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4 Hypothesis Testing

In this chapter, we discuss statistical hypothesis testing, which (broadly speaking) is the process of using statistical
analysis to deduce information about the plausibility or implausibility of a given hypothesis. We begin with a broad
overview of the basics of hypothesis testing and terminology, and motivate our general framework of hypothesis
testing using a number of examples.

To illustrate hypothesis testing, we develop z tests, which are used to make inferences about normally-distributed
variables whose standard deviation is known, and discuss the connections between hypothesis testing and our
previous development of con�dence intervals. We also apply these ideas to extend our discussion to situations
involving the binomial distribution and other distributions that are approximately normal.

We close with a lengthy discussion of topics related to errors in hypothesis testing, and discuss numerous misinter-
pretations and misuses of various aspects of hypothesis tests.

4.1 Principles of Hypothesis Testing

• In the last chapter, we discussed methods for estimating parameters, and for constructing con�dence intervals
that quantify the precision of the estimate.

◦ In many cases, parameter estimations can provide the basic framework to decide the plausibility of a
particular hypothesis.

◦ For example, to decide how plausible it is that a given coin truly is fair, we can �ip the coin several
times, examine the likelihood of obtaining that given sequence of outcomes, construct an estimate for
the true probability of obtaining heads and associated con�dence intervals, and then decide based on the
position of the con�dence interval whether it is reasonable to believe the coin is fair.

◦ As another example, to decide how plausible it is that the average part size in a manufacturing lot truly
is equal to the expected standard, we can measure the sizes of a sample from that lot, construct an
estimate and con�dence intervals for the average size of the lot from the sample data, and then decide
whether it is reasonable to believe that the average part size is within the desired tolerance.
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◦ We can use a similar procedure to do things like decide whether one class's average on an exam was
higher than another (by studying the di�erence in the class average), decide whether a ballot measure
has a speci�ed level of support (by conducting a random poll and constructing an appropriate con�dence
interval), or decide which of two medical interventions yields better outcomes (by comparing the average
outcomes from two appropriate samples).

• However, in most of these situations, we are seeking a binary decision about a hypothesis: namely, whether
or not it is justi�ed by the available evidence.

◦ The procedure of deciding whether or not a given hypothesis is supported by statistical evidence is known
as statistical hypothesis testing.

◦ Our goal is to describe how to use our analysis of random variables and their underlying distributions to
perform hypothesis testing.

4.1.1 Null and Alternative Hypotheses, p-Values, and Decision Rules

• If we are making a binary decision, our �rst step is to explicitly identify the two possible results.

◦ Example: �The coin is fair� versus �The coin is not fair�.

◦ Example: �The coin has probability 2/3 of landing heads� versus �The coin does not have probability
2/3 of landing heads�.

◦ Example: �Class 1 has the same average exam score as Class 2� versus �Class 1 does not have the same
average exam score as Class 2�.

◦ Example: �Treatment A is more e�ective than a placebo� versus �Treatment A is not more e�ective than
a placebo�.

◦ We must then test a hypothesis using a statistical model. In order to do this, we must formulate the
hypothesis in a way that allows us to analyze the underlying statistical distribution.

• In the four examples above, only one of the two possible hypotheses provides grounds for a statistical model:

◦ Example: �The coin is fair� provides us a model that we can analyze; namely, the distribution of the
number of heads obtained by �ipping a fair coin. The other hypothesis, �The coin is not fair� does not
provide us with such a model, since the probability of heads could be one of many possible values, each
of which would give a di�erent distribution.

◦ Example: �The coin has probability 2/3 of landing heads� likewise provides us a model we can analyze,
unlike the hypothesis �The coin does not have probability 2/3 of landing heads�.

◦ Example: �Class 1 has the same average exam score as Class 2� provides us a model we can analyze, at
least, under the presumption that the full set of exam scores have some underlying known distribution,
such as a normal distribution, possibly with unknown parameters. Under the same presumptions, how-
ever, the other hypothesis �Class 1 does not have the same average exam score as Class 2� does not give
us an underlying model, since there are many ways in which the average scores could be di�erent.

◦ Example: �Treatment A is not more e�ective than a placebo� provides us a model we can analyze
(making the same sorts of presumptions as above, that the full set of treatment results has some known
type of distribution but with unknown parameters). However, we do have to discard the possibility that
Treatment A is actually less e�ective than a placebo in order to obtain a model. We would want to
rephrase this hypothesis as �Treatment A is equally e�ective with a placebo� in order to test it using the
model.

• Here is some more speci�c terminology regarding the hypotheses we wish to test.

◦ The type of hypothesis we are testing in each case is a null hypothesis, which typically states that there
is no di�erence or relationship between the groups being examined, and that any observed results are
due purely to chance.

◦ The other hypothesis is the alternative hypothesis, which typically asserts that there is some di�erence
or relationship between the groups being examined.
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◦ The alternative hypothesis generally captures the notion that �something is occurring�, while the null
hypothesis generally captures the notion that �nothing is occurring�. (Of course, there are occasional
exceptions, such as the situation where we are postulating that the heads probability of the coin is a
speci�c number, which will serve as our null hypothesis.)

• Because of the structure of our statistical approach, we are only able to test the null hypothesis directly.

• Our choices are either to reject the null hypothesis in favor of the alternative hypothesis (in the event that
our analysis indicates that the observed data set was too unlikely to arise by random chance) or to fail to
reject the null hypothesis (in the event that the data set could plausibly have arisen by chance).

◦ Note that we do not actually �accept� any given hypothesis: we either reject the null hypothesis, or fail
to reject the null hypothesis.

◦ The reason for this (pedantic, but important) piece of terminology is that when we perform a statistical
test that does not give strong evidence in favor of the alternative hypothesis, that does not constitute
actual proof that the null hypothesis is true (merely some evidence, however strong it may be).

◦ The principle is that, although we may have gathered some evidence that suggests the null hypothesis
may be true, we have not actually proven that there is no relationship between the given variables. It is
always possible that there is indeed some relationship between the variables we have not uncovered, no
matter how much sampling data we may collect.

◦ Likewise, rejecting the null hypothesis does not mean that we accept the alternative hypothesis: it merely
means that there is strong evidence that the null hypothesis is false. It is always possible that the data
set was unusual (merely because of random variation) and that there actually is no relationship between
the given variables.

• With the hypothesis tests we will study, the null hypothesis H0 will be of the form �The parameter equals a
speci�c value�.

◦ We can recast all of our examples into this format.

◦ Example: �The probability of obtaining heads when �ipping a coin is 1/2�.

◦ Example: �The probability of obtaining heads when �ipping a coin is 2/3�.

◦ Example: �The di�erence in the average scores of Class 1 and Class 2 is zero�.

◦ Example: �The di�erence between the average outcome using Treatment A and the average outcome
using a placebo is zero�.

• The alternative hypothesis Ha may then take one of several possible forms.

◦ Two-sided: �The parameter is not equal to the given value�.

◦ One-sided: �The parameter is less than the given value� or �The parameter is greater than the given
value�.

◦ The two-sided alternative hypothesis is so named because it includes both possibilities listed for the
one-sided hypotheses.

◦ Example: �The probability of obtaining heads when �ipping a coin is not 1/2� is two-sided.

◦ Example: �The probability of obtaining heads when �ipping a coin is not 2/3� is also two-sided.

◦ Example: �The di�erence in the average scores of Class 1 and Class 2 is not zero� is two-sided, while
�The di�erence in the average scores of Class 1 and Class 2 is positive� is one-sided.

◦ Example: �The average outcome of using Treatment A is better than the average outcome using a
placebo� is one-sided.

◦ The speci�c nature of the alternative hypothesis will depend on the situation. As in the third example,
there may be several reasonable options to consider, depending on what result we want to study.

• Example: We wish to test whether a particular coin is fair, which we do by �ipping the coin 100 times and
recording the proportion p of heads obtained. Give the null and alternative hypotheses for this test.
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◦ The null hypothesis is H0: p = 0.5, since this represents the result that the coin is fair.

◦ The alternative hypothesis is Ha: p 6= 0.5, since this represents the result that the coin is not fair. Here,
the alternative hypothesis is two-sided.

• Example: We wish to test whether the exams given to two classes were equivalent, which we do by comparing
the average scores µA and µB in the two classes. Give the null and alternative hypotheses for this test.

◦ The null hypothesis is H0: µA = µB , since this represents the result that the averages were equal.

◦ The alternative hypothesis is Ha: µA 6= µB , since this represents the result that the averages were not
equal. Here, the alternative hypothesis is two-sided.

• Example: We wish to test whether the exam given to class A was easier than the exam given to class B,
which we do by comparing the average scores µA and µB in the two classes. Give the null and alternative
hypotheses for this test.

◦ The null hypothesis is H0: µA = µB , since this represents the result that the averages were equal.

◦ The alternative hypothesis is Ha: µA > µB , since this represents the result that the average in class A
is higher than the average in class B (which would correspond to an easier exam). Here, the alternative
hypothesis is one-sided.

• Example: We wish to test whether a particular baseball player performs better in the playo�s than during
the regular season, which we do by comparing the player's hitting percentage hr during regular-season games
to their hitting percentage hp during playo� games. Give the null and alternative hypotheses for this test.

◦ The null hypothesis is H0: hr = hp, since this represents the result that the hitting percentages do not
di�er.

◦ The alternative hypothesis is Ha: hr < hp, since this represents the result that the playo� percentage is
better than the regular-season percentage. Here, the alternative hypothesis is one-sided.

4.1.2 Test Statistics, p-Values, and Decision Rules

• Once we have properly formulated the null and alternative hypotheses, we can set up a hypothesis test to
decide on the reasonableness of rejecting the null hypothesis.

◦ Ideally, we would like to assess how likely it is to obtain the data we observed if the null hypothesis were
true.

◦ We will compute a test statistic based on the data (this will usually be an estimator for a particular
unknown parameter, such as the mean of the distribution), and then assess the likelihood of obtaining
this test statistic by sampling the distribution in the situation where the null hypothesis is true.

◦ In other words, we are using the projected distribution of the test statistic to calculate the likelihood
that any apparent deviation from the null hypothesis could have occurred merely by chance.

◦ In situations where the projected test statistic has a discrete distribution, we could, in principle, compute
this exact probability. However, for continuous distributions, the likelihood of observing any particular
data sample will always be zero.

◦ What we will do, as an approximate replacement, is instead compute the probability of obtaining a test
statistic at least as extreme as the one we observed. This probability is called the p-value of the sample.

◦ Note that the de�nition of �extreme� will depend on the nature of the alternative hypothesis: if Ha is
two-sided, then a deviation from the null hypothesis in either direction will be considered �extreme�,
whereas if Ha is one-sided, we only care about deviation from the null hypothesis in the corresponding
direction of Ha.

◦ We then decide, based on the p-value, whether we believe this deviation in the test statistic plausibly
occurred by chance.

• To decide whether to reject the null hypothesis, we adopt a decision rule of the following nature: we select
a signi�cance level α (often α = 0.1, 0.05, or 0.01, but we could choose any value) and decide whether the
p-value of the sample statistic satis�es p < α or p ≥ α.
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◦ If p < α, then we view the data as su�ciently unlikely to have occurred by chance: we reject the null
hypothesis in favor of the alternative hypothesis and say that the evidence against the null hypothesis is
statistically signi�cant.

◦ If p ≥ α, then we view as plausible that the data could have occurred by chance: we fail to reject the
null hypothesis and say that the evidence against the null hypothesis is not statistically signi�cant.

◦ If we plot the projected distribution of values of the test statistic, then we can view these two situations
as corresponding to di�erent possible ranges of values of the test statistic:

◦ For a two-sided alternative hypothesis, there are two regions in which we would reject the null hypothesis:
one where the test statistic is too high and the other where it is too low. Together, the total area of
these regions is α.

◦ For a one-sided alternative hypothesis, there is a single region in which we would reject the null hypothesis,
corresponding to a test statistic that is su�ciently far in the direction of the alternative hypothesis. The
total area of this region is α.

• Historically, when it was di�cult or time-consuming to compute exact p-values even for simple distributions
like the normal distribution, the testing procedure above was phrased in terms of �critical values� or a �critical
range�, outside of which the null hypothesis would be rejected.

◦ Since we are now able to compute with arbitrary accuracy the exact distributions for the situations we
will discuss, we will primarily work with explicit p-values and compare them to our signi�cance level,
rather than computing critical values for the test statistic.

• To summarize, we will adopt the following general procedure for our hypothesis tests:

1. Identify the null and alternative hypotheses for the given problem, and select a signi�cance level α.

2. Identify the most appropriate test statistic and its distribution according to the null hypothesis (usually,
this is an average or occasionally a sum of the given data values) including all relevant parameters.

3. Calculate the p-value: the probability that a value of the test statistic would have a value at least as
extreme as the value observed.

4. Determine whether the p-value is less than the signi�cance level α (reject the null hypothesis) or greater
than or equal to the signi�cance level α (fail to reject the null hypothesis).

◦ Alternatively, in situations where the p-value may be di�cult to calculate exactly, we may instead
calculate a critical value, or critical range, beyond which the null hypothesis is rejected.

4.2 One-Sample and Two-Sample z Tests

• In this section we will illustrate our general framework of hypothesis testing in one of the simplest possible
situations: testing whether a normally-distributed quantity with a known standard deviation has a particular
mean.
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4.2.1 One-Sample z Tests

• We begin by discussing the situation of testing whether a normally-distributed random variable has a particular
mean: these tests are known as one-sample z tests after the letter z traditionally used for normally-distributed
quantities.

◦ First, we must identify the appropriate null and alternative hypotheses and select a signi�cance level α.

◦ We will use the test statistic µ̂, the sample mean, since this is the minimum-variance unbiased estimator
for the population mean. Under the assumption that H0 is true, the test statistic is normally distributed
with mean µ (the true mean postulated by the null hypothesis) and standard deviation σ (which we must
be given).

∗ In some cases we may prefer to work with a �normalized� test statistic given instead by
µ̂− µ
σ/
√
n
,

whose distribution follows the standard normal distribution of mean 0 and standard deviation 1.
This corresponds to taking the test statistic to be the z-score.

◦ If the hypotheses are H0 : µ = c and Ha : µ > c, then the p-value is P (Nµ,σ ≥ z).
◦ If the hypotheses are H0 : µ = c and Ha : µ < c, then the p-value is P (Nµ,σ ≤ z).
◦ If the hypotheses are H0 : µ = c and Ha : µ 6= c, then the p-value is P (|Nµ,σ − µ| ≥ |z − µ|) ={

2P (Nµ,σ ≥ z) if z ≥ µ
2P (Nµ,σ ≤ z) if z < µ

.

◦ In each case, we are simply calculating the probability that the normally-distributed random variable
Nµ,σ will take a value further from the hypothesized mean µ (in the direction of the alternative hypothesis,
as applicable) than the observed test statistic z.

• Example: The production of an assembly line is normally distributed, with mean 180 widgets and standard
deviation 10 widgets for a 9-hour shift. The company wishes to test to see whether a new manufacturing
technique is more productive. The new method is used for a 9-hour shift and produces a total of 197 widgets.
Assuming that the standard deviation for the new method is also 10 widgets for a 9-hour shift, state the null
and alternative hypotheses, identify the test statistic and its distribution, calculate the p-value, and test the
claim at the 10%, 5%, and 1% levels of signi�cance.

◦ If µ represents the true mean of the new manufacturing process, then we want to decide whether µ > 180
or not.

◦ Thus, we have the null hypothesis H0 : µ = 180 and the alternative hypothesis Ha : µ > 180.

◦ Our test statistic is z = 197 widgets.

◦ By assumption, the number of widgets on a shift is normally distributed with standard deviation 10
widgets.

◦ Thus, because our alternative hypothesis is Ha : µ > 180, the p-value is the probability P (N180,10 ≥ 197)
that we would observe a result at least as extreme as the one we found, if the null hypothesis were
actually true.

◦ Using a normal cdf calculator, or a table of z-values, we can �nd P (N180,10 ≥ 197) = P (N0,1 ≥ 1.7) =

0.04457 . This is the p-value for our hypothesis test.

◦ At the 10% level of signi�cance (α = 0.10), we have p < α, and thus the result is statistically signi�cant,
so we would reject the null hypothesis in this case.

◦ At the 5% level of signi�cance (α = 0.05), we have p < α, and thus the result is statistically signi�cant,
so we would reject the null hypothesis in this case.

◦ At the 1% level of signi�cance (α = 0.01), we have p > α, and thus the result is not statistically
signi�cant, so we would fail to reject the null hypothesis in this case.

• Example: The Bad Timing Institute wants to raise awareness of the issue of improperly-set wristwatches.
They believe that the average person's watch is set correctly, but with a standard deviation of 20 seconds.
They poll 6 people, whose watches have errors of −39 seconds, +14 seconds, −21 seconds, −23 seconds, +25
seconds, and −31 seconds (positive values are watches that run fast while negative values are watches that
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run slow). Test at the 10% signi�cance level the Bad Timing Institute's hypothesis that the true mean error µ
is 0 seconds, if (i) the Institute is concerned about errors of any kind, and (ii) the Institute is only concerned
about errors that make people late.

◦ For (i), our hypotheses are H0: µ = 0 and Ha : µ 6= 0, since the Institute cares about errors in any
direction.

◦ Our test statistic is the average error, which is −75/6 = −12.5 seconds.

◦ The distribution of the test statistic, under the null hypothesis, is normal with mean 0 seconds and
standard deviation 30/

√
6 = 8.1650 seconds.

◦ Thus, because our alternative hypothesis isHa : µ 6= 0 (which is two-sided), the p-value is 2·P (N0,8.1650 ≤
−12.5) = 2 · P (N0,1 ≤ −1.5309) = 0.1258.

◦ Since the p-value is greater than α = 0.10, it is not statistically signi�cant at the 10% signi�cance level,
and we accordingly fail to reject the null hypothesis.

◦ For (ii), our hypotheses are H0: µ = 0 and Ha : µA < 0, since the Institute cares about errors only in
the direction that make people late (i.e., the negative direction).

◦ Our test statistic and distribution are the same as above.

◦ But now, because our alternative hypothesis isHa : µ < 0 (which is one-sided), the p-value is P (N0,8.1650 ≤
−12.5) = P (N0,1 ≤ −1.5309) = 0.0629.

◦ Since the p-value is less than α = 0.10, it is statistically signi�cant at the 10% signi�cance level, and we
accordingly reject the null hypothesis here.

• The example above illustrates that the decision about whether to reject the null hypothesis at a given sig-
ni�cance level can depend on the choice of alternative hypothesis, even when the underlying data and test
statistic are exactly the same.

◦ Ultimately, the decision about using a one-sided alternative hypothesis versus a two-sided alternative
hypothesis depends on the context of the problem and the precise nature of the question being investi-
gated.

◦ In situations where we are speci�cally trying to decide whether one category is better than another, we
want to use a one-sided alternative hypothesis. In situations where we are trying to decide whether two
categories are merely di�erent, we want to use a two-sided alternative hypothesis.

◦ The statistical test itself cannot make this determination: it is entirely a matter of what question we are
trying to answer using the observed data.

◦ This particular ambiguity also demonstrates one reason it is poor form simply to state the result of a test
(�signi�cant�/ �reject the null hypothesis� versus �not signi�cant� / �fail to reject the null hypothesis�)
without clearly stating the hypotheses and giving the actual p-value.

◦ Here, even with the two-sided alternative hypothesis, we can see that p = 0.0629 is not that far below
the (rather arbitrarily chosen) threshold value α = 0.10, which is why there is a di�erence in the results
of the one-sided test and the two-sided test. If the p-value had been much smaller than α, the factor of
2 would not have a�ected the statistical signi�cance.

4.2.2 Two-Sample z Tests

• In some situations, we want to compare two quantities to decide whether one of them is larger than the other.

◦ In situations where both quantities are normally distributed and independent, we can make this decision
by analyzing the di�erence between the two quantities, which will also be normally distributed.

◦ We can then apply the same decision procedures described for the one-sample z test to test the appropriate
null hypothesis about the value of the di�erence of the quantities.

◦ Because there are now two samples involved and we are studying the properties of a normally distributed
test statistic z, this method is referred to as a two-sample z-test.
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• Example: Exams are given to two di�erent classes: a sample from Class A has 64 students and a sample from
Class B has 100 students. The intention is that the exams are of equal di�culty, so that the average scores
in the two classes are the same. In Class A's sample, the average score is 80.25 points, while in Class B's
sample, the average is 81.16 points. The instructor believes the score for any individual student should be a
normally distributed random variable with mean 80 points and standard deviation 5 points. Assuming the
true standard deviation in each class is 5 points, test at the 10% and 3% signi�cance levels whether (i) the
average in Class A is equal to 80 points, (ii) the average in Class B is equal to 80 points, and (iii) the two
class averages are equal.

◦ Let µA and µB be the respective class averages.

◦ For (i), our hypotheses are H0: µA = 80 and Ha : µA 6= 80, since we do not care about a particular
direction of error here.

◦ Our test statistic is z = 80.25 points, the average score of the 64 students in Class A.

◦ The distribution of the test statistic, under the null hypothesis, is normal with mean 80 points and
standard deviation 5/

√
64 = 0.625 points.

◦ Thus, because our alternative hypothesis isHa : µA 6= 80 (which is two-sided), the p-value is P (|N80,0.625 − 80| ≥
0.25) = 2 · P (N80,0.625 ≥ 80.25) = 2 · P (N0,1 ≥ 0.4) = 0.6892.

◦ Since the p-value is quite large, it is not signi�cant at either the 10% or 3% signi�cance level, and we

accordingly fail to reject the null hypothesis in both cases.

◦ For (ii), our hypotheses are H0: µB = 80 and Ha : µB 6= 80, as (like above) we do not care about a
particular direction of error.

◦ Our test statistic is z = 81.16 points, the average score of the 100 students in Class B.

◦ The distribution of the test statistic, under the null hypothesis, is normal with mean 80 points and
standard deviation 5/

√
100 = 0.5 points.

◦ Thus, because our alternative hypothesis isHa : µA 6= 80 (which is two-sided), the p-value is P (|N80,0.5 − 80| ≥
1.16) = 2 · P (N80,0.5 ≥ 81.16) = 2 · P (N0,1 ≥ 2.32) = 0.0203.

◦ Since the p-value is quite small, the result is statistically signi�cant at both the 10% and 3% signi�cance
levels, and we accordingly reject the null hypothesis in both cases.

◦ For (iii), our hypotheses are H0: µA = µB and Ha : µA 6= µB , for the same reasons as above.

◦ Here, we want to use a two-sample test. Since our testing procedure requires testing the distribution of
a speci�c quantity, we can rephrase our hypotheses as H0 : µA − µB = 0 and Ha : µA − µB 6= 0.

◦ Our test statistic is z = 80.25− 81.16 = −0.91 points, the di�erence in the two class averages.

◦ Under the null hypothesis, µA − µB is normal with mean 80 − 80 = 0 points and standard deviation√
σ2
A + σ2

B =
√
0.6252 + 0.52 = 0.8004 points.

◦ Thus, because our alternative hypothesis is Ha : µA − µB 6= 0 (which is two-sided), the p-value is
P (|N0,0.8004| ≥ 0.91) = 2 · P (N0,0.8004 ≤ −0.91) = 2 · P (N0,1 ≤ −1.1369) = 0.2556.

◦ Since the p-value is relatively large, the result is not statistically signi�cant at either the 10% or 3%
signi�cance level, and we accordingly fail to reject the null hypothesis in both cases.

• We will also mention that the results of a z test can also be interpreted in terms of con�dence intervals.

◦ For a two-sided alternative hypothesis, if we give a 100(1− α)% con�dence interval around the mean of
a distribution under the conditions of the null hypothesis, then we will reject the null hypothesis with
signi�cance level α precisely when the sample statistic lies outside the con�dence interval:
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◦ Intuitively, this makes perfect sense: the 100(1− α)% con�dence interval is precisely giving the range of
values around the null hypothesis sample statistic that we would believe are likely to have occurred by
chance, in the sense that if we repeated the experiment many times, then we would expect a proportion
1− α of the results to land inside the con�dence interval.

◦ If we interpret this probability as an area, what this means is that we would expect to see a test statistic
�far away� from the null hypothesis value only with probability α: if we do obtain such an extreme value
as our test statistic, we should take this as strong evidence (at the signi�cance level α) that the true test
statistic does not align with the prediction from the null hypothesis.

◦ Instead of quoting a con�dence interval around the null-hypothesis prediction, we usually quote a con-
�dence interval around the test statistic instead, and then check whether the null-hypothesis prediction
lies within the con�dence interval around the test statistic.

◦ We can do the same thing with a one-sided alternative hypothesis, but because of the lack of symmetry
in the rejection region, we instead need to use a 100(1−2α)% con�dence interval to get the correct area:

◦ In this case, the shaded region has area α, and there is a second region also of area α on the other
side of the con�dence interval, so the total area inside the con�dence interval is 1− 2α, meaning it is a
100(1− 2α)% con�dence interval.

• Example: Using the Class A (64 students, average 80.25) and Class B (100 students, average 81.16) data
above, with individual score standard deviation 5 points, construct 90% and 97% con�dence intervals for (i)
the true average of Class A, (ii) the true average of Class B, and (iii) the di�erence between the averages of
the two classes. Then use the results to test the hypotheses at the 10% and 3% signi�cance levels that (iv)
the average of Class A is 80 points, (v) the average of Class A is 79 points, (vi) the average of Class B is 80
points, (vii) the average of Class B is 82 points, (viii) the average scores in the classes are equal, and (ix) the
average score in Class A is 1 points greater than the average in Class B.

◦ For (i), as we calculated above, the estimator for the mean of Class A has µ̂A = 80.25 and σA = 5/
√
64 =

0.625.

◦ Thus, the 90% con�dence interval for the mean is 80.25± 1.6449 · 0.625 = (79.22, 81.28) , and the 97%

con�dence interval is 80.25± 2.1701 · 0.625 = (78.89, 81.61) .

◦ For (ii), as we calculated above, the estimator for the mean of Class B has µ̂B = 81.16 and σB =
5/
√
100 = 0.5.
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◦ Thus, the 90% con�dence interval for the mean is 81.16 ± 1.6449 · 0.5 = (80.34, 81.98) , and the 97%

con�dence interval is 81.16± 2.1701 · 0.5 = (80.07, 82.25) .

◦ For (iii), as we calculated above, the estimator for the di�erence in the means has µ̂A−B = −0.91 and
σA−B =

√
0.6252 + 0.52 = 0.8004.

◦ Thus, the 90% con�dence interval for the di�erence in the means is−0.91±1.6449·0.8004 = (−2.23, 0.41) ,

and the 97% con�dence interval is −0.91± 2.1701 · 0.8004 = (−2.65, 0.83) .

◦ For (iv), since 80 lies inside both con�dence intervals, the result is not statistically signi�cant at either
the 10% or 3% signi�cance levels: we fail to reject the null hypothesis that the true mean is 80 points.

◦ However, for (v), since 79 lies outside the �rst interval, the result is statistically signi�cant at the 10%
level (we reject the null hypothesis that the true mean is 79 points) but not statistically signi�cant at
the 3% level (we fail to reject the null hypothesis with this more stringent signi�cance level).

◦ For (vi), since 80 lies outside both con�dence intervals, the result is statistically signi�cant at both the
10% and 3% levels: we reject the null hypothesis that the true mean is 80 points.

◦ For (vii), since 82 lies outside the �rst interval (barely!) but inside the second interval, the result is
statistically signi�cant at the 10% level (we reject the null hypothesis that the average is 82) but not
statistically signi�cant at the 3% level (we fail to reject the null hypothesis).

◦ For (viii), since 0 lies inside both intervals, the result is not statistically signi�cant at either the 10% or
3% signi�cance levels: we fail to reject the null hypothesis that the means are equal.

◦ For (ix), since +1 lies outside both intervals, the result is statistically signi�cant at both the 10% and
3% levels: we reject the null hypothesis that the average in class A is 1 point higher than in Class B.

4.2.3 z-Tests for Unknown Proportion

• In situations where the binomial distribution is well approximated by the normal distribution, we can adapt
our procedure for using a z test to handle hypothesis testing with a binomially-distributed test statistic.

◦ Thus, suppose we have a binomially distributed test statistic Bn,p counting the number of successes in
n trials with success probability p.

◦ If np (the number of successes) and n(1 − p) (the number of failures) are both larger than 5, we are
in the situation where the normal approximation to the binomial is good: then P (a ≤ Bn,p ≤ b) will
be well approximated by P (a − 0.5 < N

np,
√
np(1−p) < b + 0.5), where N is normally distributed with

mean µ = np and standard deviation σ =
√
np(1− p). (Note that we have incorporated the continuity

correction in our estimate1.)

◦ We can then test the null hypothesis H0 : p = c by equivalently testing the equivalent hypothesis
H0 : np = nc using the normal approximation via a one-sample z test, where our test statistic is the
number of observed successes k.

◦ Therefore, if the hypotheses are H0 : p = c and Ha : p > c, the associated p-value is P (Bn,p ≥ k) ≈
P (N

np,
√
np(1−p) > k − 0.5).

◦ If the hypotheses areH0 : p = c andHa : p < c, the associated p-value is P (Bn,p ≤ k) ≈ P (Nnp,√np(1−p) <
k + 0.5).

◦ Finally, if the hypotheses are H0 : p = c and Ha : p 6= c, the associated p-value is P (|Bn,p − nc| ≥

|k − nc|) ≈

2P (N
np,
√
np(1−p) > k − 0.5) if k > nc

2P (N
np,
√
np(1−p) < k + 0.5) if k < nc

. (For completeness2, in the trivial case k = c the

p-value is 1.)

1As a practical matter, the continuity correction usually does not a�ect the resulting p-values very much, but in the interest of
consistency with our previous discussion of the binomial distribution, we have included it here.

2We note that the equality of the binomial range and the normal range given in this formula is slightly erroneous in the case where
np is not an integer, since in that case the two tail probabilities will be rounded to integers slightly di�erently. We shall ignore this
very minor detail, since the practical e�ect of the di�erence is extremely small when the normal approximation is valid, we are already
approximating anyway, and conventions occasionally di�er on the proper handling of two-tailed binomial rounding calculations like this
one.
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◦ We then compare the p-value to the signi�cance level α and decide whether or not to reject the null
hypothesis.

◦ All of this still leaves open the question of what we can do in situations where the binomial distribution
is not well approximated by the normal distribution.

◦ In such cases, we can work directly with the binomial distribution explicitly, or (in the event n is large
but np or n(1− p) is small) we could use a Poisson approximation.

◦ Of course, in principle, we could always choose to work with the exact distribution, but when n is large
computing the necessary probabilities becomes cumbersome, which is why we usually use the normal
approximation instead.

• Example: A coin with unknown heads probability p is �ipped n = 100 times, yielding 64 heads. Test at the
11%, 4%, and 0.5% signi�cance levels the hypotheses (i) that the coin is fair, (ii) that the coin is more likely
to land heads than tails, (iii) that heads is twice as likely as tails, (iv) heads is more than twice as likely as
tails, and (v) heads is more than thrice as likely as tails.

◦ For (i), our hypotheses are H0 : p = 1/2 and Ha : p 6= 1/2, since we only want to know whether or not
the coin is fair.

◦ Here, we have np = n(1 − p) = 50 so we can use the normal approximation. Note that np = 50 and√
np(1− p) = 5.

◦ We compute the p-value as P (|B100,0.5 − 50| ≥ 14) ≈ 2P (N50,5 > 63.5) = 0.00693.

◦ Thus, the result is statistically signi�cant at the 11% and 4% levels and we reject the null hypothesis in
these cases. But it is not statistically signi�cant at the 0.5% level, so we fail to reject the null hypothesis
there. (We interpret this as giving fairly strong evidence that the heads probability is not 1/2.)

◦ For (ii), it is easy to see that we want a one-sided alternative hypothesis; the only question is the
appropriate direction.

◦ Here, although we actually want to decide whether or not p > 1/2, this is the appropriate form of the
alternative hypothesis. Thus, we take the null hypothesis as H0 : p = 1/2 and the alternative hypothesis
as Ha : p > 1/2.

◦ We have the same parameters as above, so np = 50 and
√
np(1− p) = 5, and then the p-value is

P (B100,0.5 ≥ 64) ≈ P (N50,5 > 63.5) = 0.00347.

◦ Thus, the result is statistically signi�cant at the 11%, 4%, and 0.5% signi�cance levels, and we reject the
null hypothesis in each case. (We interpret this as giving strong evidence that the heads probability is
greater than 1/2.)

◦ For (iii), our hypotheses are H0 : p = 2/3 and Ha : p 6= 2/3, since we want to know whether or not the
heads probability is 2/3 .

◦ Our parameter values are now n = 100, p = 2/3 so that np = 66.667 and
√
np(1− p) = 4.714.

◦ Since n(1 − p) = 33.333 the normal approximation is still appropriate, so we compute the p-value as
P (|B100,2/3 − 66.667| ≥ 2.667) ≈ 2P (N66.667,4.714 < 63.5) = 0.5017.

◦ Thus, the result is not statistically signi�cant at the 11%, 4%, or 0.5% levels, and we accordingly fail
to reject the null hypothesis in each case. (We interpret this as giving minimal evidence against the
hypothesis that the heads probability is 2/3.)

◦ For (iv), our hypotheses are H0 : p = 2/3 and Ha : p > 2/3, since we want to know whether or not heads
is more than twice as likely as tails, and this is appropriately set as the alternative hypothesis.

◦ As above, the parameter values are n = 100, p = 2/3 so that np = 66.667 and
√
np(1− p) = 4.714.

◦ We compute the p-value as P (B100,2/3 ≥ 64) ≈ P (N66.667,4.714 > 63.5) = 0.7491.

◦ Thus, the result is not statistically signi�cant at the 11%, 4%, or 0.5% levels, and we accordingly fail to
reject the null hypothesis in each case. (We interpret this, again, as giving minimal evidence against the
hypothesis that the heads probability is 2/3.)

◦ For (v), we �rst try taking the hypotheses as H0 : p = 3/4 and Ha : p > 3/4, since we want to know
whether or not heads is more than thrice as likely as tails, and this is appropriately set as the alternative
hypothesis.
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◦ The parameter values now are n = 100 and p = 3/4 so that np = 75 and
√
np(1− p) = 4.330.

◦ Since np = 75 and n(1−p) = 25 the normal approximation is still appropriate, so we compute the p-value
as P (B100,3/4 ≥ 64) ≈ P (N75,4.330 > 63.5) = 0.9960.

◦ The result is (extremely) not statistically signi�cant at the 11%, 4%, or 0.5% levels, and we accordingly
fail to reject the null hypothesis in each case. (We interpret this as giving essentially zero evidence
against the hypothesis that the true heads probability is at most 3/4.)

◦ Although it seems quite obvious that the true heads probability should be less than 3/4 based on the
results of the last hypothesis test we performed, that is not how we can interpret the result of the
calculation.

◦ Instead, we should test H0 : p = 3/4 with alternative hypothesis Ha : p < 3/4: this will have a p-value
of P (B100,3/4 ≥ 64) ≈ P (N75,4.330 < 64.5) = 0.0077.

◦ This latter test is statistically signi�cant at the 11% and 4% levels, but not statistically signi�cant at
the 0.5% level. Our interpretation now is that we have fairly strong evidence against the hypothesis that
the true heads probability is greater than or equal to 3/4.

• This last example illustrates another nuance with hypothesis testing, namely, that if we are using a one-sided
alternative hypothesis, we may actually want to try testing the other version of the alternative hypothesis
depending on what the result of the test will be.

◦ In general, we interpret �rejecting the null hypothesis� as a much stronger statement than �failing to
reject the null hypothesis�, since rejecting the null hypothesis takes more evidence (the p-value must be
less than the signi�cance level α, which is usually a stringent requirement).

◦ Thus, the version of the alternative hypothesis in which we reject the null hypothesis (if there is one) is
usually the one we will want to discuss.

• Example: A 6-sided die is rolled 18 times, yielding six 4s. Test at the 15%, 4%, and 1% signi�cance levels the
hypothesis that the true probability of rolling a 4 is equal to 1/6.

◦ Our hypotheses are H0 : p = 1/6 and Ha : p 6= 1/6.

◦ Under the conditions of the null hypothesis, the total number of 4s rolled is binomially distributed with
parameters n = 18 and p = 16. Here, np = 3 is too small for us to apply the normal approximation to
the binomial distribution, so we will work directly with the binomial distribution itself.

◦ The desired p-value is P (
∣∣B18,1/6 − 3

∣∣ ≥ |6− 3|) = P (B18,1/6 ≥ 6) + P (B18,1/6 ≤ 0) = 0.1028.

◦ The result is statistically signi�cant at the 15% signi�cance level, and we accordingly reject the null
hypothesis. However, it is not statistically signi�cant at the 4% or 1% signi�cance levels, and so we fail
to reject the null hypothesis in these cases.

◦ We interpret this result as saying that there is moderate evidence against the hypothesis that the prob-
ability of rolling a 4 is equal to 1/6.

• If we have two independent, binomially-distributed quantities each of which is well approximated by a normal
distribution, we can use the method for a two-sample z test to set up a hypothesis test for the di�erence of
these quantities: we refer to this as a two-sample z-test for unknown proportion.

◦ Suppose the two proportions are A and B. Then we would use the null hypothesis H0 : A − B = 0 to
test whether A = B, and our test statistic would be the di�erence between the proportions.

◦ By hypothesis, A is normally distributed with mean pA and standard deviation σA =
√
pA(1− pA)/nA

while B is normally distributed with mean pB and standard deviation σB =
√
pB(1− pB)/nB .

◦ Under the assumption that H0 is true, the test statistic A−B is normally distributed with mean 0 (the
true mean postulated by the null hypothesis).

◦ However, the null hypothesis does not actually tell us the standard deviations of A and B (that would
only be the case if the null hypothesis were to state a speci�c value for A and for B).

◦ What we must do instead is estimate the standard deviations using the sample data.
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◦ Here, under the null hypothesis assumption that the two proportions are actually equal, we can calculate
a pooled estimate for the true proportion p by putting the two samples together: if sample A has kA
successes in nA trials and sample B had kB successes in nB trials, then together there were kA + kA

successes in nA + nB trials, so our pooled estimate for both pA and pB is ppool =
kA + kB
nA + nB

.

◦ Then the standard deviation of A is σA =

√
ppool(1− ppool)

nA
and the standard deviation of B is σB =√

ppool(1− ppool)
nB

, so the standard deviation ofA−B is σA−B =
√
σ2
A + σ2

B =

√
ppool(1− ppool)

nA
+
ppool(1− ppool)

nB
.

◦ The desired p-value is then the probability that the normally-distributed random variable NµA−B ,σA−B

will take a value further from the hypothesized value 0 (in the direction of the alternative hypothesis, as
applicable) than the observed test statistic z = p̂A − p̂B .
◦ Remark: We could also estimate the two standard deviations from their sample proportions separately as
σA =

√
p̂A(1− p̂A)/nA and σB =

√
p̂B(1− p̂B)/nB : these are called the unpooled standard deviations,

and they give a slightly di�erent estimate

√
p̂A(1− p̂A)

nA
+
p̂B(1− p̂B)

nB
for the standard deviation of

A − B. As a practical matter, if the sample proportions p̂A and p̂B are actually close to each other,
these values will both also be close to ppool, and thus the two estimates for σA−B will also be very close.
We usually use the unpooled standard deviations if we want to perform more complicated tests on the
observed proportions (e.g., if we wanted to test whether the proportion for A exceeded the proportion
for B by 2% or more). There is not universal consensus on the usage of the pooled versus unpooled
standard deviations.

• Example: In a sample from a statistics class taught with a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas in a sample from a statistics class taught with a revised curriculum, 86
students out of 284 received an A (30.3%). If pt is the proportion of students getting an A with the traditional
curriculum and pr is the proportion of students getting an A with the revised curriculum, test the hypothesis
pt = pr at the 10%, 5%, 1%, and 0.1% signi�cance levels with alternative hypothesis (i) pt > pr, (ii) pt < pr,
and (iii) pt 6= pr.

◦ The proportion of students getting an A in each of the samples will be binomially distributed, and the
parameters are in the range where the normal approximation is applicable in both samples.

◦ For (i), the null hypothesis is H0 :pt − pr = 0 with alternative hypothesis pt − pr > 0.

◦ Here, we have nt = 311, nr = 284, p̂t = 125/311 = 0.4019, and p̂r = 86/284 = 0.3028, so that
p̂t−r = 0.0991.

◦ To �nd the pooled standard deviation, we have ppool = (125+86)/(311+284) = 0.3546. Then σt−r,pool =√
ppool(1− ppool)

[
1

nA
+

1

nB

]
= 0.03927.

◦ If we wanted to use the unpooled standard deviations, we would have σt =
√
p̂t(1− p̂t)/nt = 0.02780,

σr =
√
p̂r(1− p̂r)/nr = 0.02726, and σt−r,unpool =

√
p̂t(1− p̂t)/nt + p̂r(1− p̂r)/nr = 0.03894.

◦ Using the pooled standard deviation, the desired p-value is P (N0,0.03927 ≥ 0.0991) = P (N0,1 ≥ 2.5242) ≈
0.00580.

◦ Thus, the result is statistically signi�cant at the 10%, 5%, and 1% signi�cance levels, and we accordingly
reject the null hypothesis in these cases, but it is not statistically signi�cant at the 0.1% signi�cance
level.

◦ We interpret this result as saying that there is strong evidence for the hypothesis that the students with
the traditional curriculum had a higher proportion of As than the students with the revised curriculum.

◦ For (ii), the null hypothesis is H0 :pt − pr = 0 with alternative hypothesis pt − pr < 0.

◦ The parameters and values are the same as before: the only di�erence is that the p-value is now
P (N0,0.03927 ≤ 0.0991) = P (N0,1 ≤ 2.5242) ≈ 0.99420.

◦ Thus, the result is (extremely!) not statistically signi�cant at any of the indicated signi�cance levels,
and we fail to reject the null hypothesis in all cases.

13



◦ We interpret this result as saying that there is essentially zero evidence for the hypothesis that the
students with the revised curriculum had a higher proportion of As than the students with the traditional
curriculum.

◦ For (ii), the null hypothesis is H0 :pt − pr = 0 with alternative hypothesis pt − pr 6= 0.

◦ The parameters and values are still the same; the only di�erence is that the p-value is now P (|N0,0.03927−
0| ≥ |0.0991− 0|) = 2P (N0,0.03927 ≥ 0.0991) = 2P (N0,1 ≥ 2.5242) ≈ 0.01160.

◦ Thus, the result is statistically signi�cant at the 10% and 5% signi�cance levels, so we accordingly reject
the null hypothesis in those situations, but it is not statistically signi�cant at the 1% or 0.1% signi�cance
levels, so we fail to reject the null hypothesis in those cases.

◦ We interpret this result as saying that there is relatively strong evidence for the hypothesis that the stu-
dents with the revised curriculum had a di�erent proportion of As than the students with the traditional
curriculum.

• Example: A pollster conducts a poll on the favorability of Propositions ♣ and ♥. They poll 2,571 people and
�nd that 1,218 of them favor Proposition ♣ (47.4%). In a separate poll, also of 2,571 people, they �nd 1,344
of them favor Proposition ♥ (52.3%). Perform hypothesis tests at the 8% and 1% signi�cance levels that (i)
Proposition ♣ has at least 50% support, (ii) the support for Proposition ♣ is exactly 50%, (iii) Proposition
♥ has at least 50% support, (iv) the support for Proposition ♥ is exactly 55%, (v) Proposition ♥ has more
support than Proposition ♣.

◦ For (i), our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ < 0.50, since we want to test whether Proposition
♣ has at least 50% support.

◦ We test this direction of the alternative hypothesis because the observed support level of Proposition ♣
is actually less than 50%, so we would like to reject the other possibility (i.e., that the support is not less
than 50%).

◦ Here, we have np = n(1− p) = 1285.5 so we can use the normal approximation. Note that np = 1285.5
and

√
np(1− p) = 25.35.

◦ We compute the p-value as P (B2571,0.5 ≤ 1218) ≈ P (N1285.5,25.35 < 1218.5) = P (N0,1 < −2.6427) =
0.00411.

◦ Thus, the result is statistically signi�cant at both the 8% and 1% signi�cance levels. (We interpret this
as saying that there is strong evidence against the hypothesis that the support for Proposition ♣ is 50%
or above.)

◦ For (ii), our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ 6= 0.50, since we now only want to test whether
Proposition ♣ has 50% support (not whether it is speci�cally higher or lower).

◦ We have the same parameters as above, so the p-value is ≈ 2P (N1285.5,25.35 < 1218.5) = 2P (N0,1 <
−2.6427) = 0.00822.

◦ Thus, the result is statistically signi�cant at both the 8% and 1% signi�cance levels. (We interpret this
as saying that there is strong evidence against the hypothesis that the support for Proposition ♣ is equals
50%.)

◦ For (iii), our hypotheses areH0 : p♥ = 0.50 andHa : p♥ > 0.50, since we want to test whether Proposition
♥ has at least 50% support.

◦ Note that we test with a di�erent alternative hypothesis than (i) because the observed support level of
Proposition ♥ is actually greater than 50%, so we would like to reject the other possibility (i.e., that the
support is not greater than 50%).

◦ We still have the same parameters as above (only the actual test statistic value will di�er), so we compute
the p-value as P (B2571,0.5 ≥ 1344) ≈ P (N1285.5,25.35 > 1343.5) = P (N0,1 > 2.2877) = 0.01107.

◦ Thus, the result is statistically signi�cant at the 8% signi�cance level, but not statistically signi�cant at
the 1% signi�cance level. (We interpret this as saying that there is moderately strong evidence against
the hypothesis that the support for Proposition ♥ is 50% or below.)

◦ For (iv), our hypotheses are H0 : p♥ = 0.55 and Ha : p♥ 6= 0.55, since we want to test whether or not
Proposition ♥ has 55% support (and that any di�erence from 55% is not in any particular direction).

◦ Here we have n = 2571 and p = 0.55 so that np = 1414.05 and
√
np(1− p) = 25.225.
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◦ Then the p-value is ≈ 2P (N1414.05,25.225 < 1344.5) = P (N0,1 > −2.7571) = 0.00291.

◦ Thus, the result is statistically signi�cant at both the 8% and 1% signi�cance levels, and we accordingly
reject the null hypothesis. (We interpret this as saying that there is strong evidence against the hypothesis
that the support for Proposition ♥ is 55%.)

◦ For (v), this is a two-sample test, so we take our hypotheses as H0 : p♣ − p♥ = 0 and Ha : p♣ − p♥ < 0,
since we want to test whether or not Proposition ♥ has more support than Proposition ♣ (we want a
one-sided alternative hypothesis) and because the sampling suggests that Proposition ♥ does actually
have more support than Proposition ♣.
◦ Here, we have n♣ = n♥ = 2571, p̂♣ = 1218/2571 = 0.4737, and p̂♥ = 1344/2571 = 0.5228, so that
p̂♣−♥ = −0.04901.
◦ To �nd the pooled standard deviation, we have ppool = (1218 + 1344)/(2571 + 2571) = 0.4982, so then

σ♣−♥,pool =

√
ppool(1− ppool)

[
1

n♣
+

1

n♥

]
= 0.01395.

◦ Then the desired p-value is P (N0,0.01395 < −0.04901) = P (N0,1 < −3.5143) = 0.000220.

◦ Thus, the result is statistically signi�cant at both the 8% and 1% signi�cance levels, and we accordingly
reject the null hypothesis. (We interpret this as saying that there is strong evidence that Proposition ♥
has more support than Proposition ♣.)

4.3 Errors and Misinterpretations of Hypothesis Testing

• We now discuss various forms of errors in hypothesis testing, and mention some of the common misinterpre-
tations and misuses of hypothesis testing.

4.3.1 Type I and Type II Errors

• When we perform a hypothesis test, there are two possible outcomes (reject H0 or fail to reject H0).

◦ The correctness of the result depends on the actual truth of H0: if H0 is false then it is correct to reject
it, while if H0 is true than it is correct not to reject it.

◦ The other two situations, namely �rejecting a correct null hypothesis� and �failing to reject an incorrect
null hypothesis� are refered to as hypothesis testing errors.

◦ Since these two errors are very di�erent, we give them di�erent names:

• De�nition: If we are testing a null hypothesis H0, we commit a type I error if we reject H0 when H0 was
actually true. We commit a type II error if we fail to reject H0 when H0 was actually false.

◦ We usually summarize these errors with a small table:
H0 \ Result Fail to Reject H0 Reject H0

H0 is true Correct Decision Type I Error
H0 is false Type II Error Correct Decision

◦ The names for these two errors are very unintuitive3, and it must simply be memorized which one is
which.

◦ If we view a positive result as one in which we reject the null hypothesis, which in most cases is the
practical interpretation, then a type I error corresponds to a false positive (a positive test on an actual
negative sample) while a type II error corresponds to a false negative (a negative test on an actual
positive sample).

◦ For example, if the purpose of the hypothesis test is to determine whether or not to mark an email as
spam (with H0 being that the email is not spam), a type I error would be marking a normal email as
spam, while a type II error would be marking a spam email as normal.

3The terminology for Type I and Type II errors is directly from the original 1930 paper of the originators of this method of hypothesis
testing, Jerzy Neyman and Egon Pearson.
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• We would like, in general, to minimize the probabilities of making a type I or type II error.

◦ The probability of committing a type I error is the signi�cance level α of the test, since by de�nition this
is the probability of rejecting the null hypothesis when it is actually true.

◦ The probability of committing a type II error is denoted by β. This value is more di�cult to calculate,
since it will depend on the actual nature in which H0 is false.

◦ If we postulate the actual value of the test statistic, we can calculate the probability of committing a
type II error.

• Example: A new mathematics curriculum is being tested in schools to see if students score more highly on
standardized tests. The scores for students using the old curriculum are normally distributed with mean 200
and standard deviation 20. It is assumed that scores using the new curriculum are also normally distributed
with mean µ and standard deviation 20. The hypothesis H0 : µ = 200 is tested against the alternative
Ha : µ > 200 using a sample of 400 students using the new curriculum. The null hypothesis will be rejected
if the sample mean µ̂ > 202. Find (i) the probability of making a type I error, and also �nd the probability
of making a type II error if the true mean is actually (ii) 201, (iii) 202, (iv) 203, (v) 204, and (vi) 205.

◦ For (i), we want to calculate the probability of rejecting the null hypothesis when it is true. If the null
hypothesis is true, then the sample mean µ̂ will be normally distributed with mean 200 and standard
deviation 20/

√
400 = 1.

◦ Then, the probability of rejecting the null hypothesis is P (N200,1 > 202) = P (N0,1 > 2) = 0.02275 .
(Note that this value is the signi�cance level α for this hypothesis test.)

◦ For (ii), we want to calculate the probability of failing to reject the null hypothesis when it is false. Under
the assumption given, the sample mean µ̂ will be normally distributed with mean 201 and standard
deviation 20/

√
400 = 1.

◦ Then, the probability of failing to reject the null hypothesis is P (N201,1 ≤ 202) = P (N0,1 ≤ 1) = 0.8413 :
quite large.

◦ For (iii), the assumption now is that µ̂ is normally distributed with mean 202 and standard deviation 1,

so the probability of failing to reject the null hypothesis is P (N202,1 ≤ 202) = P (N0,1 ≤ 0) = 0.5 : still
quite large.

◦ For (iv), µ̂ is normally distributed with mean 203 and standard deviation 1 so the probability of failing

to reject the null hypothesis is P (N203,1 ≤ 202) = P (N0,1 ≤ −1) = 0.1587 : smaller than before, but
still fairly high.

◦ For (v), µ̂ is normally distributed with mean 204 and standard deviation 1 so the probability of failing

to reject the null hypothesis is P (N204,1 ≤ 202) = P (N0,1 ≤ −2) = 0.02275 : reasonably small.

◦ For (vi), µ̂ is normally distributed with mean 205 and standard deviation 1 so the probability of failing

to reject the null hypothesis is P (N205,1 ≤ 202) = P (N0,1 ≤ −3) = 0.00135 : very small.

• We can see that as the true mean gets further away from the mean predicted by the null hypothesis, the
probability of making a type II error drops.

◦ The idea here is quite intuitive: the bigger the distance between the true mean and the predicted mean,
the better our hypothesis test will be better at picking up the di�erence between them.

• If we use the same rejection rule, but instead vary the sample size, the probability of making either type of
error will change:

• Example: The school wants to gather more data on the e�ectiveness of the new curriculum. Assume as before
the scores with the old curriculum are normally distributed with mean 200 and standard deviation 20, and
the new curriculum scores also have standard deviation 20. We again test H0 : µ = 200 against Ha : µ > 200
and reject the null hypothesis if µ̂ > 202. Find the probabilities of a type I error, and the probability of a type
II error if the true mean is actually µ = 203, using a sample size (i) n = 100, (ii) n = 400, and (iii) n = 1600.

◦ For (i), to �nd the probability of a type I error we assume µ = 200. Then the sample mean µ̂ is normally
distributed with mean 200 and standard deviation σ = 20/

√
100 = 2, so the probability of a type I error

is P (N200,2 > 202) = P (N0,1 > 1) = 0.1587 .
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◦ For a type II error, we assume µ = 203. Then the sample mean µ̂ is normally distributed with mean
203 and standard deviation σ = 20/

√
100 = 2, so the probability of a type II error is P (N203,2 ≤ 202) =

P (N0,1 ≤ −0.5) = 0.3085 .

◦ For (ii), for a type I error, the sample mean µ̂ is normally distributed with mean 200 and standard
deviation σ = 20/

√
400 = 1, so the probability of a type I error is P (N200,1 > 202) = P (N0,1 > 2) =

0.02275 .

◦ For a type II error, the sample mean µ̂ is normally distributed with mean 203 and standard deviation
σ = 20/

√
400 = 1, so the probability of a type II error is P (N203,1 ≤ 202) = P (N0,1 ≤ −1) = 0.1587 .

◦ For (iii), for a type I error, the sample mean µ̂ is normally distributed with mean 200 and standard
deviation σ = 20/

√
1600 = 0.5, so the probability of a type I error is P (N200,0.5 > 202) = P (N0,1 > 4) =

0.0000316 .

◦ For a type II error, the sample mean µ̂ is normally distributed with mean 203 and standard deviation
σ = 20/

√
1600 = 0.5, so the probability of a type II error is P (N203,0.5 ≤ 202) = P (N0,1 ≤ −2) =

0.02275 .

• If we �x the signi�cance level α but vary the sample size, the probability of a type II error will change:

• Example: The school wants to determine how large a sample size would have been necessary to determine
the e�ectiveness of the new curriculum. Assume the scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum scores are normally distributed with true
mean 203 and standard deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the 1% signi�cance level.
Find the probabilities of a type II error using a sample size (i) n = 100, (ii) n = 400, (iii) n = 900, and (iv)
n = 1600.

◦ Under the assumptions of the hypothesis test, µ̂ is normally distributed with mean 200 and standard
deviation σ = 20/

√
n.

◦ Since the test is one-tailed, the critical value of µ̂ is the value c such that P (N200,20/
√
n > c) = 0.01.

Equivalently, this says P (N0,1 > c−200
20/
√
n
) = 0.01, which occurs when c−200

20/
√
n

= 2.3263 and thus c =

200 + 2.3263 · 20/
√
n.

◦ In reality, the sample mean µ̂ is normally distributed with mean 203 and standard deviation σ = 20/
√
n.

◦ This means that the probability of a type II error is P (N203,20/
√
n ≤ c) = P (N0,1 ≤ 2.3263− 3

√
n

20 ).

◦ For (i), evaluating this probability for n = 100 yields the type-II error probability as P (N0,1 ≤ 0.8263) =

0.7957 .

◦ For (ii), evaluating this probability for n = 400 yields the type-II error probability as P (N0,1 ≤
−0.6737) = 0.2503 .

◦ For (iii), evaluating this probability for n = 900 yields the type-II error probability as P (N0,1 ≤
−2.1737) = 0.01486 .

◦ For (iv), evaluating this probability for n = 1600 yields the type-II error probability as P (N0,1 ≤
−3.6737) = 0.0001195 .

• We can glean a few general insights from from the examples above.

◦ First, by adjusting the signi�cance level α, we can a�ect the balance between the probabilities of a type
I error and a type II error.

◦ A smaller α gives a smaller probability of a type I error but a greater probability of a type II error: we
are more stringent about rejecting the null hypothesis (so we make fewer type I errors) but at the same
time that means we also incorrectly fail to reject the null hypothesis more (so we make more type II
errors).

◦ Second, by increasing the sample size, we decrease the probabilities of both error types together (though
they do not necessarily drop similar amounts). This is also quite reasonable: the larger the sample, the
closer the sample mean should be to the true mean and the less variation around the true mean it will
have.
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◦ What this means is that with a larger sample size, the test will have a better ability to distinguish smaller
deviations away from the null hypothesis. This property has a name:

• De�nition: If we are testing a null hypothesisH0, the probability 1−β of correctly rejecting the null hypothesis
when it is false is called the power of the test.

◦ The power of the test will depend on the signi�cance level α, the true value of the test parameter, and
the size n of the sample.

◦ For a �xed α and n, we can plot the dependence of the power on the true value of the test parameter to
produce what are called power curves.

◦ To plot a power curve, we need only perform a calculation like the one we did above (�rst calculating
the critical value, and then calculating the probability of correctly rejecting the null hypothesis based on
the value of the parameter).

◦ For the test we analyzed above, of testing H0 : µ = 200 against Ha : µ > 200 with signi�cance level
α = 0.10 and a sample size n = 400, we want to reject the null hypothesis if µ̂ > 201.282, and so the
power of the test if the true mean is x is P (Nx,1 ≥ 201.282 = P (N0,1 ≥ 201.282 − x), whose graph is
plotted below:

◦ As is suggested by the plot given above, the limit of the power as the true mean approaches the null
hypothesis mean is equal to α. (This follows by noting the moderately confusing fact that the type II
error coincides with the complement of the type I error in the limit.)

◦ Furthermore, the power increases monotonically as the true parameter value moves away from the null
hypothesis mean, and approaches 1 as the true parameter value becomes large.

4.3.2 Misinterpretations and Misuses of Hypothesis Testing

• Although it may seem that we would always want the power of the test to be as large as possible, there are
certain non-obvious drawbacks to this desire.

◦ Speci�cally, if the power is very large even for small deviations away from the null hypothesis parameter,
then the test will frequently yield statistically signi�cant results even when the sample parameter is not
very far away from the null hypothesis parameter.

◦ In some situations this is good, but in others it is not: for example, suppose we want to test whether the
new curriculum actually improves scores above the original mean µ = 200.

◦ If the power is su�ciently high, the hypothesis test will indicate a statistically signi�cant result whenever
the the sample mean µ̂ > 200.001. Now, it certainly is useful to know that the true mean is statistically
signi�cantly di�erent from 200, but in most situations we would not view this di�erence as substantial.

◦ This issue is usually framed as �statistical signi�cance� versus �practical signi�cance�: with large samples,
we may obtain a statistically signi�cant di�erence from the hypothesized mean (perhaps even with an
exceedingly small p-value), yet the actual di�erence is negligibly small and not actually important in
practice.

◦ This highlights one issue with relying solely on p-values on a measure of evidence quality: it is possible
to set up tests (e.g., by using a very large sample) that yield extremely small p values even if the actual
result is practically meaningless.

18



◦ Another viewpoint here is that the null hypothesis is rarely (if ever) exactly true: thus, if we take a
su�ciently large sample size, we can identify as statistically signi�cant whatever tiny deviation actually
exists, even if this deviation is not practically relevant.

• With these observations in mind, we can see that that the precise choice of the signi�cance level α is entirely
arbitrary (which has been illustrated by the somewhat eclectic selection of values in the examples we have
given so far).

◦ The only particular considerations we have are whether the choice of α yields acceptably low probabilities
of making a type I or type II error.

◦ In some situations, we would want to be extremely sure, when we reject the null hypothesis, that it was
truly outlandishly unlikely to have observed the given data by chance: this corresponds to requiring α
to be very small.

◦ For example, if the result of the hypothesis test is regarding whether the numbers in a company's
accounting ledgers are real or manufactured to cover up embezzling, we would want to be very sure that
any seeming discrepancies were not merely random chance.

◦ However, in other situations (e.g., in the sciences) where the statistical test is merely one component of
broader analysis of a topic, we should view the result of a hypothesis test as more of a suggestion for
what to investigate next. If the p-value is very small, then it suggests that the alternative hypothesis
may be correct, and further study is warranted. If the p-value is large, then it suggests that the null
hypothesis is correct, and that additional study is not likely to yield di�erent results.

• For various historical reasons, the signi�cance level α = 0.05 is very commonly used, since it strikes a balance
between requiring strong evidence (only a 5% probability that the obsered result could have arisen by chance
if there is no real result to �nd) but not so strong as to tend to ignore good evidence suggesting the null
hypothesis is false (which becomes likely with smaller values of α).

◦ Indeed, many authors, both in the past and the present, often call a result with p < 0.05 �statistically
signi�cant� (with no quali�er) and a result with p < 0.01 �very statistically signi�cant� (and if p < 0.001,
one also sometimes sees �extremely statistically signi�cant�).

◦ Such statements entirely ignore the actual nuances of what p-values measure, and should be assiduously
avoided: a hypothesis test with p = 0.051 provides almost the same level of evidence against the null
hypothesis as a hypothesis test with p = 0.049, and there is simply no practical distinction that should
be made between the two.

◦ Nonetheless, the prevalence of the view that results are not worth reporting unless they have p < 0.05
has led to various undesirable, and very real, consequences. One such problem is the lack of reporting of
experiments that had negative or �statistically insigni�cant� results (which is also partly a cultural issue
in research, more generally), which leads to a bias in the resulting literature.

• There are various other related factors that can also contribute to an overall bias in reported results of
hypothesis tests.

◦ When analyzing collected data, it is important to examine outliers (points far away from the norm), since
they may be the results of errors in data collection or otherwise unrepresentative of the desired sample.
The presence of outliers often has a large e�ect on the results of a hypothesis test, especially one that
relies on an estimate of a standard deviation or variance, and in some situations it is entirely reasonable
to discard outliers.

◦ However, this process can rise to the level of scienti�c misconduct if it is done after the fact: the
phenomenon called p-hacking involves massaging the underlying data used for a statistical test (e.g., by
removing additional outliers, or putting back outliers that were previously removed) so that it yields a
p-value less than 0.05 rather than greater than 0.05.

• Another related issue is that of performing multiple comparisons on the same set of data.

◦ This procedure is sometimes (more uncharitably) referred to as data dredging: sifting through data to
�nd signals in the underlying noise.
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◦ The di�culty with performing multiple comparisons is that there is a probability α that any given
hypothesis test will yield a statistically signi�cant result even though the null hypothesis is true, and
these probabilities add up if we perform more tests.

◦ For example, if we perform 40 hypothesis tests where the null hypothesis is actually true at the α = 0.05
signi�cance level, we will have a probability 1−0.9540 ≈ 87% of getting at least one statistically signi�cant
result (i.e., making a type I error), even though there is no actual result to �nd.

◦ If we test a large number of hypotheses, then (depending on the actual likelihood of the hypotheses we
test and the signi�cance level α) it is entirely possible that most of the statistically signi�cant results
we obtain will be spurious. It is the same situation of testing for a rare disease: positive tests are much
more likely to be a false positive than a correct positive.

◦ When actually performing a large number of hypothesis tests, one should correct for the fact that multiple
tests were performed on the same data. Various methods exist for this, such as the Bonferroni correction,
which states that the desired con�dence level α should be divided by the total number of tests performed:
the idea is simply that we want a total probability of approximately α (among all the tests) of obtaining
a type I error.

◦ Thus, if we perform 5 di�erent tests on the same data using the typical α = 0.05, we should actually test
at the level α = 0.01 in order to have an overall total probability of approximately 0.05 of obtaining at
least one type I error.

◦ Multiple hypothesis testing on the same data is not necessarily a problem if we report the results of
all of the tests and give the actual p-values for each test, since then it is straightforward to apply such
correction methods to identify which results are likely to be real.

◦ However, a much more serious issue occurs when we only report the statistically signi�cant results without
noting (or correcting for) the fact that other hypothesis tests were also performed and not reported: as
noted above, it is then entirely possible that most of the reported results are false.

• The extent to which false research �ndings are an actual problem in scienti�c research is disputed4, and varies
substantially by �eld, but is obviously a fundamental concern!

◦ When spurious results are reported as signi�cant, followup studies will (at least in theory) eventually
show that the original results were erroneous; this phenomenon of having subsequent studies widely
being unable to replicate the results of the originals has led to a replication crisis in various �elds, since
it suggests that most of these original results were actually false.

◦ Although one can reasonably adopt the viewpoint that eventually incorrect results will be identi�ed and
extirpated, having many false results believed to true creates a substantial waste of resources.

◦ The mildest possible consequences are that unnecessary replication studies must be performed to identify
and weed out incorrect results. More broadly, until such results are identitied, there is also the likelihood
of building additional research on a faulty foundation.

◦ But there are more serious consequences that can occur, such as in medical testing: if, for example, it is
purportedly shown using faulty statistics that a new and expensive drug is better at treating a serious
disease when it is in fact no better than a placebo (or perhaps actually worse), then tremendous amounts
of money and resources could be wasted on manufacturing and delivering the drug.

◦ This is one of the reasons for the strictness in testing requirements in the development of medical
treatments: they exist to ensure that only treatments that are shown to be e�ective, and that do not
have serious side e�ects, will actually pass the screenings.

• We have mentioned these issues because it is very important to be sanguine about the limitations of hypothesis
testing, and how easy it is to misuse or misinterpret the results of hypothesis tests.

◦ Ultimately, there can be no �magic �x� for these issues: statistical testing is fundamentally an approxi-
mation, and there is always a positive probability of getting an incorrect result.

4See Ioannadis, �Why Most Published Research Findings are False�, PLoS Medicine (2005) for an argument that this is a serious
problem.
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◦ When designing an experiment and a hypothesis test, the best we can do is to identify the right signi�-
cance level α (which balances the possibility of making a type I error against the possibility of making a
type II error) and the right sample size n (which balances the possibility of making any type of error with
the di�culty and expense of obtaining the necessary data, and with the likelihood that there probably
is some practically irrelevant deviation from the null hypothesis), and conduct followup analyses and
replication studies to make sure any observed results are truly real and practically signi�cant.

• In 2016, the American Statistical Association5 released guidelines for interpretation and usage of p-values:

1. p-values can indicate how incompatible the data are with a speci�ed statistical model.

2. p-values do not measure the probability that the studied hypothesis is true, or the probability that the
data were produced by random chance alone.

3. Scienti�c conclusions and business or policy decisions should not be based only on whether a p-value
passes a speci�c threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical signi�cance, does not measure the size of an e�ect or the importance of a result.

6. By itself, a p-value does not provide a good measure of evidence regarding a model or hypothesis.

• We also quote their conclusion, summarizing proper use of hypothesis tests, p-values, and statistics generally:

Good statistical practice, as an essential component of good scienti�c practice, emphasizes principles
of good study design and conduct, a variety of numerical and graphical summaries of data, under-
standing of the phenomenon under study, interpretation of results in context, complete reporting
and proper logical and quantitative understanding of what data summaries mean. No single index
should substitute for scienti�c reasoning.

• There is a great deal more to be said about the proper interpretation and presentation of experimental data,
and we will not extend our discussion much further.

◦ As a �nal remark, we note the importance of examining the power of the proposed hypothesis tests6.
With low power, repeated experiments are likely to yield a wide spread of di�erent p-values, even when
the e�ect size is very small.

◦ This provides another reason it is very important to repeat experiments, even ones with a very small
p-value or that seem to suggest a large e�ect size: seemingly-compelling results may merely be an artifact
of a test with low power and the presence of an unusual data set.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2020-2021. You may not reproduce or distribute this
material without my express permission.

5Wasserstein and Lazar, �The ASA Statement on p-Values: Context, Process, and Purpose�,
https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108 .

6https://www.nature.com/articles/nmeth.3288
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