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3 Parameter and Interval Estimation

In the previous chapter, we discussed random variables and developed the notion of a probability distribution, and
then established some fundamental results such as the central limit theorem that give strong and useful information
about the statistical properties of a sample drawn from a �xed, known distribution.

Our goal in this chapter is, in some sense, to invert this analysis: starting instead with data obtained by sampling
a distribution or probability model with certain unknown parameters, we would like to extract information about
the most reasonable values for these parameters given the observed data. We begin by discussing �pointwise�
parameter estimates and estimators, analyzing various properties that we would like these estimators to have such
as unbiasedness and e�ciency, and �nally establish the optimality of several estimators that arise from the basic
distributions we have encountered such as the normal and binomial distributions.

We then broaden our focus to interval estimation, from �nding the best estimate of a single value to �nding such
an estimate along with a measurement of its expected precision. We treat in scrupulous detail several important
cases for constructing such con�dence intervals, and close with some applications of these ideas to polling data.

3.1 Parameter Estimation

• To motivate our formal development of estimation methods, we �rst outline a few scenarios in which we would
like to use parameter estimation. For reasons of consistency, we will always call our unknown parameter θ.

◦ As a �rst example, suppose that an unfair coin with an unknown probability θ of coming up heads is
�ipped 10 times, and the results are TTTTT THTTH. We would like to know what the most reasonable
estimate for θ is, given these results.

◦ In this case, it seems reasonable to say that since 8 of the �ips are tails and 2 of the �ips are heads, the
most reasonable estimate for θ would be 2/10 = 0.2. It seems far more likely that we would obtain the
results above with a coin that has a 1/5 chance of landing heads (since then the expected number of
heads in 10 �ips is 2, exactly what we observed) than, say, if the coin had a 1/2 chance of landing heads
(since then the expected number of heads would be 5, far more than we observed).
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◦ As a second example, suppose that we expect the number of calls received by an emergency help line
at night should have a Poisson distribution with parameter λ = θ. If the number of calls received in
consecutive hours is 4, 2, 0, 3, and 4 respectively, what is the most reasonable estimate for the associated
parameter θ?

◦ As a third example, suppose that we sample a continuous random variable that is known to be exponen-
tially distributed with some parameter λ = θ. If the values obtained from the samples are 1.25, 0.02,
0.18, and 0.63, what is the most reasonable estimate for the associated parameter θ?

• In these last two examples, it is less obvious how we might go about estimating the most reasonable value for
the parameter.

◦ One possible approach for the second example is as follows: in terms of θ, we compute the probability
of obtaining the sampling data we received. Then we search among the possible values of θ for the one
that makes our observed outcomes most likely to have occurred.

◦ We can take a similar approach for the third example, provided we use the probability density function
in place of the actual probabilities of obtaining the observed values (since they will always be zero).

3.1.1 Maximum Likelihood Estimates

• As motivated above, the quantity we would like to maximize is the likelihood of obtaining the observed data
as a function of the parameter θ, which we can de�ne as follows:

• De�nition: Suppose the values x1, x2, . . . , xn are observed by sampling a discrete or continuous random
variable X with probability density function fX(x; θ) that depends upon an unknown parameter θ. Then the
likelihood function L(θ) =

∏
i fX(xi; θ) represents the probability associated to the observed values xi.

◦ In the situation where X is a discrete random variable, then under the assumption that all of the samples
are independent, the product fX(x1; θ) · fX(x2; θ) · · · · · fX(xn; θ) represents the probability of obtaining
the outcomes x1, x2, . . . , xn from sampling X a total of n times in a row.

◦ In the situation where X is a continuous random variable, the product represents the probability density
of obtaining that sequence of outcomes.

◦ In either scenario, we think of the likelihood function L(θ) as measuring the overall probability that we
would obtain the observed data by sampling the distribution having parameter θ.

◦ Example: If an unfair coin with an unknown probability θ of coming up heads is �ipped 10 times, and
the results are TTTTT THTTH, the likelihood function is L(θ) = (1− θ)6 · θ · (1− θ)2 · θ = θ2(1− θ)8.
◦ Example: If a Poisson distribution with parameter λ = θ is sampled �ve times and the results are 4, 2,

0, 3, 4, the likelihood function is L(θ) =

[
θ4e−θ

4!

]
·
[
θ2e−θ

2!

]
·
[
θ0e−θ

0!

]
·
[
θ3e−θ

3!

]
·
[
θ4e−θ

4!

]
=
θ13e−5θ

6912
.

◦ Example: If an exponential distribution with parameter λ = θ is sampled �ve times with results 1.25,
0.02, 0.18, 0.63, the likelihood function is L(θ) = [θe−1.25θ] · [θe−0.02θ] · [θe−0.18θ] · [θe−0.63θ] = θ4e−2.08θ.

• Our approach now is to compute the value of the unknown parameter that maximizes the likelihood of
obtaining the observed data; this is known as the method of maximum likelihood. Here is a more explicit
description of the method:

• Method (Maximum Likelihood): Suppose the values x1, x2, . . . , xn are observed by sampling a random vari-
able X with probability density function fX(x; θ) that depends upon an unknown parameter θ. Then a

maximum likelihood estimate (MLE) for θ, often written as θ̂ or θe, is a value of θ that maximizes the likeli-
hood function L(θ) =

∏
i fX(xi; θ).

◦ Before giving an example, we will observe that, at least in principle, there could be more than one value
of θ maximizing the function L(θ). In practice, there is usually a unique maximum, which we refer to as
the maximum likelihood estimate of θ.

◦ In the event that the function fX(xi; θ) is a di�erentiable function of θ (which is usually the case) then
L(θ) will also be a di�erentiable function of θ: thus, by the usual principle from calculus, any maximum
likelihood estimate will be a global maximum of L hence be a root of the derivative L′(θ).
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◦ Since L(θ) is a product, to compute the roots of its derivative it is much easier instead to use logarith-
mic di�erentation, which amounts to computing the roots of the derivative of its logarithm lnL(θ) =∑
i ln[fX(xi; θ)], which is called the log-likelihood.

• Example: An unfair coin with an unknown probability θ of coming up heads is �ipped 10 times, and the
results are TTTTT THTTH. Find the maximum likelihood estimate for θ.

◦ Above, we found the likelihood function L(θ) = (1− θ)6 · θ · (1− θ)2 · θ = θ2(1− θ)8.

◦ The log-likelihood is lnL(θ) = 2 ln(θ) + 8 ln(1− θ) with derivative
d

dθ
[lnL(θ)] =

2

θ
− 8

1− θ
.

◦ Setting the derivative equal to zero yields
2

θ
− 8

1− θ
= 0 so that 2(1− θ) = 8θ, whence θ = 1/5 .

◦ Remark: Note that this result agrees with our intuitive argument earlier that the most reasonable value
of θ is the actual proportion of heads obtained in the sample.

◦ Remark: We could, of course, work instead with the derivative of the original likelihood function L′(θ) =
2θ(1 − θ)8 − 8θ2(1 − θ)7 = θ(1 − θ)7(2(1 − θ) − 8θ). Setting L′(θ) = 0 and solving yields θ = 0, 1, 1/5.
Notice that although θ = 0 and θ = 1 are roots of L′(θ) = 0, and hence are critical numbers for L(θ),
they are in fact local minima, whereas θ = 1/5 is a local maximum. We implicitly ignored the two values
θ = 0 and θ = 1 when analyzing the log-likelihood because these make d

dθ lnL(θ) unde�ned rather than
zero. In principle, we should always check that the candidate value actually does yield the maximum

likelihood, but we will omit such veri�cations when there is only one possible candidate.

• Example: A Poisson distribution with parameter λ = θ representing the number of calls to an emergency help
line is sampled �ve times and the results are 4, 2, 0, 3, 4. Find the maximum likelihood estimate for θ.

◦ Above, we got the likelihood function L(θ) =

[
θ4e−θ

4!

]
·
[
θ2e−θ

2!

]
·
[
θ0e−θ

0!

]
·
[
θ3e−θ

3!

]
·
[
θ4e−θ

4!

]
=
θ13e−5θ

6912
.

◦ Then the log-likelihood is lnL(θ) = 13 ln(θ)− 5θ − ln(6912), with derivative
d

dθ
[lnL(θ)] =

13

θ
− 5. This

is equal to zero for θ = 13/5 , so this value is our maximum likelihood estimate.

◦ Remark: Notice that this value θ = 13/5 represents the average number of calls to the help line per
hour in the data sample. Intuitively, because the parameter λ for the Poisson distribution represents
the expected value (which in this case represents the average number of calls per hour), it is also very
reasonable to �nd that the sample average is a good estimate λ.

• Example: An exponential distribution with parameter θ is sampled �ve times and the results are 1.25, 0.02,
0.18, 0.63. Find the maximum likelihood estimate for θ.

◦ Above, we computed the likelihood function L(θ) = [θe−1.25θ]·[θe−0.02θ]·[θe−0.18θ]·[θe−0.63θ] = θ4e−2.08θ.

◦ Then the log-likelihood is lnL(θ) = 4 ln θ − 2.08θ, with derivative
d

dθ
[lnL(θ)] =

4

θ
− 2.08. This is equal

to zero for θ = 4/2.08 ≈ 1.9231, so this value is our maximum likelihood estimate.

◦ Remark: If we again observe that the expected value of the exponential distribution is 1/θ, if we set this
equal to the observed expected value 2.08/4, we obtain the maximum likelihood estimate for θ.

• Example: A normal distribution with mean 0 and standard deviation θ is sampled four times and the results
are 2.08, 0.34, −2.65, and 2.28. Find the maximum likelihood estimate for θ.

◦ The probability density function for this normal distribution is fX(x; θ) =
1

θ
√
2π
e−x

2/(2θ2).

◦ Thus, ln fX(x; θ) = − ln(
√
2π)−ln(θ)− x2

2θ2
. Now sum the appropriate values to obtain the log-likelihood:

lnL(θ) = −4 ln(
√
2π)− 4 ln(θ)− 2.082

2θ2
− 0.342

2θ2
− (−2.65)2

2θ2
− 2.282

2θ2
= 4 ln(

√
2π)− 4 ln(θ)− 16.6629

2θ2
.

◦ The derivative is then
d

dθ
[lnL(θ)] = −4

θ
+

16.6629

θ3
, which is zero for θ = ±

√
16.6629

4
≈ ±2.0410.
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◦ Since the standard deviation is nonnegative, the maximum likelihood estimate is

√
16.6629

4
≈ 2.0410.

• Example: A normal distribution with mean θ and standard deviation θ is sampled four times and the results
are 14, −3, 12, and 8. Find the maximum likelihood estimate for θ.

◦ The probability density function for this normal distribution is fX(x; θ) =
1

θ
√
2π
e−(x−θ)

2/(2θ2).

◦ Thus, ln fX(x; θ) = − ln(
√
2π)− ln(θ)− (x− θ)2

2θ2
. We then sum the appropriate values to obtain the log-

likelihood: lnL(θ) = −4 ln(
√
2π)−4 ln(θ)− (14− θ)2

2θ2
− (−3− θ)2

2θ2
− (12− θ)2

2θ2
− (8− θ)2

2θ2
= 4 ln(

√
2π)−

4 ln(θ)− 413− 62θ + 4θ2

2θ2
.

◦ The derivative is then
d

dθ
[lnL(θ)] = −4

θ
+
413

θ3
− 31

θ2
. Setting this equal to zero and clearing denominators

yields −4θ2 − 31θ + 413 = 0 which has roots θ = − 59
4 , 7.

◦ Since the standard deviation is always nonnegative, the maximum likelihood estimate is θ = 7 .

• In some cases, after taking the derivative of the log-likelihood we may be left with an equation that cannot
be solved analytically for θ (unlike the examples above, where we could always solve explicitly for θ). In such
cases, we must resort to numerical approximation procedures, such as Newton's method, to �nd the desired
root.

• Example: The continuous random variable with probability density function fX(x; θ) =
2(θ − x)

θ2
for 0 ≤ x ≤ θ

is sampled �ve times, and the results are 1.31, 0.83, 1.19, 0.20, and 0.06. Find the maximum likelihood estimate
for θ.

◦ We have ln fX(x; θ) = ln 2 + ln(θ − x) − 2 ln(θ), so now we sum the appropriate values to obtain the
log-likelihood: lnL(θ) = 5 ln 2+ln(θ−1.31)+ln(θ−0.83)+ln(θ−1.19)+ln(θ−0.2)+ln(θ−0.06)−10 ln(θ).

◦ The derivative is then
d

dθ
[lnL(θ)] =

1

θ − 1.31
+

1

θ − 0.83
+

1

θ − 1.19
+

1

θ − 0.20
+

1

θ − 0.06
− 10

θ
.

◦ Setting the derivative equal to zero and clearing denominators yields a polynomial equation of degree 5
in θ, whose roots cannot be easily evaluated1.

◦ Using Newton's method or another numerical approximation technique, we can �nd approximations to
the roots as θ ≈ 0.0677, 0.2308, 0.9113, 1.2460, and 2.3307.

◦ Since one of the observed values was 1.31, and the density function is only nonzero when 0 ≤ x ≤ θ,
we must have θ ≥ 1.31. Therefore, the maximum likelihood estimate can only be the largest root,
θ ≈ 2.3307 .

• It is also possible to perform maximum likelihood estimates for more than one unknown parameter simulta-
neously.

◦ The idea is the same as in the single-parameter case: we write down the likelihood function and then
attempt to maximize it.

◦ For a di�erentiable function of several variables, any local maximum must occur at a point where all
partial derivatives of the function are zero.

◦ As in the one-parameter case, since the likelihood function is a product, we usually work instead with
the log-likelihood function.

◦ What this means is that we may �nd a multi-parameter maximum likelihood estimate by setting all of
the partial derivatives of the log-likelihood function equal to zero, and then solving the resulting system
of equations for the unknown parameters.

1In fact, it is a theorem from abstract algebra (Abel's theorem) that there does not exist any elementary formula in radicals for the
solution to a general degree-5 polynomial.

4



• Example: A normal distribution with unknown mean µ and standard deviation θ is sampled three times and
the results are 1, 5, and −3. Find the maximum likelihood estimate for (µ, θ).

◦ The probability density function for this normal distribution is fX(x; θ, µ) =
1

θ
√
2π
e−(x−µ)

2/(2θ2).

◦ Thus, the log-likelihood function is lnL(θ, µ) = −4 ln(
√
2π)−4 ln(θ)− (1− µ)2

2θ2
− (5− µ)2

2θ2
− (−3− µ)2

2θ2
=

−4 ln(
√
2π)− 4 ln(θ)− 35− 6µ+ 3µ2

2θ2
.

◦ The partial derivatives are
∂

∂µ
[lnL(θ, µ)] =

6− 6µ

2θ2
and

∂

∂θ
[lnL(θ, µ)] = −4

θ
+

35− 6µ+ 3µ2

θ3
.

◦ Setting the partial derivatives equal to zero and solving yields, respectively, 6 − 6µ = 0 so that µ = 1,

and θ2 =
35− 6µ+ 3µ2

4
= 8 so that θ = ±

√
8.

◦ Since the standard deviation is positive, we obtain the maximum likelihood estimates µ = 1 and

θ =
√
8 .

• With more complicated functions of several parameters, the resulting system of equations can be very di�cult
to solve, even with numerical methods.

◦ For this reason, certain other methods are used in lieu of maximum likelihood estimates.

◦ One such method is known as the method of moments. This method involves computing the so-called
moments E(Xk) for integers k = 1, 2, . . . , n where n is the total number of unknown parameters, and
then setting them equal to the corresponding moments of the sample data. The resulting system of
equations is often much easier to solve than the system arising from a maximum likelihood estimate.

◦ In many cases, the estimates yielded by the method of moments are a good approximation to those arising
from maximum likelihood estimates (and for many common distributions, they are often the same), and
can be used as a starting point for approximation methods.

◦ For the one-parameter case, the method of moments is the same as requiring that the estimate's expected
value agrees with the sample's expected value, while in the two-parameter case, since var(X) = E(X2)−
E(X)2, it is the same as requiring that the estimate's expected value and variance agree with the sample's
expected value and variance.

3.1.2 Biased and Unbiased Estimators

• Instead of performing a maximum likelihood estimate for each set of sample data, we can instead try to write
down a general formula for the estimate in terms of the data values we observe: such a function is an estimator
for our parameter of interest.

• Example: A Poisson distribution with parameter θ is sampled n times yielding outcomes x1, x2, . . . , xn. Find
the maximum likelihood estimator θ̂(x1, . . . , xn) for θ in terms of x1, x2, . . . , xn.

◦ Since fX(x; θ) =
θxe−θ

x!
, the log-likelihood function is lnL(θ) = (x1 + x2 + · · · + xn) ln(θ) − nθ −

ln(x1!x2! · · ·xn!).

◦ Thus,
d

dθ
[lnL(θ)] =

x1 + x2 + · · ·+ xn
θ

− n, which is equal to zero for θ̂ =
x1 + x2 + · · ·+ xn

n
.

• Example: A normal distribution with unknown mean µ and standard deviation σ is sampled sampled n times
yielding outcomes x1, x2, . . . , xn. Find the maximum likelihood estimators µ̂(x1, . . . , xn) and σ̂(x1, . . . , xn).

◦ Since fX(x;µ, σ) =
1

σ
√
2π
e−(x−µ)

2/(2σ2), the log-likelihood function is lnL(µ, σ) = −n ln(
√
2π)−n ln(σ)−

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

2σ2
.
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◦ The partial derivatives are
∂

∂µ
[lnL(µ, σ)] =

(x1 − µ) + (x2 − µ) + · · ·+ (xn − µ)
σ2

and
∂

∂σ
[lnL(µ, σ)] =

−n
σ
+

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

θ3
.

◦ Setting the partial derivatives equal to zero and solving yields, respectively, µ =
x1 + x2 + · · ·+ xn

n
and

σ2 =
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
=

1

n
(x21 + x22 + · · ·+ x2n)−

(
x1 + x2 + · · ·+ xn

n

)2

.

◦ Notice here that the resulting values of µ and σ are simply the mean and standard deviation of the
outcome set {x1, x2, . . . , xn}.

• Example: A uniform distribution on [0, θ] is sampled n times yielding outcomes x1, x2, . . . , xn. Find the

maximum likelihood estimator θ̂ for θ.

◦ The probability density function for this uniform distribution is fX(x; θ) =

{
1/θ for 0 ≤ x ≤ θ
0 for other x

.

◦ Therefore, the likelihood function is L(θ) =

{
1/θn if x1, x2, . . . xn ≤ θ
0 otherwise

.

◦ Since 1/θn decreases with increasing θ, we can see that the maximum value will occur for the smallest
possible θ for which the �rst condition is satis�ed, which is θ = max(x1, x2, . . . , xn).

◦ Thus, the maximum likelihood estimator is θ̂ = max(x1, x2, . . . , xn) .

◦ Remark: The discrete analogue of this particular problem is known as the German tank problem: during
World War II, British intelligence was able to capture numerous components from German tanks, each
of which was stamped with its manufacturing number. The labels were thus e�ectively drawn at random
from [0, θ] where θ was the total number of German tanks. For obvious reasons, it was of substantial
military interest to estimate as precisely as possible the total number θ of enemy tanks; the (quite
surprising) result of this calculation shows the largest part number that was observed is actually a good
estimate. As a historical matter, the projections obtained by the statisticians analyzing this problem
were far more accurate than those obtained by other methods!

• In general, there are many possible estimators for any given parameter, and it is not always clear which one
we should use.

◦ For example, in the German tank problem discussed above, it does not seem entirely reasonable that
the �best estimate� θ̂ for the number of enemy tanks is simply the largest number observed: since this
estimate is always the lowest feasible number of tanks that is consistent with the observed data, and
there is a nontrivial chance that the actual number of tanks is larger than θ̂. We would expect that the
maximum likelihood estimate should, in general, tend to underestimate the actual correct value of θ.

• Intuitively, we might prefer to search for an estimator that tends to have the smallest systematic error.

◦ The most basic possible requirement is to ask that the estimator not have any �bias�, on average, away
from the expected value of the parameter.

◦ To study this more precisely, we will shift our emphasis to view estimators as random variables on the
space of possible input data.

◦ When we think of the estimator as a random variable, we can equivalently phrase this requirement for a
lack of bias in terms of the expected value:

• De�nition: We say that an estimator θ̂(x1, x2, . . . , xn) for a set of observations x1, . . . , xn drawn by randomly

sampling a random variable X with probability density function fX(x; θ) is unbiased if E(θ̂) = θ for all θ.

◦ More verbosely, this means that if we �x θ and then average over all possible samples x1, . . . , xn of X
for a �xed value of θ, then θ̂ is unbiased when the expected value of the estimator θ̂ is equal to the true
value of the parameter θ.
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• Example: Show that the maximum likelihood estimate µ̂ = 1
n (x1 + x2 + · · · + xn) for sampling the normal

distribution with mean µ and �xed standard deviation σ is unbiased.

◦ Note that by properties of expected value, we have E(µ̂) =
1

n
[E(x1) + E(x2) + · · ·+ E(xn)].

◦ Furthermore, we have E(xi) = µ because each xi is sampled randomly from a distribution with mean µ.

◦ Thus, we have E(µ̂) =
1

n
[nµ] = µ, and so µ is unbiased.

◦ Remark: Note, more generally, that the estimator µ̂ = a1x1 + a2x2 + · · · + anxn for any choice of
constants ai such that

∑
i ai = 1 will be unbiased, by the same calculation. Thus, for example, the

estimator 1
3x1 +

2
3x2 is also unbiased.

• Example: Show that the maximum likelihood estimate for the variance σ̂2 =
1

n
(x21 + x22 + · · · + x2n) −[x1 + x2 + · · ·+ xn

n

]2
from sampling the normal distribution with unknown mean µ and standard deviation

σ is biased.

◦ Recall that µ = E(xi) and σ
2 = E(x2i )− E(xi)

2, so E(x2i ) = σ2 + µ2.

◦ Furthermore, because variance is additive for independent random variables, we see that var(x1 + x2 +
· · ·+ xn) = var(x1) + var(x2) + · · ·+ var(xn) = nσ2.

◦ Since var(S) = E(S2)−E(S)2, applying this for S = x1+x2+ · · ·+xn yields E(S2) = var(S)+E(S)2 =
nσ2 + n2µ2.

◦ Then by properties of expected value, we have E(σ̂2) =
1

n
E(x21+x

2
2+· · ·+x2n)−

1

n2
E(x1+x2+· · ·+xn)2 =

1

n
· n(σ2 + µ2)− 1

n2
(nσ2 + n2µ2) =

n− 1

n
σ2.

◦ The expected value is not equal to σ2 because of the factor of
n− 1

n
, so this estimator is biased.

• In the example above, we can construct an unbiased estimator of σ2 by scaling σ̂2 by
n

n− 1
.

◦ This new estimator S2 =
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

n− 1
, where x =

x1 + x2 + · · ·+ xn
n

is the

sample average, is called the sample variance.

◦ The square root S =

√
1

n− 1

∑n
i=1(xi − x)2 of the sample variance is called the sample standard deviation.

◦ Despite the fact that E(S) 6= σ2, S is quite commonly used as an estimator for σ because the estimate
of σ2 by S2 is unbiased.

◦ We can give some intuitive motivation for why the factor
1

n− 1
appears in the sample standard deviation3:

imagine trying to estimate the variance (or standard deviation) in the sizes of members of a newly-
discovered species. If only one member of the species is found, there is no way to give a reasonable
estimate in the variation, and so any plausible value for the variance is reasonable (and so the formula
should be unde�ned or in�nite when n = 1). On the other hand, if two members of the species are
found, then the di�erence in their sizes gives a plausible range of variation (and so the formula should
be well-de�ned when n = 2).

• Example: Show that the maximum likelihood estimator θ̂ = max(x1, x2, . . . , xn) from sampling the uniform
distribution on [0, θ] is biased.

2It is not entirely trivial to compute the expected value of S itself, but a formula does exist in terms of the gamma function:

E(S) = σ ·
√

2
n−1

· Γ(n/2)
Γ((n−1)/2)

, where Γ(z) =
´∞
0 tz−1e−t dt. In particular, the constant factor on the right-hand side is approximately

1− 1
4n

for large n.
3The use of n − 1 in place of n in the denominator of the sample variance is known as Bessel's correction. Roughly speaking, the

correction is required because measuring the variance of the sample relative to the sample mean (rather than relative to the unknown
true mean µ) will always lower the estimated variance, so, as we calculated, a correction is needed to unbias the estimate.
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◦ Here, we need to compute the expected value of θ̂, which requires us to �nd the underlying probability
distribution.

◦ Observe that, for any 0 ≤ x ≤ θ, we have P (θ̂ ≤ x) = (x/θ)n because θ̂ ≤ k occurs precisely when all of
the values x1, x2, . . . , xn lie in the interval [0, x], which occurs with probability (x/θ)n.

◦ This means that the cumulative distribution function for θ̂ is gθ̂(x) = (x/θ)n for 0 ≤ x ≤ θ, and so its
probability distribution function is the derivative g′

θ̂
(x) = nxn−1/θn.

◦ Then we may compute E(θ̂) =
´ θ
0
xg′
θ̂
(x) dx =

´ θ
0
nxn/θn dx =

n

n+ 1
θ. Since this is not equal to θ, we

see that θ̂ is biased, as claimed.

◦ Remark: Like with the sample variance, we can rescale the maximum likelihood estimate to obtain an

unbiased estimator of θ, namely, θ̂ =
n+ 1

n
max(x1, x2, . . . , xn).

• Example: Show that the estimator θ̂ =
2

n
(x1 +x2 + · · ·+xn) from sampling the uniform distribution on [0, θ]

is unbiased.

◦ Since each xi is drawn from the uniform distribution on [0, θ], we have E(xi) =
´ θ
0
x · 1θdx =

θ

2
.

◦ Then, by properties of expected value, we have E(θ̂) =
2

n
(E[x1] + E[x2] + · · ·+ E[xn]) =

2

n
· n · θ

2
= θ.

◦ Therefore, θ̂ is unbiased, as claimed.

3.1.3 E�ciency of Estimators

• As we have already remarked, for any given parameter estimation problem, there are many di�erent possible
choices for estimators.

◦ One desirable quality for an estimator is that it be unbiased. However, this requirement alone does
not impose a substantial condition, since (as we have seen) there can exist several di�erent unbiased
estimators for a given parameter.

◦ For example, we have shown that for estimating the parameter θ, given a random sample x1, x2, . . . , xn

from the uniform distribution on [0, θ], both of the estimators θ̂1 =
n+ 1

n
max(x1, x2, . . . , xn) and θ̂2 =

2

n
(x1 + x2 + · · ·+ xn) are unbiased.

◦ Likewise, we have also shown that, given a random sample x1, x2 from the normal distribution with mean
θ and standard deviation σ, the estimators θ̂1 = 1

2 (x1+x2) and θ̂2 = 1
3 (x1+2x2) are also both unbiased.

◦ We would now like know if there is a meaningful way to say one of these unbiased estimators is better
than the other.

◦ In the abstract, it seems reasonable to say that an estimator with a smaller variance is better than one
with a larger variance, since a smaller variance would indicate that the value of the estimator stays closer
to the �true� parameter value more often.

• De�nition: If θ̂1 and θ̂2 are two unbiased estimators for the parameter θ, we say that θ̂1 is more e�cient than
θ̂2 if var(θ̂1) < var(θ̂2).

• Example: Given a random sample x1, x2 from the normal distribution with mean θ and standard deviation
σ, which of θ̂1 = 1

2 (x1 + x2) and θ̂2 = 1
3 (x1 + 2x2) is a more e�cient estimator for θ?

◦ Note that because x1 and x2 are independent, their variances are additive. We can then compute
var(θ̂1) = var( 12x1 +

1
2x2) = var( 12x1) + var( 12x2) =

1
4var(x1) +

1
4var(x2) =

1
4σ

2 + 1
4σ

2 = 1
2σ

2.

◦ Also, var(θ̂2) = var( 13x1 +
2
3x2) = var( 13x1) + var( 23x2) =

1
9var(x1) +

4
9var(x2) =

1
9σ

2 + 4
9σ

2 = 5
9σ

2.

◦ Since 1
2σ

2 < 5
9σ

2, we see that θ̂1 is more e�cient than θ̂2.
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◦ More generally, we could ask: for an arbitrary parameter a, which estimator θ̂a = ax1 + (1− a)x2 is the
most e�cient?

◦ In the same way as above, we can compute var(θ̂a) = [a2+(1−a)2]σ2 = (2a2−2a+1)σ2. By calculus (the
derivative is 4a−2 which is zero for a = 1/2) or by completing the square (2a2−2a+1 = 2(a−1/2)2+1/2)
we can see that the minimum occurs when a = 1/2.

◦ Remark: Intuitively, this last calculation should make sense, because if we put more weight on one
observation, its variation will tend to dominate the calculation. In the extreme situation of taking
θ̂3 = x2 (which corresponds to a = 0), for example, we see that the variance is simply σ2, which is much
larger than the variance arising from the average. This is quite reasonable, since the average 1

2 (x1 + x2)
uses a bigger sample and thus captures more information than just using a single observation.

• Example: Given a random sample x1, x2, . . . , xn from the uniform distribution on [0, θ], which of θ̂1 =
n+ 1

n
max(x1, . . . , xn) and θ̂2 =

2

n
(x1 + x2 + · · ·+ xn) is a more e�cient estimator for θ?

◦ To compute the variance of θ̂1, �rst recall that we calculated the probability density function for
max(x1, . . . , xn) as g(x) = nxn−1/θn for 0 ≤ x ≤ θ.

◦ Then E[max(x1, . . . , xn)
2] =

´ θ
0
x2·nxn−1/θn dx =

n

n+ 2
θ2, and so since E[max(x1, . . . , xn)] =

n

n+ 1
θ as

we calculated previously, we see that var[max(x1, . . . , xn)] =
n

n+ 2
θ2 −

[ n

n+ 1
θ
]2

=
n

(n+ 2)(n+ 1)2
θ2.

◦ Therefore, var(θ̂1) =
[n+ 1

n

]2
var[max(x1, . . . , xn)] =

1

n(n+ 2)
θ2.

◦ For θ̂2, since the xi are independent their variances are additive.

◦ Since var(xi) =
θ2

12
, we see that var(θ̂2) = var( 2nx1) + · · ·+ var( 2nxn) = n · 4

n2
· θ

2

12
=

1

3n
θ2.

◦ For n = 1 these variances are the same (this is unsurprising because when n = 1 the estimators themselves

are the same!), but for n > 1 we see that the variance of θ̂1 is smaller, so θ̂1 is more e�cient.

• Example: Suppose x and y are respectively drawn from two independent normal distributions X and Y with
the same unknown mean E(X) = E(Y ) = θ but di�erent known variances var(X) = σ2 and var(Y ) = 2σ2.

Show that for any parameter 0 ≤ a ≤ 1 the estimator θ̂a = ax+ (1− a)y is unbiased, and �nd the value of a
yielding the most e�cient estimator.

◦ By the linearity of expected value, we have E(θ̂a) = aE(x) + (1− a)E(y) = aθ + (1− a)θ = θ. Thus, θ̂a
is unbiased for each value of a.

◦ For the e�ciency calculation, since x and y are independent we have var(θ̂a) = var[ax] + var[(1− a)y] =
a2var(x) + (1− a)2var(y) = a2σ2 + (1− a)2 · 2σ2 = (3a2 − 4a+ 2)σ2.

◦ By using calculus (the derivative is 6a−4 which is zero for a = 2/3) or completing the square (3a2−4a+2 =
3(a− 2/3)2 + 2/3), we see that the minimum variance occurs for a = 2/3, so this value yields the most
e�cient estimator.

◦ Remark: Intuitively, we should expect that weighting more closely towards x will yield a better estimate,
because x has less variance than y does, so it is more likely to be closer to the true mean. Nonetheless,
including y does provide some additional information, so the weighted average should not shift too far
over to x.

• So far we have only discussed the relative e�ciency of unbiased estimators. But since the variance of any
estimator is always bounded below (since it is by de�nition nonnegative), it is quite reasonable to ask whether,
for a �xed estimation problem, there might be an optimal unbiased estimator: namely, one of minimal variance.

◦ This question turns out to be quite subtle, because we are not guaranteed that such an estimator
necessarily exists.

◦ As a simple illustration, it could be the case that the possible variances of unbiased estimators form
an open interval of the form (a,∞) for some a ≥ 0: then there would be estimators whose variances
approach the value a arbitrarily closely, but there is none that actually achieves the lower bound value
a.
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• There is a lower bound on the possible values for the variance of an unbiased estimator due to Cramér and
Rao:

• Theorem (Cramér-Rao Inequality): Suppose that pX(x; θ) is a probability density function that is di�erentiable
in θ. Also suppose that the support of p, the set of values of x where pX(x; θ) 6= 0, does not depend on

the parameter θ. If x1, x2, . . . , xn is a random sample drawn from X, θ̂ = f(x1, . . . , fn) is an unbiased

estimator of θ, and ` = ln[pX(x; θ)] denotes the log-pdf of the distribution, then var(θ̂) ≥ 1/I(θ) where
I(θ) = n · E[(∂`/∂θ)2].

◦ In the event that pX is twice-di�erentiable in θ, it can be shown that I(θ) can also be calculated as
I(θ) = −n · E[∂2`/∂θ2].

◦ The proof of this theorem is rather technical (although not conceptually di�cult), so we will omit the
precise details, other than to remark that the key detail yielding the actual inequality is based on the
fact that for two random variables S and T , we have var(S)var(T ) ≥ [cov(S, T )]2.

◦ In practice, it is not always so easy to evaluate the lower bound in the Cramér-Rao inequality.

◦ Furthermore, there does not always exist an unbiased estimator that actually achieves the Cramér-Rao
bound. However, if we are able to �nd an unbiased estimator whose variance does achieve the Cramér-Rao
bound, then the inequality guarantees that this estimator is the most e�cient possible.

• Example: Suppose that a coin with unknown probability θ of landing heads is �ipped n times, yielding results
x1, x2, . . . , xn (where we interpret heads as 1 and tails as 0). Show that the estimator θ̂ = 1

n (x1+x2+ · · ·+xn)
is unbiased and has the minimum variance of all possible unbiased estimators.

◦ We have E(xi) = θ and so E(θ̂) =
1

n
[E(x1) + · · ·+ E(xn)] =

1

n
· n · θ = θ, so θ̂ is unbiased.

◦ For the variance, we �rst compute the Cramér-Rao bound: the likelihood function can be written as
L(x; θ) = θx(1− θ)1−x (it is θ if x = 1 and 1− θ if x = 0), so that ` = x ln θ + (1− x) ln(1− θ).

◦ Di�erentiating twice yields
∂2`

∂θ2
= − x

θ2
+

1− x
(1− θ)2

, and so since E(x) = θ, the expected value is E[
∂2`

∂θ2
] =

E(x)

θ2
+
E(1− x)
(1− θ)2

= − θ

θ2
+

1− θ
(1− θ)2

= − 1

θ(1− θ)
.

◦ Thus, I(θ) =
n

θ(1− θ)
so the Cramér-Rao bound gives var(θ̂) ≥ θ(1− θ)

n
.

◦ But now, x1+x2+ · · ·+xn is binomially distributed so its variance is nθ(1− θ): then the variance of the

given estimator θ̂ = 1
n (x1+x2+ · · ·+xn) is

1

n2
·nθ(1−θ) = θ(1− θ)

n
, which is precisely the Cramér-Rao

bound.

◦ This means that our unbiased estimator θ̂ = 1
n (x1 + x2 + · · ·+ xn) has the minimum possible variance,

as claimed.

◦ Remark: This result tells us that the best possible estimator for the probability that the coin lands heads
is in fact the obvious one, namely, the total proportion of the �ips that actually landed heads.

• Example: Show that the maximum-likelihood estimator θ̂µ = 1
n (x1 + x2 + · · · + xn) is the most e�cient

possible unbiased estimator of the mean of a normal distribution with unknown mean θ = µ and known
standard deviation σ.

◦ We will show that this estimator achieves the Cramér-Rao bound.

◦ For this, we �rst compute the log-pdf ` = − ln(
√
2π)− 1

2 ln(σ)−
(x− θ)2

2σ2
.

◦ Di�erentiating yields
∂`

∂θ
= −x− θ

σ2
and then

∂2`

∂θ2
=

1

σ2
. Since this is constant we simply see E[

∂2`

∂θ2
] =

1

σ2
, and so the Cramér-Rao bound dictates that var(θ̂) ≥ σ2/n for any estimator θ̂.

◦ For our estimator, since the xi are all independent and normally distributed with mean θ and standard
deviation σ, we have var(θ̂µ) =

1
n2 [var(x1) + · · ·+ var(xn)] =

1
n2 · nσ2 = σ2/n.
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◦ Thus, the variance of our estimator θ̂µ achieves the Cramér-Rao bound, meaning that it is the most
e�cient unbiased estimator possible.

• Example: Show that the maximum-likelihoood estimator θ̂var =
1

n

[
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

]
is the most e�cient possible estimator of the variance θ = σ2 of a normal distribution with known mean µ
and unknown standard deviation σ.

◦ We will show that this estimator achieves the Cramér-Rao bound.

◦ For this, we �rst compute the log-pdf ` = − ln(
√
2π)− 1

2 ln(θ)−
(x− µ)2

2θ
.

◦ Di�erentiating yields
∂`

∂θ
= − 1

2θ
+

(x− µ)2

2θ2
and then

∂2`

∂θ2
=

1

2θ2
− (x− µ)2

θ3
.

◦ Therefore, E[
∂2`

∂θ2
] =

1

2θ2
− E[(x− µ)2]

θ3
, and since E[(x− µ)2] = var(x) = σ2 = θ, we obtain E[

∂2`

∂θ2
] =

1

2θ2
− θ

θ3
= − 1

2θ2
.

◦ Therefore, I(θ) = −nE[∂2`/∂θ2] = n/(2θ2), and so the Cramér-Rao bound dictates that var(θ̂) ≥ 2θ2/n

for any estimator θ̂.

◦ For our estimator, �rst we note that var[(xi − µ)2] = E[(xi − µ)4]− E[(xi − µ)2]2 = 3σ4 − (σ2)2 = 2θ2,
by some direct calculations with the normal distribution that we will omit.

◦ Then, since the random variables (xi−µ)2 are independent, by properties of variance we have var(θ̂var) =
1

n2
var[(x1−µ)2+(x2−µ)2+· · ·+(xn−µ)2] =

1

n2
·[var[(x1−µ)2]+· · ·+var[(xn−µ)2]] =

1

n2
·n·2θ2 =

2θ2

n
.

◦ Thus, the variance of our estimator θ̂var achieves the Cramér-Rao bound, meaning that it is the most
e�cient unbiased estimator possible.

• In certain situations, the Cramér-Rao bound does not apply, and thus we can �nd estimators that have a
smaller variance than it would predict:

• Example: Find the variance of the unbiased estimator θ̂1 =
n+ 1

n
max(x1, x2, . . . , xn) from sampling the

uniform distribution on [0, θ], and compare it to the Cramér-Rao bound.

◦ We already computed var(θ̂1) =
1

n(n+ 2)
θ2 earlier.

◦ To compute the bound from Cramér-Rao, we have L(θ) = (1/θ)n hence ` = ln(L) = −n ln(θ). Then

∂`/∂θ = −n
θ
so ∂2`/∂θ2 =

n

θ2
. Since this is constant, we simply get I(θ) = −n · E[∂2`/∂θ2] =

n2

θ2
, and

so the Cramér-Rao bound is var(θ̂) ≥ 1

n2
θ2.

◦ But now notice that var(θ̂1) <
1

n2
θ2: this means θ̂1 actually has a smaller variance than the Cramér-Rao

minimum!

◦ This is not a contradiction, because in fact one of the hypotheses of the Cramér-Rao theorem is violated:
speci�cally, the condition that the set of values of x where pX(x; θ) 6= 0 does not depend on the parameter
θ. Here, pX(x; θ) 6= 0 for x ∈ [0, θ], and this range clearly does depend on θ.

3.2 Interval Estimation

• When estimating an unknown parameter, it is (of course) desirable to have a prediction that is as accurate
as possible. However, it is also important to be able to describe how accurate the prediction is, which is to
say, how much the prediction di�ers from the true parameter value.

◦ For example, if we are estimating the height of a building, an estimate of 25.43 meters is certainly useful,
but it is far more useful if we can also say that it is correct to within 0.01 meters. (In contrast, if we
estimate the height to be 25.43 meters but only to within 20 meters, the estimate is not nearly as good!)
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◦ If we measure the height three times and obtain estimates of 25.43 meters, 25.41 meters, and 25.44
meters, we can be more con�dent in the overall accuracy than if the three measurements were 25.43
meters, 17.42 meters, and 33.15 meters. Nonetheless, these measurements by themselves do not provide
an explicit error range for our estimated height.

3.2.1 Con�dence Intervals

• What we are seeking is to expand our discussion from pointwise parameter estimates, where we estimate the
actual value of the parameter, to interval estimates, where we give an interval that we believe the parameter
should lie in.

◦ Our discussion of unbiasedness is partially in this direction, since unbiasedness eliminates the existence
of systematic error (i.e., error that tends to bias the estimate either too high or too low on average).

◦ Our discussion of estimator e�ciency also represents partial progress toward this goal: e�cient estimators
have a smaller variance, and thus (by de�nition) will display less variation in their values than less-e�cient
estimators.

◦ However, unbiasedness is only an average measure, while e�ciency is a measurement of precision (the
closeness of the measurements to one another) rather than of accuracy (the closeness of the measurements
to the true value).

◦ What we are seeking is a way to quantify the accuracy of our estimations.

• One approach to quantifying the uncertainty in our estimates is to construct a con�dence interval: this is an
interval around our estimated value in which we believe the true value should lie.

◦ Of course, since the estimator is itself de�ned in terms of the values of a random sample, we cannot
generally be completely certain that the true value of the parameter lies in any useful interval we could
de�ne. (We could, of course, simply declare our con�dence interval to be the entire real line, but this
would not give a useful prediction!)

◦ But what we can do is compute the probability that the true parameter value lies in the interval we give.
If the probability is reasonably large (depending on the context, one may consider values such as 50%,
or 90%, or 95%, or 99% as appropriately large probabilities) then we can be reasonably con�dent in the
accuracy of our estimation.

• De�nition: If X is a random variable and 0 < α < 1, a 100(1 − α)% con�dence interval for X is an interval
(a, b) with a < X < b such that P (a < X < b) = 1− α.

◦ We use the notation 100(1− α)% is because it is traditional to quote the size of the con�dence interval
as a percent, rather than as a raw probability. Thus, for example, a 95% con�dence interval for X is an
interval (a, b) where X should land 95% of the time.

◦ In principle, one can de�ne con�dence intervals for any random variable, but in practice they are only
given for random variables that represent estimators of unknown parameters.

◦ When θ is an unknown parameter, we interpret a con�dence interval for θ as giving us a �reasonable
error range� (for a precisely quanti�ed notion of reasonable, determined by the error probability α) on a

speci�c estimation θ̂ for θ that we have computed.

• Example: Suppose we perform a maximum likelihood estimate for the parameter λ = θ of a Poisson distri-
bution and obtain the estimate θ̂ = 1.39, and by analysis of the variation of the estimator we are able to
determine that there is a 95% probability that the true value of θ lies in the interval (1.33, 1.51).

◦ This interval (1.33, 1.51) is then a 95% con�dence interval for our estimate, and it provides substantial

additional context to our pointwise estimate θ̂ = 1.39, since it quanti�es how much variation we should
expect to see in the true value of the parameter.

◦ If we sampled this distribution repeatedly and constructed a 95% con�dence interval using each sample,
we would expect the true value of the parameter to lie inside the interval 95% of the time.
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• When we are constructing con�dence intervals using parameter estimates, we typically will want to work with
unbiased estimators that are as e�cient as possible.

◦ If the estimator is unbiased, then the con�dence interval will not tend to be biased above or below the
true value of the parameter (i.e., it yields better average accuracy from a given data sample).

◦ If the estimator is e�cient, then the size of the interval will be as small as possible, which yields tighter
estimates for a given con�dence level (i.e., it yields better overall precision from a given data sample).

• In general, computing a con�dence interval requires being able to analyze the precise nature of the variation
in the estimator θ̂ relative to the true value θ.

◦ In certain situations, we can describe this variation quite precisely, but in others it can be very di�cult.

3.2.2 Normal Con�dence Intervals

• To illustrate one of the simplest cases of computing a con�dence interval, suppose we sample a normal
distribution with unknown mean µ and known standard deviation σ, obtaining values x1, x2, . . . , xn: our goal
is to give a con�dence interval for µ.

◦ We have previously shown that the maximum likelihood estimator for the mean, which is simply the
sample mean µ̂ = 1

n (x1 + x2 + · · ·+ xn), is unbiased and is the most e�cient unbiased estimator for µ.

◦ Furthermore, from our results on the normal distribution and the central limit theorem, we know that
since the xi are independent and normally distributed with mean µ and standard deviation σ, the sample
mean µ̂ = 1

n (x1 + x2 + · · · + xn) will also be normally distributed with mean µ and standard deviation
σ/
√
n.

◦ So far, we have proceeded as if we knew µ and wanted to understand the variation in µ̂.

◦ But now we can switch our focus from the variation of µ̂ given µ to the variation of µ given µ̂: from
above, the di�erence µ̂− µ is normally distributed with mean 0 and standard deviation σ/

√
n.

◦ This is the same as saying that the value of µ is normally distributed with mean µ̂ and standard deviation
σ/
√
n.

◦ From this last statement, we can easily derive con�dence intervals for the unknown parameter µ using
properties of the normal distribution.

◦ Explicitly, if Nµ̂,σ/
√
n is the normal distribution with mean µ̂ and standard deviation σ/

√
n, then P (a <

µ < b) = P (a < N < b).

◦ We can therefore construct a 100(1− α)% con�dence interval for µ simply by �nding a range (a, b) such
that P (a < Nµ̂,σ/

√
n < b) = 1− α, as illustrated in the diagram below:

◦ There are many possible choices for this interval, so to narrow things down, we usually require that the
interval be symmetric around µ̂, and for convenience we often also rephrase this condition in terms of
the standard normal distribution N0,1 by rescaling.

◦ If we compute the constant zα/2 such that P (−zα/2 < N0,1 < zα/2) = 1 − α, then this yields the
100(1− α)% con�dence interval (a, b) = (µ̂− zα/2 σ√

n
, µ̂+ zα/2

σ√
n
).

◦ Using the symmetry of the normal distribution, P (−zα/2 < N0,1 < zα/2) = 1 − α is equivalent to
P (N0,1 < −zα/2) = α/2, or also to P (zα/2 < N0,1) = 1− (α/2), which allows us to compute the value of
zα/2 by evaluating the inverse cumulative distribution function for N0,1.
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◦ Indeed, this is why we used the notation zα/2, since it is essentially just the value of the inverse cumulative
distribution function for N0,1 evaluated at α/2, up to a minus sign.

• We can summarize the results of this discussion as follows:

• Proposition (Normal Con�dence Intervals): A 100(1− α)% con�dence interval for the unknown mean µ of a

normal distribution with known standard deviation σ is given by µ̂± zα/2
σ√
n

= (µ̂− zα/2
σ√
n
, µ̂+ zα/2

σ√
n
)

where n sample points x1, . . . , xn are taken from the distribution, µ̂ = 1
n (x1 + · · ·+ xn) is the sample mean,

and c is the constant satisfying P (−zα/2 < N0,1 < zα/2) = 1− α.

◦ Some speci�c values of zα/2 for various common values of α are given in the table below:

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

zα/2 : P (−zα/2 < N0,1 < zα/2) = 1− α 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905

◦ The second term zα/2
σ√
n
is often called the margin of error for the con�dence interval, since it represents

the maximum distance away (in either direction) values in the interval can be from the center of the
interval.

◦ If we imagine choosing di�erent sample sizes n, we can see that the margin of error in the estimate
decreases with larger n. This is, of course, quite intuitive: if we sample more values, we would expect the
errors to tend to cancel one another out on average, yielding an average that is more likely to land close
to the true value than any single observation. (More formally, it follows from the central limit theorem.)

◦ More precisely, the margin of error will be proportional to 1/
√
n: so, for example, to cut the margin of

error in half would require a sample size that is 4 times as large.

• Example: A normal distribution with unknown mean µ and standard deviation σ = 1 is sampled four times,
yielding the values 1.4, 0.2, 2.9, and 1.1. Find 50%, 90%, 95%, and 99% con�dence intervals for µ.

◦ Here, we have n = 4, µ̂ = 1
4 (1.4 + 0.2 + 2.9 + 1.1) = 1.4, and σ/

√
n = 0.5.

◦ From the proposition and the table of values below it, we obtain the 50% con�dence interval µ̂± 0.6745 ·
σ/
√
n = (1.063, 1.737) , the 90% con�dence interval µ̂ ± 1.6449 · σ/

√
n = (0.577, 2.223) , the 95%

con�dence interval µ̂±1.9600·σ/
√
n = (0.420, 2.380) , and the 99% con�dence interval µ̂±2.5758·σ/

√
n =

(0.112, 2.688) .

• Example: From analysis of industrial fabrication, it is determined that the diameters of bolts manufactured at
Factory X are distributed normally with mean 20mm and standard deviation 0.01mm. To check the quality
of each manufacturing lot, a random sample of bolts are selected and their average diameter is measured.
Assuming the standard deviation is 0.01mm, if 10 bolts are selected and the average diameter is 20.0144mm,
�nd 50%, 90%, 95%, and 99% con�dence intervals for the true mean of the lot. Based on these calculations,
is it likely that the true mean is actually 20mm?

◦ Here, we have n = 10, µ̂ = 20.0144mm, and σ/
√
n = 0.01/

√
10 = 0.00316mm.

◦ From the proposition and the table of values below it, we obtain the 50% con�dence interval µ̂± 0.6745 ·
σ/
√
n = (20.0123mm, 20.0165mm) , the 90% con�dence interval µ̂±1.6449·σ/

√
n = (20.0092mm, 20.0196mm) ,

the 95% con�dence interval µ̂ ± 1.9600 · σ/
√
n = (20.0082mm, 20.0206mm) , and the 99% con�dence

interval µ̂± 2.5758 · σ/
√
n = (20.0063mm, 20.0225mm) .

◦ Based on these con�dence intervals, it seems very unlikely that the true mean is actually 20mm: even a
99% con�dence interval does not contain this value.

◦ Despite the fact that the average diameter of the bolts in the sample only di�ers from the desired one by
0.0144mm (which is 1.44 times the standard deviation of the bolt diameter), this is in fact very strong
evidence that the true mean of this lot of bolts is not actually 20mm. In the next chapter, we will extend
this type of analysis to describe methods for testing the hypothesis that the bolt diameter is actually
equal to 20mm.
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• Example: In the same scenario as above, if instead a 99% margin of error of at most 0.005mm for the true
mean diameter is desired, what is the minimum number of bolts that should be sampled to achieve this level
of precision?

◦ The margin of error for a 99% con�dence interval in this setting is 2.5758 · σ/
√
n. Since this quantity is

required to be 0.005mm, solving the resulting equation for n gives n =

(
2.5758 · 0.01mm

0.005mm

)2

≈ 26.54.

◦ This means a sample of 27 bolts would be su�cient to give the desired precision.

• Example: A marine biologist measures the lengths of 100 adult blue whales and, in his sample, the average
length was 27.11m with a standard deviation of 1.3m. Assuming that this standard deviation is correct for
the full population, �nd (i) a 98% con�dence interval for the average length of a blue whale, (ii) the number
of blue whales that would need to be measured to give a 98% con�dence interval with half the margin of error,
and (iii) the probability that if another 100 blue whales were independently sampled, both 98% con�dence
intervals would contain the true mean.

◦ For (i), we have n = 100, µ̂ = 27.11m, and σ/
√
n = 1.3m/

√
100 = 0.13m.

◦ Thus, using the table, we obtain the 98% con�dence interval (µ̂ − 2.3263 · σ/
√
n, µ̂ + 2.3263 · σ/

√
n) =

(26.81m, 27.41m) .

◦ For (ii), since the width of the con�dence interval is 2.3263 · σ/
√
n, to halve the width we would require

a value of n four times as large, which is n = 400 .

◦ For (iii), by de�nition each con�dence interval has a probability 0.98 of containing the true mean. Since

these samples are independent, the probability that both contain the true mean is (0.98)2 = 0.9604 .

• We will remark that the assumption in the previous example, that the sample standard deviation is equal to
the population standard deviation, is not generally valid in practice, and leads to narrower con�dence intervals
than those derived by taking the di�erence between the sample standard deviation and the population standard
deviation into account.

◦ Above, our discussion e�ectively analyzes the ratio
x− x
σ/
√
n
where σ is the (known) population standard

deviation by observing that this random variable has a standard normal distribution.

◦ However, if we replace the population standard deviation σ by the sample standard deviation S, the

resulting ratio
x− x
S/
√
n

is no longer normally distributed. (We can therefore not construct con�dence

intervals using the procedure described above.)

◦ As we discuss in a later chapter, the random variable
x− x
S/
√
n
actually follows a distribution known as the

t distribution.

• Example: The weight of domestic housecats is normally distributed with a population average of 4.02kg and
a standard deviation of 0.24kg. Some cats from two feral colonies, Colony A and Colony B, are each weighed.
The 16 cats from Colony A had an average weight of 3.95kg with a standard deviation of 0.30kg, while the 9
cats from Colony B had an average weight of 4.24kg with a standard deviation of 0.37kg. Find 90% con�dence
intervals for (i) the average weight of cats in each colony, (ii) the total weight of another equally-sized sample
of cats from each colony, and (iii) for the di�erence between the average weights in the two colonies.

◦ For Colony A, we have n = 16, µ̂ = 3.95kg, and σ/
√
n = 0.06kg. (Note that the standard deviation of

the sample is irrelevant, because we are given the standard deviation σ = 0.24kg of the population.)

◦ Thus, we have a 90% con�dence interval for the average weight given by µ̂±1.6449σ/
√
n = (3.85kg, 4.05kg) .

◦ For the total weight, if we resample with a di�erent 16 cats, we simply scale the interval by 16, yielding

the 90% con�dence interval (61.6kg, 64.8kg) .

◦ In the same way, for colony B, we have n = 9, µ̂ = 4.24kg, and σ/
√
n = 0.08kg.

◦ Thus, we have a 90% con�dence interval for the average weight given by p̂±1.6449σ/
√
n = (4.11kg, 4.37kg) .

15



◦ For the total weight, if we resample with 9 cats, we simply scale the interval by 9, yielding the 90%

con�dence interval (37.0kg, 39.3kg) .

◦ The di�erence in the average weights is a little bit trickier. The idea is to observe that if A is normally
distributed with mean µA and standard deviation σA and B is normally distributed with mean µB and
standard deviation σB , then B −A is normally distributed with mean µB − µA and standard deviation√
σ2
A + σ2

B (the latter is because the variance is additive).

◦ Thus, from the analysis above, the di�erence in the average weights is normally distributed with standard
deviation

√
(0.06kg)2 + (0.08kg)2 = 0.1kg. Since the observed average is 4.24kg − 3.95kg = 0.29kg, by

our discussion the 90% con�dence interval for the di�erence in the average weights will be 0.29kg ±
1.6446 · 0.1kg = (0.125kg, 0.454kg) .

3.2.3 Binomial Con�dence Intervals

• For distributions that are well approximated by the normal distribution, we can use methods similar to those
for the normal distribution to obtain very accurate approximate con�dence intervals.

• One particularly important situation of interest is the case of the binomial distribution, which arises from
repeated sampling of a Bernoulli random variable.

◦ So, suppose that we have a Bernoulli random variable with success probability p that we sample n times,
yielding sample values x1, x2, . . . , xn with a total number of successes equal to k = x1 + x2 + · · ·+ xn.

◦ Then as we have shown, the sample success estimator p̂ = k/n is unbiased and is the most e�cient
possible unbiased estimator of the true success probability p.

◦ Furthermore, the sample estimator np̂ (which counts the total number of successes in the n samples) will
be binomially distributed with mean np and standard deviation

√
np(1− p).

◦ To compute an exact con�dence interval, we would need to determine the precise nature of the relationship
between p̂ = k/n and the parameter p itself, which is quite di�cult to do directly.

◦ However, when np and n(1 − p) are both reasonably large, the binomial distribution will be well ap-
proximated by the corresponding normal distribution, and so np̂ will have an approximately normal
distribution with mean np and standard deviation

√
np(1− p).

◦ Equivalently, this says p̂ will have an approximately normal distribution with mean p and standard
deviation

√
p(1− p)/n.

◦ We can now invert our focus and switch from using p to study the variation in p̂ to using p̂ to study the
variation in p.

◦ However, there is one crucial di�erence: in our earlier setup, we were given the standard deviation of the
distribution explicitly. Here, the standard deviation still depends on the (now) unknown parameter p.

◦ To avoid having to study the complicated way in which the exact distribution of p would depend on p̂,
we also make the simplifying assumption4 that p̂ is a su�ciently good estimate of p that

√
p(1− p)/n ≈√

p̂(1− p̂)/n.
◦ Thus, our approximation says that the distribution of p is approximately normal with mean p̂ and
standard deviation

√
p̂(1− p̂)/n.

◦ Now, at last, we can apply the same analysis we used with the normal distribution to construct con�dence
intervals for p:

• Proposition (Binomial Con�dence Intervals): Suppose a Bernoulli random variable is sampled n times yielding
k successes, for an overall sample success rate of p̂ = k/n. In situations where the normal approximation to
the binomial distribution is accurate (heuristically, when k and n − k are both larger than 5 or so), then a
100(1 − α)% con�dence interval for the true success probability p is given by p̂ ± zα/2

√
p̂(1− p̂)/n = (p̂ −

zα/2
√
p̂(1− p̂)/n, p̂+zα/2

√
p̂(1− p̂)/n), where zα/2 is the constant satisfying P (−zα/2 < N0,1 < zα/2) = 1−α.

4This is a fairly reasonable assumption because (as we just observed) p̂ is roughly normally distributed with mean p and standard

deviation
√
p(1− p)/n, which is typically much smaller than p. Indeed, 99.8% of the time, |p̂− p| < 3

√
p(1− p)/n, and then one may

linearize the di�erence in the two standard deviations to get the estimate
∣∣∣√p̂(1− p̂)/n−√p(1− p)/n∣∣∣ ≈ |3− 6p̂| /(2n) + O(n−2).

This is quite small relative to the actual standard deviation, especially when n is large, which will always be the case when we are using
the normal approximation to the binomial distribution.
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◦ More compactly, this result says that our best estimate for the overall success rate is p̂ = k/n, and the
margin of error at the 100(1 − α)% con�dence level is equal to zα/2σ where σ =

√
p̂(1− p̂)/n is the

sample proportion's standard deviation.

◦ We repeat our table of speci�c values of zα/2 for various common values of α:

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

zα/2 : P (−zα/2 < N0,1 < zα/2) = 1− α 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905

• Example: A coin with unknown probability p of landing heads is �ipped 100 times, yielding 64 heads. Find
50%, 80%, 90%, and 99.5% con�dence intervals for p. How likely does it seem, based on these calculations,
that the coin is actually fair?

◦ Here, we have n = 100 and p̂ = 64/100 = 0.64, so that σ =
√
p̂(1− p̂)/n = 0.048.

◦ Thus, from the proposition and the table of values, we obtain the 50% con�dence interval p̂± 0.6745σ =

(0.6076, 0.6724) , the 80% con�dence interval p̂±1.2816σ = (0.5785, 0.7015) , the 90% con�dence inter-

val p̂± 1.6449σ = (0.5610, 0.7190) , and the 99.5% con�dence interval p̂± 2.0870σ = (0.5053, 0.7747) .

◦ Even with the 99.5% con�dence interval, the value 0.5 is not contained inside the con�dence interval
(though it is not that far below the lower bound): this suggests it is very unlikely that the coin was
actually fair.

◦ As a sanity check, the probability of obtaining 64 heads when actually �ipping a fair coin is
(
100
64

)
/2100 ≈

0.156%, whereas if the heads probability was actually 0.64 then the probability of obtaining 64 heads
would be

(
100
64

)
(0.64)64(0.36)36 ≈ 8.288%: quite a lot more likely. This is precisely what our maximum

likelihood estimate for p̂ con�rms: the value p = 0.64 is the one where were are the most likely to observe
64 heads in 100 �ips.

• Example: Last season, a professional basketball player attempted 1800 two-point shots and made 753 of
them. Find (i) 80% and 99% con�dence intervals for his shooting average last season, and (ii) 80% and 99%
con�dence intervals for the total number of shots he should expect to make this season if he attempts 1500
shots and his true shooting average stays the same as last season.

◦ For (i), we have n = 1800 and p̂ = 753/1800 ≈ 41.83%, so that σ =
√
p̂(1− p̂)/n ≈ 1.163%.

◦ Using the table, we obtain the 80% con�dence interval p̂ ± 1.2816σ = (40.34%, 43.32%) and the 99%

con�dence interval p̂± 2.5758σ = (38.83%, 44.83%) .

◦ For (ii), the distribution of the total number of made shots out of 1500 attempts will be binomial with
mean 1500p and standard deviation

√
1500p(1− p).

◦ Using the approximation
√
p(1− p) ≈

√
p̂(1− p̂) (which we also used, and justi�ed as reasonable, in

our analysis of the binomial distribution above) and approximating the binomial distribution with the
normal distribution of the same mean and standard deviation, we would expect that the number of
made shots this season is distributed approximately normally with mean 1500p and standard deviation
σ′ =

√
1500p̂(1− p̂) = 19.105.

◦ Therefore, taking the parameter estimate 1500p̂ = 627.5 yields the 80% con�dence interval 1500p̂ ±
1.2816σ′ = (603, 652) and the 99% con�dence interval 1500p̂± 2.5758σ′ = (578, 677) .

• An extremely common use of con�dence intervals is in polling statistics, where a random sample of a population
is used to estimate the proportion that support a particular measure.

◦ Typically, most polls report the margin of error associated with a 95% con�dence interval. In popular
parlance, it is usually referred to as simply �the margin of error�, with no quali�er, but most reputable
polls also include the con�dence level with their statistics.

◦ Thus, if a poll reports �45% of voters support X, with a margin of error of 6%� then this typically means
that the 95% con�dence interval for the percent support of X is (39%, 51%).
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◦ It is important not to misinterpret the meaning of the con�dence interval above: although a portion of
the con�dence interval does include outcomes where the support of X is above 50%, it is far more likely
that the support for X is below 50% than above 50%.

• Example: A pollster wishes to measure the statewide support for Proposition Q. He randomly samples 1000
likely voters and �nds 540 of them support Proposition Q. Find 95% and 99.9% con�dence intervals, and the
associated margins of error, for the true percentage of the population that supports Proposition Q.

◦ Here, we have n = 1000 and p̂ = 540/1000 = 54%, so that σ =
√
p̂(1− p̂)/n ≈ 1.576%.

◦ Thus, from the proposition and the table of values below it, we obtain the 95% con�dence interval

p̂± 1.9600σ = (50.91%, 57.09%) , and the 99.9% con�dence interval p̂± 3.2905σ = (48.81%, 59.19%) .

◦ The margin of error for the 95% con�dence interval is 1.9600σ ≈ 3.09% , and the margin of error for

the 99.9% con�dence interval is 3.2905σ ≈ 5.19% .

• Example: A pollster wishes to measure the support for the statewide support of Proposition R. If she expects
the support level for the proposition to be approximately 65%, what is the smallest number of people needed
for the 95% con�dence interval's margin of error to be at most ±2%? How would the answer change if the
support level for the proposition is unknown?

◦ Here, the expected proportion is p̂ = 0.65, so σ =
√
p̂(1− p̂)/n. At the 95% con�dence level, the margin

of error is 1.9600σ; setting this equal to 2% and solving yields n =
p̂(1− p̂)

(0.02/1.9600)2
≈ 2184.9.

◦ Thus, the minimum number of people needed for the poll will be 2185 to achieve a 2% margin of error
at the 95% con�dence level. Of course, to account for the fact that the actual support level may di�er
somewhat from the estimated 65%, rounding up to 2200 (or higher) is advisable in practice!

◦ If the support level p̂ is unknown, the largest possible value of n will occur when the numerator p̂(1− p̂)
is maximized, which (either by calculus or completing the square) occurs for p̂ = 1/2.

◦ The corresponding value of n is then
(1/2) · (1/2)

(0.02/1.9600)2
≈ 2401.02, which rounds up to 2402 people.

• Example: A political article states �Based on a recent poll, candidate Y has an approval rating of 43.1%±3.6%
(95% CI, n = 750), which means that it is impossible for their favorability rating to be 50% or above�. Critique
this statement.

◦ Because the poll was conducted by sampling, there is always a possibility (however remote) that the
actual favorability rating lies outside any given con�dence interval.

◦ In this case, given that the sample size was n = 750 and that it is a 95% con�dence interval with a
success probability p̂ = 0.431, the actual distribution of the true favorability rating will be normal with
mean 42.1% and standard deviation

√
p̂(1− p̂)/n ≈ 1.81%. (Note that this is consistent with the quoted

information since the margin of error would then be 1.9600σ ≈ 3.54%.)

◦ Using properties of the normal distribution, we can then compute P (N43.1,1.81 > 50) = P (N0,1 >
3.816) ≈ 0.068%. So, although it is fairly unlikely that candidate Y's favorability rating is actually 50%
or above, it is certainly still possible.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2020-2021. You may not reproduce or distribute this
material without my express permission.
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