E. Dummit’s Math 2321 (Summer-2 2023) ~ Short Final Review Answers

1. By Green’s theorem, ¢, Pdz + Qdy = [[(Q. — P,) dydx = fol f01(2y2 —y—1)dydx = .

2. By Green, circulation ¢, Pdx + Qdy = [[,(Q, — P,) dA and flux ¢, —Qdz + Pdy = [[,(P; + Q) dA.

a) Regionis 0 <z <2, 0<y<3. Circis SN —2zy)dydx =| —18 |, flux is > 34y2dyda¢: 721
0 Jo 0 Jo
(b) Regionis 0 <z < 1,0 <y <2-2z. Circis fol 02_290(—6:5) dy dx = , flux is fol 02_290 6y dydr =[4].
(c) Regionis 0 <r < 1,0 <6 <2nm. Circis fo% fol 1-rdrdf =[], flux is fo% f017~rdrd0 :.
)

(d) Regionis0<r <4,0<60<7/2. Circis foﬂ/Q f04 3r2.rdrdf :, flux is fOW/Q f; 3r2.rdrdf = .

3. Note that C is the counterclockwise boundary of the polar region 0 <r < 2 and /4 <6 < .
(a) By Green, flux of F = (P,Q) is [[(P, + Q) dA = f:/4 f02 0-rdrdd=[0]

(b) By Green, circulation of F = (P, Q) is [[(Qx — P,)dA = [, [73r%-rdrdf =[9r]
(¢c) We can use the tangential form of Green’s theorem for the work integral, since it is the same as the
circulation integral. So the work is [[,(Q. — P,) dA = f:/4 f02 4-rdrdf=|6r].

4. (a) We compute curl(F) = (0,0, —5). Since this is nonzero, F is ’not conservative ‘
(b) We can use Green’s theorem since this path is the counterclockwise boundary of the polar region 0 < r < 4
and 7/2 < 0 < m. By Green, the work is [[,(Q, — P;)dA = f:/z f04 —5-rdrdf =|-20mJ|

5. This path is not closed because it is missing the segment from (4,0) to (0,0): that segment is parametrized
by r(t) = (4 —4t,0) for 0 < ¢ < 1 so the line integral on that segment is [,(1 —y)dx + (cos(y?) + 2z) dy =
fol 1-(—4dt)+ (9—8t) - (0dt) = —2. If we add that segment back in, we could then use Green’s theorem to
evaluate the integral along the full path as [[,(Q. — Py)dA = f; f03 (3) dy dz = 36. Therefore, the integral
on the three requested pieces is equal to the difference 36 — (—2) = .

6. (a) We have a parametrization r(s,t) = (s,¢,0) for 0 < s < 1,0 <t < 1. Then n = (dr/ds) x (dr/dt) =
(1,0,0) x (0,1,0) = (0,0,1), but this has the wrong orientation since it must point downward. Then
F - (—n) = —8st, and so the surface integral is fol fol —8stdtds = .
(b) Thesolidis 0 <2 <1,0<y <1,0<2z<1and also div(F) = 6zy + 22y + 0 = 8zy. Thus by the
divergence theorem, the flux through the solid is [[[, div(F)dV = fol fol fol S8xy dz dy dx = .

(c¢) The surface is not closed, but we can close it and then subtract the flux through the missing face z =0
with 0 < z,y < 1, which was analyzed in (a). By (b) the total flux is 2, and the flux across the missing

face is —2 by (a), so the flux across the remaining five planes is 2 — (—2) = .

7. In cylindrical the solid is 0 < 6 <27, 0 <r <1, 0 < z < r2, while div(F) = z + z + 22z = 4z. Thus by the

divergence theorem, the flux is [[[, div(F)dV = fo% fol for2 4z -rdzdrdf = .

8. Parametrize the surface as r(s,t) = (s,¢,st)for0 < s <1,0 <t < 2. Then VxF = (R, — Q,,P, — R;,Q, — P,) =
(1—1,0-0,0—-(—2y)) =(0,0,2y) = (0,0, 2t) while n = (dr/ds) x (dr/dt) = (1,0,t) x (0,1, s) = (—t,—s,1)
which has correct orientation since z-coordinate is positive. Then (V x F)-n = 2t so by Stokes’s theorem the
circulation equals the surface integral [[((V x F)-ndo = fol f02 2t dt ds = 4]




9.

(a)

—_

Use the divergence theorem: ffSF ndo = fffD div(F)dV. The solid is 0 < z < 1,0 < y <
0 < z < 1 and div(F) = y?22. Thus by the dlvergence theorem, the flux is fffD div( )dV

fol fol fol y?2? dz dy de = ~

Use the divergence theorem: [[(F-ndo = fffD div(F)dV. Thesolidis0<r<2,0<0<2m,1<2<3
in cyhndrlcal and also div(F) = 322z + 3y%z = 31" z. Thus by the divergence theorem, the flux is

[, div(B)dV = 27 [2 [’ 3122 - rdzdrdf =
Use the dlvergence theorem: [[,F - ndcr = fffD d1v )dV. The solid is 0 < § < 27, 0 < ¢ < m,
0 < p < 1 in spherical and also div(F) = y% + 22 + 2% = p2 Thus by the divergence theorem, the flux is

. 2 pm ol .

Mo div(®)dV = [7 [ [y p* - p*sinpdpdedd = .

Use Stokes’s theorem: [[((V x F)-ndo = ¢, Pdr + Qdy + Rdz where C is the boundary of the
hemisphere. We can parametrize the boundary by r(t) = (3cost,3sint,0) for 0 < ¢ < 27. Then
dr = —3sintdt, dy = 3costdt, dz =0 and P = 6sint, Q = 6cost, R = 3cost - e>*"*, Thus by Stokes,
the integral is fOQW(—G sint) - (—3sint)dt + (6cost) - 3costdt +3cost - 35t . 0dt = 027r 18dt = .
Use the divergence theorem: ffSF ‘ndo = [[[,div(F)dV. The solid is 0 < 6 < 27, 0 < ¢ < w/4,
0 < p < lin spherical and also div(F) = 12. Thus by the divergence theorem, the flux is [[[, div(F)dV =

OW W/4f0 12 p?sinpdpdedf =|4m(2 — V2) |

Use Stokes’s theorem: ¢, F -dr = [[((V x F) - ndo where S is the portion of the plane inside the
triangle. We can parametrize S as r(s,t) = (s,t,4—s—2t) for 0 < s < 2,0 <t < 1, and then
VxF=(R,—Q.,P.—R;,Q, — Py) = (1—(—1),0—-0,0—(—2y)) = (2,0, 2y) while n = (dr/ds) x
(dr/dt) = (1,0,—1) x (0,1,—2) = (1,2,1) (correct orientation since z-coordinate is positive). Then
(VxF) n=2+2y=2+2t, and so the surface integral is f02 fol (2 +2t)dtds =[6].

Use Stokes’s theorem: ¢, F-dr = ffs (VxF)-ndo where S is the given portion of the surface. Parametrize
S as r(s,t) = (s,t,s%) for 0 < s <1,0<¢t<s, and then VxF = (R, —Q.,P. — R,,Q, — P, >

(1-0,0-0,2z —2x) = (1,0,0) while n = (dr/ds) x (dr/dt) = (1,0,2st) x (0,1,s%) = (—2st, — 1>
(correct orientation since z-coordinate is positive). Then (V x F)-n = —2st so the surface integral is

fol Jy —2stdtds = .

Use the divergence theorem. The surface is not closed. Close it by including the bottom disc with
22+ < 1 and 2 = 0. Thesolidis 0 <7 <1,0<6 <2m 0<2z<1-r2in cylindrical and also
div(F) = y + 22 = r%. Thus by the divergence theorem, the flux through the solid is [[[}, div(F)dV =

?

fo - r2rdzdrdf = 7/6. For the piece being subtracted, we have a parametrization r(r,8) =
(rcos@ rsm0,0> for 0 < 6 <27 and 0 < r < 1. Then n = (dr/dr) x (dr/df) = {(cosf,sinf,0) x
(—rsinf,rcosf,0) = (0,0,7), but this has the wrong orientation since it must point downward. Then
F-(—n) = —r\/x2 +y2 = r2, and so the surface integral is fo% fol —r2drdf = —27/3. The flux through

the top is then 7/6 — (—27/3) = .

Use the divergence theorem. As above the surface is not closed. Close it by including the bottom disc
with 22 +y? < 5 and z = 0. The solid is 0 < ¢ < 77/2, 0 <6 <2m 0<p<+/5in spherical and also
div(F) = (322 + 222) + (22 + 22?) + 4y? = 4(2? + ¢? + 2%) = 4p®. Thus by the divergence theorem, the
flux through the solid is [[[, div(F)dV = f02 /2 fo 4p? - p?sinpdpdyp df = 40m+/5. For the piece
being subtracted, we have a parametrization r(r, 9) (rcos,rsin®,0) for 0 <0 <27 and 0 < r < /5.
Then n = (dr/dr) x (dr/df) = (cosf,sinf,0) x (—rsinf,rcosf,0) = (0,0, r), but this has the wrong
orientation since it must point downward. Then F - (—n) = 0, so the flux through the bottom is zero.

Therefore, the flux through the top piece is simply 4075 |.




