- 1. (a) Point list is (1,1), (0,0), (2,0), (2,4/3), (2,4), (4/9,8/9). Min of -2 at (1,1), max of 20 at (2,4).
 - (b) Point list is $(\sqrt{2}, \sqrt{2}), (-\sqrt{2}, -\sqrt{2})$. Min of $-2\sqrt{2}$ at $(-\sqrt{2}, -\sqrt{2}), \max$ of $2\sqrt{2}$ at $(\sqrt{2}, \sqrt{2})$.
 - (c) Point list is (0,0), (8,64), (2,16). Min of -8 at (2,16), max of 64 at (8,64).
- 2. (a) System is $1 = 2\lambda x$, $3 = 2\lambda y$, $x^2 + y^2 = 40$. Thus $x = 1/(2\lambda)$, $y = 3/(2\lambda)$, so $10/(4\lambda^2) = 40$ so $\lambda = \pm 1/4$, yielding (x, y) = (2, 6), (-2, -6). Min of -18 at (-2, -6), max of 22 at (2, 6).
 - (b) System is $y^2 = 2\lambda x$, $2xy = 2\lambda y$, $x^2 + y^2 = 12$. If y = 0 then get points $(\pm\sqrt{12}, 0)$. Otherwise, second equation gives $x = \lambda$, and then first equation gives $y^2 = 2\lambda^2$, so third equation is $3\lambda^2 = 12$ so $\lambda = \pm 2$ and $(x, y) = (\pm 2, \pm\sqrt{8})$. Min of -16 at $(-2, \pm\sqrt{8})$, max of 16 at $(2, \pm\sqrt{8})$.
 - (c) System is $y = 3\lambda$, $x = \lambda$, 3x + y = 60. Thus $6\lambda = 60$ so $\lambda = 10$ yielding (x, y) = (10, 30). Minimum does not exist (f goes to $-\infty$ for large x or large y), maximum is 300 at (10, 30).
 - (d) System is $2 = 2\lambda x$, $4 = 2\lambda y$, $5 = 2\lambda z$, $x^2 + y^2 + z^2 = 1$. Thus $x = 2/(2\lambda)$, $y = 4/(2\lambda)$, $z = 5/(2\lambda)$, so $45/(4\lambda^2) = 1$ so $\lambda = \pm\sqrt{45/4}$, yielding $(x, y, z) = \pm \frac{1}{\sqrt{45}}(2, 4, 5)$. Min of $-\sqrt{45}$ at $-\frac{1}{\sqrt{45}}(2, 4, 5)$, max of $\sqrt{45}$ at $\frac{1}{\sqrt{45}}(2, 4, 5)$.
 - (e) System is $yz = 2\lambda x$, $xz = 8\lambda y$, $xy = 32\lambda z$, $x^2 + 4y^2 + 16z^2 = 48$. If one variable is zero then so must be a second, yields points $(x, y, z) = (\pm\sqrt{48}, 0, 0)$, $(0, \pm\sqrt{12}, 0)$, $(0, 0, \pm\sqrt{3})$. If none are zero, divide first two equations to get y/x = x/(4y) so $x/y = \pm 2$. Similarly, $x/z = \pm 4$. Yields points $(\pm 4, \pm 2, \pm 1)$ with all sign choices. Min of -8 and max of 8.
- 3. If the length l is east-west and the width w is north-south, then we maximize A = lw subject to 2l + w = 60m. Using Lagrange gives $w = 2\lambda$, $l = \lambda$, 2l + w = 60m and so $4\lambda = 60$ and $\lambda = 15$. Thus l = 15m, w = 30m.
- 4. (a) $I = \int_0^2 \frac{3}{2} y^4 \, dy = \frac{48}{5}$. (b) $I = \int_0^1 (x^3 x^4) \, dx = \frac{1}{20}$. (c) $I = \int_{\pi/3}^{\pi/2} \frac{7}{3} \sin \theta \, dx = \frac{7}{6}$.
- 5. (a) Integrals are $\int_0^1 \int_0^3 x^2 y \, dy \, dx$ and $\int_0^3 \int_0^1 x^2 y \, dx \, dy$.
 - (b) Integrals are $\int_0^4 \int_{x^2}^{8\sqrt{x}} (x+y) \, dy \, dx$ and $\int_0^{16} \int_{y^2/64}^{\sqrt{y}} (x+y) \, dx \, dy$.
 - (c) Integrals are $\int_0^1 \int_0^x x^3 dy dx + \int_1^2 \int_0^{2-x} x^3 dy dx$ and $\int_0^1 \int_y^{2-y} x^3 dx dy dx$.
 - (d) Integrals are $\int_{-\sqrt{6}}^{\sqrt{6}} \int_{x^2-1}^5 1 \, dy \, dx$ and $\int_{-1}^5 \int_{-\sqrt{y+1}}^{\sqrt{y+1}} 1 \, dx \, dy$.
- 6. (a) $\int_0^9 \int_{\sqrt{y}}^3 xy \, dx \, dy$. (b) $\int_1^2 \int_{\sqrt{x}}^x y^4 \, dy \, dx + \int_2^4 \int_{\sqrt{x}}^2 y^4 \, dy \, dx$.
- 7. Region is interior of a triangle. Reversed integral is $\int_0^4 \int_0^{2y} \frac{e^y}{y} dx dy = \int_0^4 2e^y dy = 2(e^4 1).$
- 8. (a) Region is interior of a quarter-circle. Integral is $\int_{\pi}^{3\pi/2} \int_{0}^{1} (r\cos\theta) r \, dr \, d\theta = \int_{\pi}^{3\pi/2} \frac{1}{3} \cos\theta \, d\theta = -\frac{1}{3}$.
 - (b) Region is interior of a quarter-circle. Integral is $\int_{\pi/4}^{3\pi/4} \int_0^4 (r) r \, dr \, d\theta = \int_{\pi/4}^{3\pi/4} \frac{64}{3} \, d\theta = \frac{32\pi}{3}$.
 - (c) Region is interior of a circle. Integral is $\int_0^{2\pi} \int_0^2 (4-r^2) r \, dr \, d\theta = \int_0^{2\pi} 12 \, d\theta = 24\pi$.

9. Region is interior of a quarter-circle. Polar integral is $\int_0^{\pi/2} \int_0^1 \frac{1}{r} \cdot r \, dr \, d\theta = \int_0^{\pi/2} \int_0^1 1 \, dr \, d\theta = \int_0^{\pi/2} 1 \, d\theta = \pi/2.$

 $d\theta = 8\pi$.

10. (a)
$$I = \int_0^2 \int_x^{2x} 3(y^2 - x^2) \, dy \, dx = \int_0^2 4x^3 \, dx = 16.$$
 (b) $I = \int_0^\pi \int_0^\pi 4\sin\varphi \, d\varphi \, d\theta = \int_0^\pi 8x^3 \, dx = 16.$

- 11. (a) Cylindrical: $\int_0^{\pi} \int_0^1 \int_0^{4r \sin \theta} r \cdot r dz \, dr \, d\theta = \int_0^{\pi} \int_0^1 r^3 \cdot 4 \sin \theta \, dr \, d\theta = \int_0^{\pi} \sin \theta \, d\theta = 2.$
 - (b) Spherical: $\int_0^{\pi} \int_0^{\pi/2} \int_0^2 \rho \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \int_0^{\pi} \int_0^{\pi/2} 4 \sin \varphi \, d\rho \, d\varphi \, d\theta = \int_0^{\pi/2} 4 \, d\theta = 2\pi.$
 - (c) Cylindrical: $\int_{-\pi/2}^{\pi/2} \int_0^3 \int_{-1}^{r^2} \frac{1}{r} \cdot r \, dz \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} \int_0^3 (r^2 + 1) \, dr \, d\theta = \int_{-\pi/2}^{\pi/2} 12 \, d\theta = 12\pi.$
 - (d) Spherical: $\int_0^{2\pi} \int_0^{\pi/4} \int_0^2 \frac{\rho^2 \cos^2 \varphi}{\rho} \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \int_0^{2\pi} \int_0^{\pi/4} 4 \cos^2 \varphi \sin \varphi \, d\rho \, d\varphi \, d\theta = 4\pi (4 \sqrt{2})/3.$
- 12. (a) Rectangular: $\int_{1}^{2} \int_{-3}^{3} \int_{y^{2}}^{9} xyz \, dz \, dy \, dx$.
 - (b) Rectangular: $\int_0^1 \int_0^2 \int_{x^2+y^2}^7 (x^2+y^2) \, dz \, dy \, dx$.
 - (c) Cylindrical: $\int_{\pi/2}^{3\pi/2} \int_0^2 \int_0^{4-r\sin\theta} zr \cdot r \, dz \, dr \, d\theta$.
 - (d) Cylindrical: $\int_0^{2\pi} \int_0^{3/2} \int_{2r}^3 (r^2 + z^2) r \, dz \, dr \, d\theta$.
 - (e) Rectangular: $\int_1^2 \int_y^{2y} \int_{2x}^{3x} 1 \, dz \, dx \, dy$.
 - (f) Spherical: $\int_0^{2\pi} \int_0^{5\pi/6} \int_0^2 \rho \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta.$
 - (g) Cylindrical: $\int_0^{2\pi} \int_1^{\sqrt{5}} \int_0^{5-r^2} 1 \cdot r \, dz \, dr \, d\theta$.
 - (h) Spherical: $\frac{1}{4\pi/3} \int_0^{\pi/2} \int_0^{\pi/2} \int_0^2 \rho^2 \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta$.
 - (i) Rectangular: $\int_0^4 \int_0^{\sqrt{4-x}} \int_0^{4-x-y^2} x \, dz \, dy \, dx$.
- 13. (a) Mass is $M = \int_0^1 \int_0^2 \int_0^3 z \, dz \, dy \, dx = 9g$. Moments are $M_x = \int_0^1 \int_0^2 \int_0^3 xz \, dz \, dy \, dx = \frac{9}{2}g$, $M_y = \int_0^1 \int_0^2 \int_0^3 yz \, dz \, dy \, dx = 9g$, $M_z = \int_0^1 \int_0^2 \int_0^3 z \cdot z \, dz \, dy \, dx = 18g$. Center of mass is $\frac{1}{M}(M_x, M_y, M_z) = (1/2, 1, 2)$ cm.
 - (b) Mass is $M = \int_0^{2\pi} \int_0^2 \int_0^r 2r \cdot r \, dz \, dr \, d\theta = 128\pi/5$. Moments are $M_x = \int_0^{2\pi} \int_0^2 \int_0^r r \cos \theta \cdot 2r \cdot r \, dz \, dr \, d\theta = 0$, $M_y = \int_0^{2\pi} \int_0^2 \int_0^r r \sin \theta \cdot 2r \cdot r \, dz \, dr \, d\theta = 0$, $M_z = \int_0^{2\pi} \int_0^2 \int_0^r z \cdot 2r \cdot r \, dz \, dr \, d\theta = 64\pi/3$. Center of mass is $\frac{1}{M}(M_x, M_y, M_z) = (0, 0, 5/6)$.
 - (c) Mass is $M = \int_0^{2\pi} \int_0^{\pi} \int_{\sqrt{2}}^{\sqrt{3}} 3\rho^3 \cdot \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 38\pi$ kg. Center of mass is (0, 0, 0)m by symmetry. Alternatively, could evaluate moments as integrals: $M_x = \int_0^{2\pi} \int_0^{\pi} \int_{\sqrt{2}}^{\sqrt{3}} \rho \cos\theta \sin\varphi \cdot 3\rho^3 \cdot \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 0$, $M_y = \int_0^{2\pi} \int_0^{\pi} \int_{\sqrt{2}}^{\sqrt{3}} \rho \sin\theta \sin\varphi \cdot 3\rho^3 \cdot \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 0$, $M_z = \int_0^{2\pi} \int_0^{\pi} \int_{\sqrt{2}}^{\sqrt{3}} \rho \cos\varphi \cdot 3\rho^3 \cdot \rho^2 \sin\varphi \, d\rho \, d\varphi \, d\theta = 0$.
 - (d) Mass is $M = \int_0^{2\pi} \int_{\pi/6}^{\pi/4} \int_0^3 1 \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = 9(\sqrt{3} \sqrt{2})\pi$. The x and y-coordinates of the center of mass are 0 by symmetry. The z-moment is $M_z = \int_0^{2\pi} \int_{\pi/6}^{\pi/4} \int_0^3 \rho \cos \varphi \cdot \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = 81\pi/16$. Center of mass is $\frac{1}{M}(M_x, M_y, M_z) = (0, 0, \frac{9\sqrt{3} + 9\sqrt{2}}{16})$.