
E. Dummit's Math 2321 (Summer-2 2023) ∼ Short Final Review Answers

1. By Green's theorem,
¸
C
P dx+Qdy =

˜
R
(Qx − Py) dy dx =

´ 1
0

´ 1
0
(2y2 − y − 1) dy dx = −5/6 .

2. By Green, circulation
¸
C
P dx+Qdy =

˜
R
(Qx − Py) dA and �ux

¸
C
−Qdx+ P dy =

˜
R
(Px +Qy) dA.

(a) Region is 0 ≤ x ≤ 2, 0 ≤ y ≤ 3. Circ is
´ 2
0

´ 3
0
(−2xy) dy dx = −18 , �ux is

´ 2
0

´ 3
0
4y2 dy dx = 72 .

(b) Region is 0 ≤ x ≤ 1, 0 ≤ y ≤ 2− 2x. Circ is
´ 1
0

´ 2−2x
0

(−6x) dy dx = −2 , �ux is
´ 1
0

´ 2−2x
0

6y dy dx = 4 .

(c) Region is 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π. Circ is
´ 2π
0

´ 1
0
1 · r dr dθ = π , �ux is

´ 2π
0

´ 1
0
7 · r dr dθ = 7π .

(d) Region is 0 ≤ r ≤ 4, 0 ≤ θ ≤ π/2. Circ is
´ π/2
0

´ 4
0
3r2 ·r dr dθ = 96π , �ux is

´ π/2
0

´ 4
0
3r2 ·r dr dθ = 96π .

3. Note that C is the counterclockwise boundary of the polar region 0 ≤ r ≤ 2 and π/4 ≤ θ ≤ π.

(a) By Green, �ux of F = 〈P,Q〉 is
˜
R
(Px +Qy) dA =

´ π
π/4

´ 2
0
0 · r dr dθ = 0 .

(b) By Green, circulation of F = 〈P,Q〉 is
˜
R
(Qx − Py) dA =

´ π
π/4

´ 2
0
3r2 · r dr dθ = 9π .

(c) We can use the tangential form of Green's theorem for the work integral, since it is the same as the

circulation integral. So the work is
˜
R
(Qx − Py) dA =

´ π
π/4

´ 2
0
4 · r dr dθ = 6π .

4. (a) We compute curl(F) = 〈0, 0,−5〉. Since this is nonzero, F is not conservative .

(b) We can use Green's theorem since this path is the counterclockwise boundary of the polar region 0 ≤ r ≤ 4

and π/2 ≤ θ ≤ π. By Green, the work is
˜
R
(Qx − Py) dA =

´ π
π/2

´ 4
0
−5 · r dr dθ = −20π J .

5. This path is not closed because it is missing the segment from (4, 0) to (0, 0): that segment is parametrized
by r(t) = 〈4− 4t, 0〉 for 0 ≤ t ≤ 1 so the line integral on that segment is

´
C
(1 − y) dx + (cos(y2) + 2x) dy =´ 1

0
1 · (−4 dt) + (9− 8t) · (0 dt) = −2. If we add that segment back in, we could then use Green's theorem to

evaluate the integral along the full path as
˜
R
(Qx − Py) dA =

´ 4
0

´ 3
0
(3) dy dx = 36. Therefore, the integral

on the three requested pieces is equal to the di�erence 36− (−2) = 38 .

6. (a) We have a parametrization r(s, t) = 〈s, t, 0〉 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 1. Then n = (dr/ds) × (dr/dt) =
〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉, but this has the wrong orientation since it must point downward. Then

F · (−n) = −8st, and so the surface integral is
´ 1
0

´ 1
0
−8st dt ds = −2 .

(b) The solid is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1 and also div(F) = 6xy + 2xy + 0 = 8xy. Thus by the

divergence theorem, the �ux through the solid is
˝

D
div(F) dV =

´ 1
0

´ 1
0

´ 1
0
8xy dz dy dx = 2 .

(c) The surface is not closed, but we can close it and then subtract the �ux through the missing face z = 0
with 0 ≤ x, y ≤ 1, which was analyzed in (a). By (b) the total �ux is 2, and the �ux across the missing

face is −2 by (a), so the �ux across the remaining �ve planes is 2− (−2) = 4 .

7. In cylindrical the solid is 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 1, 0 ≤ z ≤ r2, while div(F) = z + z + 2z = 4z. Thus by the

divergence theorem, the �ux is
˝

D
div(F) dV =

´ 2π
0

´ 1
0

´ r2
0

4z · r dz dr dθ = 4π/5 .

8. Parametrize the surface as r(s, t) = 〈s, t, st〉 for 0 ≤ s ≤ 1, 0 ≤ t ≤ 2. Then∇×F = 〈Ry −Qz, Pz −Rx, Qx − Py〉 =
〈1− 1, 0− 0, 0− (−2y)〉 = 〈0, 0, 2y〉 = 〈0, 0, 2t〉 while n = (dr/ds)× (dr/dt) = 〈1, 0, t〉 × 〈0, 1, s〉 = 〈−t,−s, 1〉
which has correct orientation since z-coordinate is positive. Then (∇×F) ·n = 2t so by Stokes's theorem the

circulation equals the surface integral
˜
S
(∇× F) · n dσ =

´ 1
0

´ 2
0
2t dt ds = 4 .
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9. (a) Use the divergence theorem:
˜
S
F · n dσ =

˝
D
div(F) dV . The solid is 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1 and div(F) = y2z2. Thus by the divergence theorem, the �ux is
˝

D
div(F) dV =´ 1

0

´ 1
0

´ 1
0
y2z2 dz dy dx = 1/9 .

(b) Use the divergence theorem:
˜
S
F ·n dσ =

˝
D
div(F) dV . The solid is 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π, 1 ≤ z ≤ 3

in cylindrical and also div(F) = 3x2z + 3y2z = 3r2z. Thus by the divergence theorem, the �ux is˝
D
div(F) dV =

´ 2π
0

´ 2
0

´ 3
1
3r2z · r dz dr dθ = 96π .

(c) Use the divergence theorem:
˜
S
F · n dσ =

˝
D
div(F) dV . The solid is 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π,

0 ≤ ρ ≤ 1 in spherical and also div(F) = y2 + z2 + x2 = ρ2. Thus by the divergence theorem, the �ux is˝
D
div(F) dV =

´ 2π
0

´ π
0

´ 1
0
ρ2 · ρ2 sinϕdρ dϕdθ = 4π/5 .

(d) Use Stokes's theorem:
˜
S
(∇ × F) · n dσ =

¸
C
P dx + Qdy + Rdz where C is the boundary of the

hemisphere. We can parametrize the boundary by r(t) = 〈3 cos t, 3 sin t, 0〉 for 0 ≤ t ≤ 2π. Then
dx = −3 sin t dt, dy = 3 cos t dt, dz = 0 and P = 6 sin t, Q = 6 cos t, R = 3 cos t · e3 sin t. Thus by Stokes,

the integral is
´ 2π
0

(−6 sin t) · (−3 sin t) dt+ (6 cos t) · 3 cos t dt+ 3 cos t · e3 sin t · 0 dt =
´ 2π
0

18 dt = 36π .

(e) Use the divergence theorem:
˜
S
F · n dσ =

˝
D
div(F) dV . The solid is 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π/4,

0 ≤ ρ ≤ 1 in spherical and also div(F) = 12. Thus by the divergence theorem, the �ux is
˝

D
div(F) dV =´ 2π

0

´ π/4
0

´ 1
0
12 · ρ2 sinϕdρ dϕdθ = 4π(2−

√
2) .

(f) Use Stokes's theorem:
¸
C
F · dr =

˜
S
(∇ × F) · n dσ where S is the portion of the plane inside the

triangle. We can parametrize S as r(s, t) = 〈s, t, 4− s− 2t〉 for 0 ≤ s ≤ 2, 0 ≤ t ≤ 1, and then
∇ × F = 〈Ry −Qz, Pz −Rx, Qx − Py〉 = 〈1− (−1), 0− 0, 0− (−2y)〉 = 〈2, 0, 2y〉 while n = (dr/ds) ×
(dr/dt) = 〈1, 0,−1〉 × 〈0, 1,−2〉 = 〈1, 2, 1〉 (correct orientation since z-coordinate is positive). Then

(∇× F) · n = 2 + 2y = 2 + 2t, and so the surface integral is
´ 2
0

´ 1
0
(2 + 2t) dt ds = 6 .

(g) Use Stokes's theorem:
¸
C
F·dr =

˜
S
(∇×F)·n dσ where S is the given portion of the surface. Parametrize

S as r(s, t) =
〈
s, t, s2t

〉
for 0 ≤ s ≤ 1, 0 ≤ t ≤ s, and then ∇ × F = 〈Ry −Qz, Pz −Rx, Qx − Py〉 =

〈1− 0, 0− 0, 2x− 2x〉 = 〈1, 0, 0〉 while n = (dr/ds) × (dr/dt) = 〈1, 0, 2st〉 ×
〈
0, 1, s2

〉
=
〈
−2st,−s2, 1

〉
(correct orientation since z-coordinate is positive). Then (∇ × F) · n = −2st so the surface integral is´ 1
0

´ s
0
−2st dt ds = −1/4 .

(h) Use the divergence theorem. The surface is not closed. Close it by including the bottom disc with
x2 + y2 ≤ 1 and z = 0. The solid is 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π, 0 ≤ z ≤ 1 − r2 in cylindrical and also
div(F) = y2 + x2 = r2. Thus by the divergence theorem, the �ux through the solid is

˝
D
div(F) dV =´ 2π

0

´ 1
0

´ 1−r2
0

r2 r dz dr dθ = π/6. For the piece being subtracted, we have a parametrization r(r, θ) =
〈r cos θ, r sin θ, 0〉 for 0 ≤ θ ≤ 2π and 0 ≤ r ≤ 1. Then n = (dr/dr) × (dr/dθ) = 〈cos θ, sin θ, 0〉 ×
〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉, but this has the wrong orientation since it must point downward. Then

F · (−n) = −r
√
x2 + y2 = r2, and so the surface integral is

´ 2π
0

´ 1
0
−r2 dr dθ = −2π/3. The �ux through

the top is then π/6− (−2π/3) = 5π/6 .

(i) Use the divergence theorem. As above the surface is not closed. Close it by including the bottom disc
with x2 + y2 ≤ 5 and z = 0. The solid is 0 ≤ ϕ ≤ π/2, 0 ≤ θ ≤ 2π, 0 ≤ ρ ≤

√
5 in spherical and also

div(F) = (3x2 + 2z2) + (x2 + 2z2) + 4y2 = 4(x2 + y2 + z2) = 4ρ2. Thus by the divergence theorem, the

�ux through the solid is
˝

D
div(F) dV =

´ 2π
0

´ π/2
0

´√5

0
4ρ2 · ρ2 sinϕdρ dϕdθ = 40π

√
5. For the piece

being subtracted, we have a parametrization r(r, θ) = 〈r cos θ, r sin θ, 0〉 for 0 ≤ θ ≤ 2π and 0 ≤ r ≤
√
5.

Then n = (dr/dr) × (dr/dθ) = 〈cos θ, sin θ, 0〉 × 〈−r sin θ, r cos θ, 0〉 = 〈0, 0, r〉, but this has the wrong
orientation since it must point downward. Then F · (−n) = 0, so the �ux through the bottom is zero.

Therefore, the �ux through the top piece is simply 40π
√
5 .
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