1. (a) $\hat{\mu}_X = 8.8, S_X = 2.77489.$

0.05998, fail to reject H_0 .

- (b) n-1=4 df. 80% CI: $t_{\alpha/2}=1.5332$ yielding (6.89734, 10.70266). 95% CI: $t_{\alpha/2}=2.7764$ yielding (5.35352, 12.24548).
- (c) One-sample t test. $H_0: \mu=4, H_a: \mu>4$. Test statistic t=3.86795, p-value is $P(T_4 \geq 3.86795)=0.00901,$ reject null hypothesis.
- (d) n-1=4 df. 80% CI: $\chi^2_{\alpha/2}=1.0636$, $\chi^2_{1-\alpha/2}=7.7794$ yielding (3.95915, 28.95762). 95% CI: $\chi^2_{\alpha/2}=0.4844$, $\chi^2_{1-\alpha/2}=11.1433$ yielding (2.76400, 63.58138).
- (e) χ^2 test for variance. $H_0: \sigma^2 = 100, H_a: \sigma^2 < 100$. Test statistic $\chi^2 = 0.308, p$ -value is $P(Q_4 \le 0.308) = 0.01070$, reject null hypothesis.
- (f) Student's equal-variances t test. $H_0: \mu_X \mu_Y = 0, H_a: \mu_X \mu_Y \neq 0.$ $\hat{\mu}_X = 8.8, \hat{\mu}_Y = 7, S_X = 2.77489, S_Y = 5.59762, S_{pool} = 4.22239.$ Test statistic t = 0.63549 with df = 7, p-value is $p = 2P(T_7 \geq 0.63549) = 0.54532$, fail to reject null hypothesis.
- (g) 7 df, use pooled variance. $\hat{\mu}_X \hat{\mu}_Y = 1.8$, $S = S_{\text{pool}} \sqrt{\frac{1}{5} + \frac{1}{4}} = 2.83246$. 50% CI: $t_{\alpha/2} = 0.7111$ yielding (-0.21428, 3.81428). 90% CI: $t_{\alpha/2} = 1.89458$ yielding (-3.56633, 7.16633).
- 2. (a) One-sample t test (z test is also acceptable since sample size is large). $H_0: \mu = 20.000, H_a: \mu \neq 20.000$. Test statistic t = -0.62827 with n-1 = 99 df, so p-value is $p = 2P(T_{99} \le -0.62827) = 0.53127$ [for z-test, p-value is $2P(N_{0.1} \le -0.62827) = 0.52983$], fail to reject null hypothesis. (Bolt diameter at spec.)
 - (b) n-1=99 df. 90% CI: $t_{\alpha/2}=1.6604$ yielding (19.9563mm, 20.0197mm). 99% CI: $t_{\alpha/2}=2.6364$ yielding (19.9378mm, 20.0382mm). [Using z instead of t gives CIs (19.9566mm, 20.0194mm), (19.9388mm, 20.0372mm).
 - (c) χ^2 test for variance. $H_0: \sigma^2 = 0.0400 \text{mm}^2$, $H_a: \sigma^2 < 0.0400 \text{mm}^2$. n-1=99 df. Test statistic $\chi^2 = (n-1)S^2/0.0400 = 90.2905$, p-value is $P(Q_{99} \le 90.2905) = 0.27748$, fail to reject null hypothesis. (Bolt variance possibly not within spec.)
 - (d) n-1=99 df. 90% CI: $\chi^2_{\alpha/2}=77.0463,~\chi^2_{1-\alpha/2}=123.2252$ yielding (0.1712mm, 0.2165mm). 99% CI: $\chi^2_{\alpha/2}=66.5101,~\chi^2_{1-\alpha/2}=138.9868$ yielding (0.1612mm, 0.2330mm).
- 3. These are all t confidence intervals. Use the t-table with n-1 degrees of freedom to get $t_{\alpha/2,n}$, measuring the number of standard deviations in the margin of error.
 - (a) $\mu=200.74,\ S=22.6166,\ 50\%$: (192.09, 209.39), 80%: (182.22, 219.26), 90%: (174.13, 227.35) , 99%: (134.69, 266.79).
 - (b) $\mu = 74.2, S = 3.4254, 50\%$: (73.44, 74.96), 80%: (72.70, 75.70), 90%: (72.21, 76.19), 99%: (70.68, 77.72).
 - (c) $\mu=134.33,\ S=14.0119,\ 50\%$: (127.73,140.94), 80%: (119.08,149.59), 90%: (110.71,157.96) , 99%: (54.04,214.62).
 - (d) $\mu = 109333$, S = 23459, 50%: (98000, 120000), 80%: (84000, 135000), 90%: (70000, 149000), 99%: (-25000, 244000).
 - (e) $\mu=201000,\ S=55323,\ 50\%$: (189000, 231000), 80%: (165000, 255000), 90%: (145000, 275000) , 99%: (48000, 372000).
 - $\text{(f)} \ \ \mu = 47000, \ S = 19937, \ 50\%; \ \ (40000, 54000), \ 80\%; \ \ (33000, 61000), \ 90\%; \ \ (28000, 66000) \ \ , \ 99\%; \ \ (6000, 88000).$
- 4. (a) Two-sample t test. $\hat{\mu}_E = 32 \mathrm{pp}, \ S_E = 13.6626 \mathrm{pp}, \ \hat{\mu}_D = 25 \mathrm{pp}, \ S_D = 6.2849 \mathrm{pp}. \ H_0: \mu_E \mu_D = 0, \ H_a: \mu_E \mu_D \neq 0.$ Student: $S_{\mathrm{pool}} = 10.12776, \ df = 7$, test statistic is $t = 1.03034, \ p$ -value is $2P(T_7 \geq 1.03034) = 0.33713$, fail to reject H_0 . Welch: $S_{\mathrm{unpool}} = 7.29155, \ df = 4.0154$, test statistic is $t = 0.94762, \ p$ -value is $2P(T_{4.0154} \geq 0.94762) = 0.39679$, fail to reject H_0 .
 - (b) Two-sample t test. $\hat{\mu}_m = 72.2$, $S_m = 14.48012$, $\hat{\mu}_p = 85.16667$, $S_p = 6.70572$. $H_0: \mu_m \mu_p = 0$, $H_a: \mu_m \mu_p < 0$. Student: $S_{\text{pool}} = 10.87113$, df = 9, test statistic is t = -1.96978, p-value is $P(T_9 \le -1.96978) = 0.04019$, fail to reject H_0 . Welch: $S_{\text{unpool}} = 7.03096$, df = 5.4189, test statistic is t = -1.84422, p-value is $P(T_{5.4189} \le -1.84422) = 0.04019$

- (c) Two-sample t test. $\hat{\mu}_m = 134.\overline{3}$, $S_m = 14.0119$, $\hat{\mu}_b = 181.\overline{6}$, $S_b = 9.6090$. $H_0: \mu_m \mu_b = 0$, $H_a: \mu_m \mu_b < 0$. Student: $S_{\text{pool}} = 12.01388$, df = 4, test statistic is t = -4.82536, p-value is $P(T_4 \le -4.82536) = 0.004245$, reject H_0 .
 - Welch: $S_{\text{unpool}} = 9.80929$, df = 3.5405, test statistic is t = -4.82536, p-value is $P(T_{3.5405} \le -4.82536) = 0.005734$, reject H_0 .
- (d) One-sample t test (matched pairs). $H_0: \mu_d = 0, H_a: \mu_d \neq 0.$ $\hat{\mu}_d = 1, S_d = 4.95696$, test statistic is t = 0.57060, p-value is $P(T_7 \geq 0.57060) = 0.58611$, fail to reject H_0 .
- (e) χ^2 test for independence. Comparison table is below. χ^2 statistic is d = 0.54492, df = 3, p-value is $P(Q_3 \ge 0.54492) = 0.90892$, fail to reject H_0 (seems independent).

Exp (Obs)	USA	UK	China	Russia
Senior	45.47 (46)	25.18 (27)	26.31 (26)	21.04 (19)
Junior	75.53 (75)	41.82 (40)	43.69 (44)	34.96 (37)

- (f) Two-sample t test. $H_0: \mu_m \mu_f = 0, H_a: \mu_m \mu_f > 0.$
 - Student: $S_{\text{pool}} = \$22139$, df = 46, test statistic is t = 2.58736, p-value is $p(T_{46} \ge 2.58736) = 0.00644$, reject H_0 .
 - Welch: $S_{\text{unpool}} = \$6770$, df = 33.137, test statistic is t = 2.52268, p-value is $p(T_{33.137} \ge 2.52268) = 0.00831$, reject H_0 .
 - Pooled CIs: $\hat{\mu}_{\text{diff}} = \17078 , $S = S_{\text{pool}} \sqrt{\frac{1}{30} + \frac{1}{18}} = \6601 , df = 46. 80% CI: $t_{\alpha/2} = 1.3002$ yielding (\\$8496, \\$25660), 95% CI: $t_{\alpha/2} = 2.0129$ yielding (\\$3792, \\$30364).
 - Unpooled CIs: $\hat{\mu}_{\text{diff}} = \17078 , $S = S_{\text{unpool}} = \6770 , df = 33.137. 80% CI: $t_{\alpha/2} = 1.3076$ yielding (\\$8226, \\$25930), 95% CI: $t_{\alpha/2} = 2.0342$ yielding (\\$3307, \\$30849).
- (g) χ^2 test for independence. Comparison table is below. χ^2 statistic is d=16.4934, df=1, p-value is $P(Q_1 \ge 16.4934) = 0.000049$, reject H_0 (seems non-independent).

Exp (Obs)	Callback	No Callback	
White	195.5 (234)	2229.5 (2191)	
Black	195.5 (157)	2229.5 (2268)	

(h) χ^2 test for goodness of fit. Comparison table is below. χ^2 statistic is d=112.52, df=2, p-value is $P(Q_2 \ge 16.4934) = 3.68 \cdot 10^{-25}$, reject H_0 (definitely not as predicted by model!).

\ • = —	/	, .	- (
Exp (Obs)	0.001	0.01	0.05
Just Over	104 (94)	98 (76)	183 (87)
Just Under	104 (114)	98 (120)	183 (279)

- (i) Two-sample t test. $\hat{\mu}_s = \$200.74$, $S_s = \$22.617$, $\hat{\mu}_c = \$196.69$, $S_c = \$20.353$. $H_0: \mu_s \mu_c = 0$, $H_a: \mu_s \mu_c > 0$. Student: $S_{\text{pool}} = 21.7394$, df = 5, test statistic is t = 0.24392, p-value is $P(T_5 \ge 0.24392) = 0.40849$, fail to reject H_0 .
 - Welch: $S_{\text{unpool}} = 16.3082$, df = 4.7206, test statistic is t = 0.24834, p-value is $P(T_{4.7206} \ge 0.24834) = 0.40715$, fail to reject H_0 .
 - Pooled CIs: $\hat{\mu}_{\text{diff}} = \4.05 , $S = S_{\text{pool}} \sqrt{\frac{1}{30} + \frac{1}{18}} = \16.604 , df = 5. 50% CI: $t_{\alpha/2} = 0.7267$ yielding (-\$8.02, \$16.12), 80% CI: $t_{\alpha/2} = 1.4759$ yielding (-\$20.46, \$28.56).
 - Unpooled CIs: $\hat{\mu}_{\text{diff}} = \4.05 , $S = S_{\text{unpool}} = \16.308 , df = 4.7206. 50% CI: $t_{\alpha/2} = 0.7300$ yielding (-\$7.85, \$15.95), 80% CI: $t_{\alpha/2} = 1.4891$ yielding (-\$20.23, \$28.33).
- (j) For mean, one-sample t test. $\hat{\mu}=5.5\%$, S=1.5556%. $H_0: \mu=4\%$, $H_a: \mu>4\%$, test statistic is t=1.92847, p-value is $P(T_3\geq 1.92847)=0.07469$, fail to reject H_0 . 95% CI for μ : $t_{\alpha/2}=3.1824$ yielding (3.025%, 7.975%).
 - For standard deviation, χ^2 test for variance. $H_0: \sigma=2.5\%$, $H_a: \sigma<2.5\%$, test statistic is $\chi^2=(n-1)S^2/(2.5\%)^2=1.1616$, p-value is $P(Q_3\leq 1.1616)=0.23777$, fail to reject H_0 . 95% CI for σ : $\chi^2_{\alpha/2}=0.21579$, $\chi^2_{1-\alpha/2}=9.34840$ yielding (0.881%, 5.800%).
- (k) χ^2 test for goodness of fit. Expected values are all 100. For (i), χ^2 statistic is d=0.42, df=9, p-value is $P(Q_9 \ge 0.42) = 0.9999857$, fail to reject H_0 . For (ii), these do seem to close to the model. Testing for "too good" results gives p-value $P(Q_9 \le 0.42) = 0.000014$, reject H_0 (model is too accurate, suggests forgery).
- (l) χ^2 test for goodness of fit. Expected values are 1000 times Benford probability (i.e., just read as 301, 176, 125, etc.). For (i), χ^2 statistic is d=13.4150, df=8, p-value is $P(Q_8 \ge 13.4150)=0.09835$, fail to reject H_0 . For (ii), these results are not suspiciously accurate it seems finally that the ex-pollster ex-accountant is doing their job properly!