
- 4. A particle moves through the force field $\mathbf{F}(x,y) = \left\langle 9y e^{x^2} + 11, 4x + \sin \sqrt{y} \right\rangle N$ where x and y are measured in meters.
	- (a) Is the vector field \bf{F} conservative? If so find a potential function and if not explain why not.
	- (b) Calculate the work done by **F** if the particle starts at $(0, 0)$, moves along a straight line to $(0, 4)$, then moves counterclockwise along the circle $x^2 + y^2 = 16$ to $(-4,0)$, then finally moves in a straight line back to $(0, 0)$.
- 5. Let $\mathbf{F}(x,y) = \langle 1-y, \cos(y^2) + 2x \rangle$ and let C be the curve starting at $(0,0)$, traveling along a straight line to (0, 3), then along a straight line to (4, 3), and then along a straight line to (4, 0). Find $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- 6. Let $\mathbf{F} = \langle 3x^2y, xy^2, 8xy \rangle$.
	- (a) Parametrize the portion of the plane $z = 0$ with $0 \le x \le 1$ and $0 \le y \le 1$ with downward orientation, and then calculate the flux of \bf{F} across this portion of the plane.
	- (b) Use the divergence theorem to calculate the flux of \bf{F} outward across the surface of the cube whose faces are made up of portions of the six planes $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$.
	- (c) Calculate the flux of **F** outward through the surface S made up of the portions of the five planes $x = 0$, $x = 1, y = 0, y = 1, z = 1$, with $0 \le x, y, z \le 1$.
- 7. Use the divergence theorem to calculate the outward flux of $\mathbf{F}(x, y, z) = xz\mathbf{i} + (x^2 + yz)\mathbf{j} + z^2\mathbf{k}$ across the surface of the solid region above $z = 0$, below $z = x^2 + y^2$, and inside $x^2 + y^2 = 1$.
- 8. Use Stokes's theorem to calculate the circulation of the vector field $\mathbf{F} = \langle \sin(x^2) y^2, z, y e^z \rangle$ around the counterclockwise boundary of the portion of the surface $z = xy$ that lies above the plane region with $0 \le x \le 1$ and $0 \le y \le 2$.
- 9. Solve the following problems:
	- (a) Determine the flux of $\mathbf{F} = \langle xy^2z^2, x^2z^2, -xy^2 \rangle$ outward through the surface S made up of the portions of the six planes $x = 0$, $x = 1$, $y = 0$, $y = 1$, $z = 0$, $z = 1$, with $0 \le x, y, z \le 1$.
	- (b) Calculate the flux of $\mathbf{F} = \langle x^3z, y^3z, 0 \rangle$ outward through the boundary of the solid region with $x^2 + y^2 \le 4$ and $1 \leq z \leq 3$.
	- (c) Find the flux of $\mathbf{F} = \langle xy^2, yz^2, x^2z \rangle$ through the surface of the unit sphere with outward orientation.
	- (d) Find the flux of the curl $\iint_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} d\sigma$, where $\mathbf{F}(x, y, z) = \langle -2y \cos(z), 2x, x e^y \rangle$ and S is the upper half of the sphere $x^2 + y^2 + z^2 = 9$ with outward orientation.
	- (e) Compute the outward flux $\iint_S \mathbf{F} \cdot \mathbf{n} d\sigma$ where S is the surface of the "ice cream cone" (the portion of the cone $z = \sqrt{x^2 + y^2}$ that lies inside the sphere $x^2 + y^2 + z^2 = 1$ along with that portion of the sphere that lies above the cone), and $\mathbf{F}(x, y, z) = \langle x + 2y^2, 5y - 3xz, y^2 + 6z \rangle$.
	- (f) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x, y, z) = \langle x y^2, y z, z^2 + y \rangle$ and C is the rectangle with vertices $(0, 0, 4)$, $(2, 0, 0)$, $(2, 1, 0)$, and $(0, 1, 3)$ lying in the plane $x + 2y + z = 4$, oriented in the counterclockwise direction when viewed from above.
	- (g) Find the circulation of the vector field $\mathbf{F} = \langle 2xy, x^2, y \rangle$ around the counterclockwise boundary of the portion of the surface $z = x^2y$ that lies above the plane region with $0 \le x \le 1$ and $0 \le y \le x$.
	- (h) Calculate the flux of $\mathbf{F} = \langle xy^2 + e^z, x^2y + e^{2z}, \sqrt{x^2 + y^2} \rangle$ through the portion of the surface $z =$ $1-x^2-y^2$ that lies above the xy-plane, with upward orientation.
	- (i) Evaluate the flux of $\mathbf{F} = \langle x^3 + 2xz^2, x^2y + 2yz^2, 4y^2z \rangle$ outward through the upper half of the sphere $x^2 + y^2 + z^2 = 5.$