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1 Counting and Probability

In this chapter our primary goal is to discuss probability, which quanti�es how likely it is that a particular event will
occur. We will begin with a brief review of various basic properties of sets and set operations, and then introduce
basic counting principles, permutations, combinations, and binomial coe�cients.

We then develop the fundamentals of discrete probability (which arose historically from the study of games of
chance) using the results on sets and counting techniques we have developed. We then treat conditional probability
(which allows us to compute probabilities based on the addition of new information) and the related topic of
independence (which describes whether two events are related) and then use these principles to make more general
probability calculations. We close with a discussion of some classic probability puzzles such as the Monty Hall
problem and the birthday problem, along with some applications of Bayes' formula.

1.1 Sets and Set Operations

• In order to discuss probability, we will require some basic counting techniques, which are in turn ultimately
grounded in properties of sets.

• We begin by reviewing basic set operations such as union and intersection, along with ways of visualizing sets,
particularly Venn diagrams. We then discuss a number of techniques for solving various counting problems
that serve as a prelude to discrete probability, where we will frequently need to enumerate the set of outcomes
of an event such as rolling a pair of dice.
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1.1.1 Sets, Subsets, and Cardinality

• De�nition: A set is a well-de�ned collection of distinct elements.

◦ The elements of a set can be essentially anything: integers, real numbers, other sets, people.

◦ Sets are generally denoted by capital or script letters, and when listing the elements of a set, curly
brackets {·} are used.
◦ Sets do not have to have any elements: the empty set ∅ = { } is the set with no elements at all.

◦ Two sets are the same precisely if all of their elements are the same. The elements in a set are not
ordered, and no element can appear in a set more than once: thus the sets {1, 4} and {4, 1} are the same.

• There are two primary ways to describe a set.

◦ One way is to list all the elements: for example, A = {1, 2, 4, 5} is the set containing the four numbers
1, 2, 4, and 5.

◦ The other way to de�ne a set is to describe properties of its elements1: for example, the set S of one-letter
words in English has two elements: S = {a, I}.

• We often employ �set-builder� notation for sets: for example, the set S of real numbers between 0 and 5 is
denoted S = {x : x is a real number and 0 ≤ x ≤ 5}.

◦ Some authors use a vertical pipe | instead of a colon : but this distinction is irrelevant.

◦ Example: S = {n : n is a positive integer less than 6} = {1, 2, 3, 4, 5}.

• In practice, to save time we will often not give a totally explicit description of a set when we are describing a
pattern that is clear from the context.

◦ For example, if we write A = {1, 2, 3, 4, . . . , 10}, we mean that A is the set of positive integers from 1 to
10 (so that, explicitly, A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).

• Notation: If S is a set, x ∈ S means �x is an element of S�, and x 6∈ S means �x is not an element of S�.

◦ Example: For S = {1, 2, 5} we have 1 ∈ S and 5 ∈ S but 3 6∈ S and π 6∈ S.
◦ Example: For S equal to the set of English words starting with the letter A, we have apple ∈ S and
antlers ∈ S, while potatoes 6∈ S.

• De�nition: If A and B are two sets with the property that every element of A is also an element of B, we say
A is a subset of B (or that A is contained in B) and write A ⊆ B.

◦ Example: If A = {1, 2, 3}, B = {1, 4, 5}, and C = {1, 2, 3, 4, 5}, then A ⊆ C and B ⊆ C but neither A
nor B is a subset of the other.

◦ Example: If S is the set of all English words and T is the set of all English words starting with the letter
P, then T ⊆ S.
◦ Example: If A is any set, then the empty set ∅ is contained in A.

• Warning: Subset notation is not universally agreed-upon: the notation A ⊂ B is also commonly used to say
that A is a subset of B.

◦ The di�erence is not terribly relevant except for when A can be equal to B: some authors allow A ⊂ B
to include the possibility that A could be equal to B, while others insist that A ⊂ B means that A is a
subset of B which cannot be all of B.

◦ We will always use the notation A ⊆ B to include the possibility that A = B, and if we wish to say that
A is a subset of B that is not equal to B, we will write A ( B.

• De�nition: If A is any set, the cardinality of A, denoted #A or |A|, is the number of elements of A.

◦ Example: For A = {1, 2, 3} and B = {2, 4, 6, 8, 10, . . . , 100}, then #A = 3 and #B = 50.

◦ Example: The cardinality of the empty set ∅ is 0.
◦ Example: The cardinality of the set {1, 2, 3, 4, . . . } of positive integers is ∞.

1It is possible to run into trouble by trying to de�ne sets in this �naive� way of specifying qualities of their elements. In general, one
must be more careful when de�ning arbitrary sets, although we will not worry about this.
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1.1.2 Intersections, Unions, and Complements

• De�nition: If A and B are two sets, then the intersection A ∩ B is the set of all elements contained in both
A and B. The union A ∪B is the set of all elements contained in either A or B (or both).

◦ Example: If A = {1, 2, 3} and B = {1, 4, 5}, then A ∩B = {1} and A ∪B = {1, 2, 3, 4, 5}.
◦ Example: If E = {2, 4, 6, 8, . . . } is the set of all positive even integers and O = {1, 3, 5, 7, . . . } is the set
of all positive odd integers, then O ∩ E = ∅ is the empty set (no integer is both even and odd), while
O ∪ E = {1, 2, 3, 4, . . . } is the set of all positive integers.
◦ Example: If E = {2, 4, 6, 8, . . . } is the set of all positive even integers and S = {1, 4, 9, 16, . . . } is the set
of all positive perfect squares, then E ∩ S = {4, 16, 36, 64, . . . } is the set of all even perfect squares.

◦ It is not hard to see that if A ⊆ B, then A ∩B = A and A ∪B = B: explicitly, if every element of A is
contained in B, then the elements common to both are simply the elements of A, while the elements in
at least one of the two are simply the elements of B.

• We can also take unions and intersections of more than two sets at a time: the intersection of any collection
of sets is the set of elements contained in all of them, while the union of any collection of sets is the set of
elements contained in at least one of them.

◦ Example: If A = {1, 2, 3}, B = {1, 3, 4}, and C = {1, 3, 9}, then A ∩ B ∩ C = {1, 3} while A ∪ B ∪ C =
{1, 2, 3, 4, 9}.

◦ We will note in passing that (A∩B)∩C = A∩B ∩C = A∩ (B ∩C), since each of these sets represents
the elements in all three of A,B,C, and the analogous fact holds for unions. Thus, we do not need to
specify the order in which intersections are taken.

◦ On the other hand, we cannot mix unions and intersections without specifying the order of operations.

◦ Example: If A = {1, 2, 3}, B = {1, 3, 4}, and C = {1, 3, 9}, then (A∩B)∪C = {1, 3}∪{1, 3, 9} = {1, 3, 9}
while A ∩ (B ∪ C) = {1, 2, 3} ∩ {1, 3, 4, 9} = {1, 3}.

◦ We can see that the expression �A∩B∪C� therefore does not make sense2, because it is not immediately
clear which of the two expressions (A ∩B) ∪ C and A ∩ (B ∪ C) it is supposed to mean.

• A very useful tool for visualizing unions and intersections of sets are Venn diagrams, in which we represent
each set as a region, with overlaps of regions corresponding to intersections of the sets in such a way that any
possible combination of intersections corresponds to a portion of the diagram.

◦ An example makes the idea clearer than a description in words; here is a Venn diagram corresponding
to the sets A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10, 12}:

◦ In the Venn diagram above, we place all of the elements of A into the region (in this case, a circle) labeled
A, and likewise we place all the elements of B into the region labeled B, with elements in both sets (i.e.,
in A ∩B) in the overlap between the two regions.

2It is a moderately common convention that intersections are always performed before unions (much like in the order of operations
for arithmetic, in which multiplications are performed before additions), in which case we would always interpret A ∩ B ∪ C to mean
(A ∩B) ∪ C.
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• Using a Venn diagram, we can see that there is a relationship between the cardinalities of A, B, A ∪ B, and
A ∩B:

• Theorem (Sizes of Unions and Intersections): If A and B are any sets, then #(A∪B)+#(A∩B) = #A+#B.

◦ Proof: Observe that if we count the total number of elements in A and add it to the total number of
elements in B, then we have counted every element in the union A ∪B (since every element in A ∪B is
either in A or in B) but we have double-counted the elements in the intersection A ∩B.
◦ Therefore, both expressions #(A ∪ B) + #(A ∩ B) and #A + #B count every element in A ∩ B twice
and every other element once, so they are equal.

• Example: A survey of 100 pet owners shows that 55 own a cat and 61 own a dog, and none have any other
pets. How many owners have both a cat and a dog?

◦ If we let A denote the set of cat owners in the survey and B denote the set of dog owners in the survey,
then the given information says that #A = 55, #B = 61, and #(A ∪B) = 100.

◦ Therefore, we see that #(A ∩ B) = #A + #B − #(A ∪ B) = 55 + 61 − 100 = 16, meaning that 16
owners have both a cat and a dog.

1.1.3 Complements, Universal Sets, and Cartesian Products

• In many contexts, it is useful to think of all the sets we are discussing as being subsets of some particular
larger set S, which we refer to as a �universal set� of elements under consideration.

◦ In general, we must always specify precisely what this universal set U is, unless it is clear from context.
For example, if we are discussing sets of integers, a sensible choice is to take U to be the set of integers,
but there is no reason we couldn't instead take U to be the set of all real numbers.

◦ It might seem to be convenient to use the same universal set in all contexts, but it turns out that assuming
the existence of a general �universal set� of all possible elements leads to logical contradictions3.

◦ If we have chosen a suitable universal set U and A is a subset of U , then we may speak of the elements
of A not in U .

• De�nition: If U is a universal set and A ⊆ U , then the complement of A (as a subset of U), denoted as Ac, is
the set of elements of U not in A.

◦ Notation: Other notations used for the complement of A as a subset of U include A′, A, U\A, and U−A.
◦ Example: With universal set U = {1, 2, 3, 4, 5, 6}, if A = {1, 3, 4} and B = {1, 2, 3, 4, 5, 6}, then Ac =
{2, 5, 6} and Bc = ∅.
◦ In a Venn diagram, we typically identify the universal set U in the diagram, and represent Ac as the
area outside the region marked as A:

3As �rst noted by Bertrand Russell, if we assume there exists a universal set U containing every other set as a subset, we could
de�ne T to be the subset of U consisting of all sets (such as {1, 2}) that do not contain themselves as an element. Now we ask: is T
an element of T? If so, then T would be a set that contains itself, but this contradicts the de�nition of T . If not, then T is not a set
that contains itself, but this would mean that T is an element of T . Either case leads to a logical contradiction, so there cannot exist a
universal �set of all sets� U .
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◦ Observe that for any set A, we have A ∪ Ac = U (every element is either in A or not in A), A ∩ Ac = ∅
(no element is both in A and not in A), and (Ac)c = A.

◦ Then by the cardinality formula for unions and intersections, we see that #A + #Ac = #(A ∪ Ac) +
#(A ∩Ac) = #U .

◦ In particular, if A is a �nite set, we obtain the formula #Ac = #U −#A.

• By using all of this information in tandem with a Venn diagram, we can solve problems involving overlapping
categories:

• Example: In a literature class, a total of 45 short stories are read. Of these, 25 are romantic, 18 are science
�ction, 14 are dystopian. Furthermore, 8 of the science �ction stories are romantic, 2 of which are also
dystopian; also, every dystopian story is either romantic or science �ction, and there are 7 dystopian science
�ction stories. Determine the number of short stories that are (i) romantic or dystopian, (ii) non-dystopian
science �ction, and (iii) none of the three categories.

◦ If we let U be the set of the 45 short stories, R be the romantic stories, S be the science-�ction stories, and
D be the dystopian stories, we can make a Venn diagram and label various regions with the corresponding
number of stories.

◦ From the given information, we know that #U = 45, #R = 25, #S = 18, #D = 14, #(R ∩ S) = 8,
#(R ∩ S ∩D) = 2, #(S ∩D) = 7, and that #(D ∩ Rc ∩ Sc) = 0 (because there are no stories that are
dystopian, but not romantic and not science �ction).

◦ Using these values we can �ll in all the regions in the Venn diagram. For example, since #(R∩S∩D) = 2
and #(R∩S) = 8, this means that the number of elements in R∩S not in D must be 8−2 = 6. Similarly,
since #(S ∩D) = 7, this means that the number of elements in S ∩D not in R must be 7− 2 = 5.

◦ Then since the total number of elements in S is equal to 18, we see that the number of elements in S not
in R or D must be 18− 6− 2− 5 = 5. Continuing in this way, we can �ll in all of the remaining entries
inside the R, S, and D regions:

◦ Then we see that the number of short stories that are romantic or dystopian is 10+6+7+2+5+0 = 30 ,

the number of non-dystopian science �ction is 6 + 5 = 11 , and the number of stories outside the three

categories is 10 .

• We will mention one additional set construction that is very useful; namely, the Cartesian product:

• De�nition: If A and B are any sets, the Cartesian product is the set A × B consisting of all ordered pairs
(a, b) where a ∈ A and b ∈ B.

◦ Example: If A = {1, 2} and B = {1, 3, 5}, then A×B = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}.
◦ Example: If A = {H,T} then A×A = {(H,H), (H,T ), (T,H), (T, T )}.
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◦ A common use of the Cartesian product is to list all possible outcomes when one event is followed by
another. The second example above indicates the possible outcomes of �ipping one coin followed by
�ipping another coin.

• As suggested by the examples above, there is a simple formula for the cardinality of a Cartesian product: for
any sets A and B we have #(A×B) = #A ·#B.

1.2 Counting Principles

• Our goal now is to use some of our results on sets and cardinality to solve counting problems.

1.2.1 Addition and Multiplication Principles

• Two fundamental counting principles are as follows:

◦ (�Addition Principle�) When choosing among n disjoint options labeled 1 through n, if option i has ai
possible outcomes for each 1 ≤ i ≤ n, then the total number of possible outcomes is a1 + a2 + · · ·+ an.

◦ To illustrate the addition principle, if a restaurant o�ers 5 main courses with chicken, 6 main courses
with beef, and 12 vegetarian main courses, then (presuming no course is counted twice) the total possible
number of main courses is 5 + 6 + 12 = 23.

◦ The addition principle can be justi�ed using our results about cardinalities of unions of sets: if Ai

corresponds to the set of outcomes of option i, then because all of the di�erent options are disjoint,
#(A1 ∪A2 ∪ · · · ∪An) = #A1 +#A2 + · · ·+#An.

◦ (�Multiplication Principle�) When making a sequence of n independent choices, if step i has bi possible
outcomes for each 1 ≤ i ≤ n, then the total number of possible collections of choices is b1 · b2 · · · · · bn.
◦ To illustrate the multiplication principle, if a fair coin is tossed (2 possible outcomes) and then a fair
6-sided die is rolled (6 possible outcomes), the total number of possible results of �ipping a coin and then
rolling a die is 2 · 6 = 12.

◦ The multiplication principle can be justi�ed using our results about cardinalities of Cartesian products:
if Bi corresponds to the set of outcomes of choice i, then by #(B1×B2×· · ·×Bn) = #B1 ·#B2 ·· · ··#Bn.

• By combining these principles appropriately, we can solve a wide array of counting problems.

• Example: Determine the number of possible outcomes from rolling a 6-sided die 5 times in a row.

◦ Each individual roll has 6 possible outcomes. Thus, by the multiplication principle, the number of
possible sequences of 5 rolls is 65 = 7776 .

• Example: An ice creamery o�ers 25 di�erent �avors. Each order of ice cream may be served in either a sugar
cone, a wa�e cone, or a dish, and may have 2 or 3 scoops (which must be the same �avor). Also, any order
may come with a cherry or nuts (or neither), but not both. How many di�erent orders are possible?

◦ We tabulate all of the possible choices separately.

◦ First, we choose an ice cream �avor: there are 25 options.

◦ Then we choose a sugar cone, wa�e cone, or dish: there are 3 options.

◦ Next we choose the number of scoops: there are 2 options.

◦ Finally, we choose either a cherry, nuts, or neither: there are 3 options.

◦ By the multiplication principle, the total number of possible orders is 25 · 3 · 2 · 3 = 450 .

• Example: In the Unicode family of character encodings, each character is represented by a string of n bits,
each of which is either a 0 or 1 (where n depends on the particular implementation). If it is necessary to be
able to encode at least 150,000 di�erent characters, what is the smallest possible value of n that will su�ce?

◦ If we have a string of n bits each of which is 0 or 1, then by the multiplication principle the total number
of possible strings is 2n.
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◦ Thus, we want 2n ≥ 150000. Taking logarithms, we need n ≥ log2(150000) ≈ 17.194, so the smallest

integer value of n that will work is n = 18 .

• Example: Determine the number of subsets of the set {1, 2, . . . , n}.

◦ We may characterize a subset S of {1, 2, . . . , n} by listing, for each k ∈ {1, 2, . . . , n}, whether k ∈ S or
k 6∈ S.

◦ By the multiplication principle, the number of possible ways of making this sequence of n choices is 2n .

• In many counting problems, we must break into several cases and tabulate possibilities separately.

• Example: At a car dealership, Brand X sells 11 di�erent models of cars each of which comes in 20 di�erent
colors, while Brand Y sells 6 di�erent models of cars each of which comes in 5 di�erent colors. How many
di�erent possible car options (including brand, model, and color) can be purchased at the dealership?

◦ If a Brand X car is purchased, there are 11 choices for the model and 20 choices for the color, so by the
multiplication principle there are 11 · 20 = 220 possible options in this case.

◦ If a Brand Y car is purchased, there are 6 choices for the model and 5 choices for the color, so by the
multiplication principle there are 6 · 5 = 30 possible options in this case.

◦ Since these two cases are disjoint, in total there are 220 + 30 = 250 possible car options.

• In other cases, we may use �complementary counting�: count possibilities and then subtract ones that are not
allowed to occur, or that have been double-counted.

• Example: A local United States telephone number has 7 digits and cannot start with 0, 1, or the three digits
555. How many such telephone numbers are possible?

◦ The �rst digit has 8 possibilities (namely, the digits 2 through 9 inclusive) and the other six digits each
have 10 possibilities. Thus, by the multiplication principle, there are 8 · 106 = 8000 000 total telephone
numbers.

◦ However, we have included the numbers starting with 555: each of these has 10 choices for each of the
last 4 digits, for a total of 104 = 10 000 telephone numbers.

◦ Subtracting the disallowed numbers yields a total of 8 000 000 − 10 000 = 7 990 000 local telephone
numbers.

◦ Remark: Another method is to count all 107 possible 7-digit numbers, and then subtract the 106 starting
with 0, the 106 starting with 1, and the 104 starting with 555.

1.2.2 Permutations and Combinations

• Certain problem types involving rearrangements of distinct objects (�permutations�), or ways to select subsets
of a particular size (�combinations�), arise frequently in counting problems.

• Example: Determine the number of permutations (i.e., ways to rearrange) the six letters ABCDEF.

◦ There are 6 letters to be arranged into 6 locations.

◦ For the �rst letter, there are 6 choices (any of ABCDEF).

◦ For the second letter, there are only 5 choices (any letter except the one we have already chosen).

◦ For the third letter, there are only 4 choices (any letter except the �rst two).

◦ Continuing in this way, we see that there are 3 choices for the fourth letter, 2 choices for the �fth letter,
and only 1 choice for the last letter.

◦ By the multiplication principle, the total number of permutations is therefore 6 · 5 · 4 · 3 · 2 · 1 = 720 .

• Example: A new company logo has four design elements, which must all be di�erent colors chosen from red,
orange, yellow, green, blue, and purple. How many di�erent logos are possible?
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◦ There are 6 possible colors. The �rst design element has 6 possible colors, the second has 5 possible
colors (any of the 6 except the one already used), the third has 4 possible colors, and the fourth has 3
possible colors.

◦ Thus, the total number of logos is 6 · 5 · 4 · 3 = 360 .

• Both of the problems above are example of computing permutations, where we choose k distinct items from
a list of n possibilities, and where the order of our choices matters.

◦ We can give a general formula for solving problems of this type in terms of factorials.

• De�nition: If n is a positive integer, we de�ne the number n! (read �n factorial�) as n! = n · (n− 1) · · · · · 2 · 1,
the product of the positive integers from 1 to n inclusive. We also set 0! = 1.

◦ Some small values are 1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, and 6! = 720.

◦ The factorial function grows very fast: to 4 signi�cant �gures, we have 10! = 3.629·106, 100! = 9.333·10157,
and 1000! = 4.024 · 102567.
◦ A useful approximation known as Stirling's formula says that n! ≈ nne−n

√
2πn for large n (in the sense

that the ratio between the two quantities approaches 1 as n grows). In particular, n! grows faster than
any exponential function of the form An for any positive A.

• Proposition (Permutations): The number of ways of choosing k ordered items from a list of n distinct pos-

sibilities (where the order of the k items matters) is equal to
n!

(n− k)!
= n · (n − 1) · · · · · (n − k + 1). In

particular, the number of ways of rearranging n distinct items is n!.

◦ Proof: There are n possibilities for the �rst item, n− 1 for the second item (any possibility but the one
already chosen), n− 2 for the third item (any possibility but the two already chosen), ... , and n− k+1
possibilities for the kth item.

◦ This yields a total number of possibilities of n · (n− 1) · · · · · (n− k + 1).

◦ For the formula, we have n ·(n−1) · · · · ·(n−k+1) ·(n−k)! = n ·(n−1) · · · · ·(n−k+1) ·(n−k) · · · · ·1 = n!.

◦ Thus, n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!
.

• Example: A sports league has 31 teams in total. How many ways are there to choose 16 teams that make the
playo�s, assuming that the ranking of the playo� teams matters and there are no ties?

◦ We are choosing k = 16 teams from a list of n = 31, where the order matters. From our result on

permutations, the total number of choices is
31!

15!
= 31 · 30 · · · · · 16.

• In certain other types of counting problems, the order of the list of the k items we choose from the list of n
does not matter. We can also give a formula for counting in this way:

• Proposition (Combinations): The number of ways of choosing k unordered items from a list of n distinct

possibilities is equal to

(
n

k

)
= nCk =

n!

k!(n− k)!
=
n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1
.

◦ Remark: The symbols
(
n
k

)
and nCk are both typically read as �n choose k�.

◦ Proof: From our calculation above, we know that the number of ways to choose k ordered items from a

list of n distinct possibilities is
n!

(n− k)!
.

◦ If instead we want to count unordered lists, we can simply observe that for any unordered list, there are
k! ways to rearrange the k elements on the list.

◦ Thus we have counted each unordered list k! times, so the number of unordered lists is
1

k!
· n!

(n− k)!
=

n!

k!(n− k)!
.
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• The numbers
(
n
k

)
are called binomial coe�cients because they arise as coe�cients of binomial expansions.

◦ Speci�cally, in the expansion of (x+ y)n, the coe�cient of xkyn−k is equal to
(
n
k

)
.

◦ This follows by observing that in expanding the product (x+ y) · (x+ y) · · · · · (x+ y), we may choose an
x or a y from each of n terms. The term xkyn−k will arise from products that choose exactly k terms
equal to x: thus, from our discussion above, there are precisely

(
n
k

)
such terms.

◦ For example, we can compute that (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4, and the middle term is

indeed equal to
(
4
2

)
=

4!

2!2!
= 6.

◦ Binomial coe�cients show up in many di�erent places, and satisfy many interesting algebraic identities,
such as the �re�ection identity�

(
n
k

)
=

(
n

n−k
)
along with the recurrence

(
n
k

)
=

(
n−1
k

)
+
(
n−1
k−1

)
.

• In general, expanding the products of factorials is not the most e�cient way to evaluate binomial coe�cients.

◦ Instead, the formula
(
n
k

)
=
n · (n− 1) · · · · · (n− k + 1)

k · (k − 1) · · · · · 1
is typically the most e�cient.

◦ For example, computing
(
13
4

)
as

13!

4!9!
requires computing both 13! and 4!9!, and then evaluating the

quotient, which is rather painful to do by hand.

◦ On the other hand, the formula above gives
(
13
4

)
=

13 · 12 · 11 · 10
4 · 3 · 2 · 1

= 13 · 11 · 5 = 715, which is easy to

evaluate by hand.

• Example: How many 3-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9} are there?

◦ Since subsets are not ordered, we are simply counting the number of ways to choose 3 unordered elements
from the given set of 9.

◦ From our discussion of combinations, the number of such subsets is
(
9
3

)
=

9 · 8 · 7
3 · 2 · 1

= 84 .

• Example: At a conference with 30 mathematicians, every pair of attendees shakes hands once. How many
total handshakes occur?

◦ Since pairs of people are not ordered, we are counting the number of ways to choose 2 attendees from a

total of 30, which is
(
30
2

)
=

30 · 29
2 · 1

= 435 .

• Example: A pizza parlor o�ers 13 di�erent possible toppings on a pizza. A pizza may have from 0 up to 3
di�erent toppings. How many di�erent pizza topping combinations are possible?

◦ In general, there are
(
13
k

)
possible pizzas that have exactly k toppings.

◦ Thus, the number of pizzas with at most 3 toppings is
(
13
0

)
+
(
13
1

)
+
(
13
2

)
+
(
13
3

)
= 1+13+78+286 = 378 .

• Example: Determine the number of di�erent full-house hands, consisting of 3 cards of one rank, and a pair of
cards in another rank, that can be dealt from a standard 52-card deck.

◦ Note that there are 13 possible card ranks, and 4 cards of each rank.

◦ First, there are 13 ways to choose the rank of the 3-of-a-kind, and then there are 12 ways to choose the
rank of the pair.

◦ Once we have chosen the ranks, there are
(
4
3

)
= 4 ways to choose the three cards forming the 3-of-a-kind,

and there are
(
4
2

)
= 6 ways to choose the two cards forming the pair.

◦ Thus, in total there are 13 · 12 · 4 · 6 = 3744 possible full houses.

• Example: Determine the number of possible ways of permuting the letters in the word MISSISSIPPI.

◦ Since there are 11 letters, it might seem as if there are 11! permutations of the letters.
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◦ However, not all of these permutations yield di�erent words: for example, if we swap two of the Ss, the
resulting words are the same.

◦ There are 4 Ss, 4 Is, 2 Ps, and 1 M, which we will arrange in that order.

◦ First, we place the 4 Ss: since there are 11 possible locations, there are
(
11
4

)
ways to place them (since

the 4 Ss are identical).

◦ Next we place the 4 Is: there are 7 remaining locations, so there are
(
7
4

)
ways to place them.

◦ After this, there are 3 remaining locations in which we may place the 2 Ps, yielding
(
3
2

)
choices. Finally,

there is only 1 location for the M.

◦ In total, there are
(
11
4

)
·
(
7
4

)
·
(
3
2

)
= 330 · 35 · 3 = 34650 ways of permuting the letters.

◦ Remark: Another way to perform the count is to determine the number of times each word shows up
in the 11! permutations of the letters. Since there are 4! ways of permuting the 4 Ss among themselves,
4! ways of permuting the 4 Is, and 2! ways of permuting the 2 Ps, each word shows up 4! · 4! · 2! times.

Thus, the number of di�erent words is
11!

4!4!2!
= 34650.

• Example: Determine the number of possible ways of permuting the letters in the word BOSTONIANS that
contain the word BOOS.

◦ The number of such permutations is the number of permutations of the six letters T, N, I, A, N, S and
the string BOOS (which we can think of as being a single string).

◦ There are 2 Ns, and 1 each of T, I, A, S, and BOOS to arrange.

◦ First, we place the 2 Ns: since there are 7 possible locations, there are
(
7
2

)
ways to place them. The

remaining 5 strings can be permuted arbitrarily, so there are 5! ways to arrange them.

◦ In total, there are
(
7
2

)
· 5! = 42 · 120 = 2520 ways of permuting the letters.

◦ Remark: As above, another way to perform the count is by observing that there are 7! ways to arrange
the 7 given strings, but each arrangement is counted twice because of the two Ns, so there are only
7!/2 = 2520 di�erent arrangements.

1.3 Probability and Probability Distributions

• Now that we have discussed the basics of sets and counting, we can develop discrete probability. We begin by
discussing sample spaces and methods for computing probabilities of events.

1.3.1 Sample Spaces and Events

• The fundamental idea of �probability� arises from performing an experiment or observation, and tabulating
how often particular outcomes arise.

◦ For any experiment or observation, the set of possible outcomes is called the sample space, and an event
is a subset of the sample space.

• Example: Consider the experiment of �rolling a standard 6-sided die once�.

◦ There are 6 possible outcomes to this experiment, namely, rolling a 1, a 2, a 3, a 4, a 5, or a 6, so the
sample space is the set S = {1, 2, 3, 4, 5, 6}.
◦ One event is �rolling a 3�, which would correspond to the subset {3}.
◦ Another event is �rolling an even number�, which would correspond to the subset {2, 4, 6}.
◦ A third event is �rolling a number bigger than 2�, which would correspond to the subset {3, 4, 5, 6}.
◦ A fourth event is �rolling a negative number�, which would correspond to the empty subset ∅ = {}
because there are no outcomes in the sample space that make this event occur.

• Example: Consider the experiment of ��ipping a coin once�.
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◦ There are 2 possible outcomes to this experiment: heads and tails. Thus, the sample space is the set
S = {heads, tails}, which we typically abbreviate as S = {H,T}.
◦ One event is �obtaining heads�, corresponding to the subset {H}.
◦ Another event is �obtaining tails�, corresponding to the subset {T}.

• Example: Consider the experiment of ��ipping a coin four times�.

◦ By the multiplication principle, there are 24 = 16 possible outcomes to this experiment (namely, the 16
possible strings of 4 characters each of which is either H or T ).

◦ One event is �exactly one head is obtained�, corresponding to the subset {HTTT, THTT, TTHT, TTTH}.
◦ Another event is �the �rst three �ips are tails�, corresponding to the subset {TTTH, TTTT}.

• Example: Consider the experiment of �shu�ing a standard 52-card deck�.

◦ There are many possible outcomes to this experiment, namely, all 52! ways of arranging the 52 cards in
sequence. The sample space S is the (quite large!) set of all 52! of these sequences.

◦ One event is �the �rst card is an ace of clubs�, while another event is �the entire deck alternates red-
black-red-black�. It would be infeasible to write out the exact subsets corresponding to these events, but
in principle it would be possible to list them all.

• Example: Consider the experiment of �measuring the lifetime of a refrigerator in years�.

◦ There are many possible outcomes to this experiment, including 0, 5, 28, 3.2, and 100.

◦ The sample space would (at least in principle) be the set of nonnegative real numbers: S = [0,∞).

◦ One event is �the refrigerator stops working after at most 3 years�, corresponding to the subset S = [0, 3].

◦ Another event is �the refrigerator works for at least 6 years�, corresponding to the subset S = [6,∞).

• Example: Consider the experiment of �measuring the temperature in degrees Fahrenheit outside�.

◦ There are many possible outcomes to this experiment, including 50◦, 87.4◦, and 120◦.

◦ For this experiment, depending on how accurately the temperature is measured, and what the possible
outside temperatures are, the sample space could be very large or even in�nite.

◦ If the temperature is measured to the nearest whole degree, and it is known that the temperature is
never colder than 0◦ nor hotter than 120◦, then the sample space would be S = {0◦, 1◦, 2◦, . . . , 120◦}.
◦ One event is �the temperature is above freezing�, corresponding to the subset {33◦, 34◦, . . . , 120◦}.
◦ Another event is �the temperature is a multiple of 10◦�, corresponding to the subset {0◦, 10◦, 20◦, . . . , 120◦}.

• Since we view events as subsets of the sample space, we de�ne the union (or intersection) of two events as
the union (respectively, the intersection) of their corresponding subsets, and we de�ne the complement of an
event to be the complement of the corresponding subset inside the sample space.

◦ For example, with sample space S = {1, 2, 3, 4, 5, 6} obtained by rolling a standard 6-sided die once, and
take A = {2, 4, 6} to be the event of rolling an even number and B = {3, 4, 5, 6} to be the event of rolling
a number larger than 2.

◦ Then the complement Ac = {1, 3, 5} is the event of not rolling an even number (i.e., rolling an odd
number), and the complement Bc = {1, 2} is the event of not rolling a number larger than 2 (i.e., rolling
a number less than or equal to 2).

◦ Also, the union A∪B = {2, 3, 4, 5, 6} is the event of rolling a number that is even or larger than 2, while
the intersection A ∩B = {4, 6} is the event of rolling a number that is even and larger than 2.

• In the case where the events A and B have A ∩ B = ∅, we say that A and B are mutually exclusive, since
they cannot both occur at the same time.
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1.3.2 Probabilities of Events

• We would now like to analyze probabilities of events, which measure how likely particular events are to occur.

◦ If we have an experiment with corresponding sample space S, and E is an event (which we consider as
being a subset of S), we would like to de�ne the probability of E, written P (E), to be the frequency
with which E occurs if we repeat the experiment many times independently.

◦ Speci�cally, if we repeat the experiment n times and the event occurs en times, then the relative frequency
that E occurs is the ratio en/n. If we let n grow very large (more formally, if we take the limit as n→∞)
then the ratios en/n should approach a �xed number, which we call the probability of the event E.

◦ Since for each n we have 0 ≤ en ≤ n, and thus 0 ≤ en/n ≤ 1, we see that the limit of the ratios en/n
must be in the closed interval [0, 1]. This tells us that P (E) should always lie in this interval.

◦ For the event S (consisting of the entire sample space), we clearly have P (S) = 1, because if we perform
the experiment n times, the event S always occurs n times, so en = n for every n.

◦ Also, if E1 and E2 are mutually exclusive events, then P (E1 ∪ E2) = P (E1) + P (E2): this follows by
observing that because both events cannot occur simultaneously, then the total number of times E1 or
E2 occurs in n experiments is equal to the total number of times E1 occurs plus the total number of
times E2 occurs.

◦ In particular, if S = {s1, s2, . . . , sk} is a �nite sample space, then by applying the above observation
repeatedly, we can see that P ({s1}) + P ({s2}) + · · ·+ P ({sk}) = P ({s1, s2, . . . , sk}) = P (S) = 1.

◦ This means that the sum of all the probabilities of the events in the sample space is equal to 1.

• We now give a more formal de�nition of a probability distribution on a sample space, using the properties we
have worked out above as motivation:

• De�nition: If S is a sample space, a probability distribution on S is any function P de�ned on events (i.e.,
subsets of S) with the following properties:

[P1] For any event E, the probability P (E) satis�es 0 ≤ P (E) ≤ 1.

[P2] The probability P (S) = 1.

[P3] If E1, E2, . . . , Ek are mutually exclusive events4 (meaning that Ei ∩Ej = ∅ for i 6= j), then P (E1 ∪E2 ∪
· · · ∪ Ek) = P (E1) + P (E2) + · · ·+ P (Ek).

◦ We may interpret the probability P (E) as the relative frequency that the event E occurs, if we repeat
the experiment a large number of times.

• There are a few fundamental properties of probabilities that can be derived from these basic assumptions
[P1]-[P3]:

• Proposition (Basic Properties of Probability): For any events E,E1, E2 inside a sample space S with proba-
bility distribution P , the following properties hold:

1. P (∅) = 0.

2. P (E1 ∪ E2) = P (E1) + P (E2)− P (E1 ∩ E2).

3. P (Ec) = 1− P (E).

◦ Proof: For (1), apply [P3] to E1 = E2 = ∅, so that E1 ∪E2 = ∅ also, to see that P (∅) = P (∅) + P (∅), so
P (∅) = 0.

◦ For (2), observe (e.g., via a Venn diagram) that if we de�ne the events A = E1 ∩ Ec
2, B = E1 ∩ E2, and

C = Ec
1∩E2, then A,B,C are mutually disjoint with A∪B = E1, B∪C = E2, and A∪B∪C = E1∪E2.

◦ Thus by [P3] applied repeatedly, we have P (E1 ∪ E2) = P (A ∪ B ∪ C) = P (A) + P (B) + P (C), while
P (E1) = P (A) + P (B), P (E2) = P (B) + P (C), and P (E1 ∩ E2) = P (B).

4If S is an in�nite sample space, this property also applies to in�nite collections of mutually exclusive events: explicitly, we require
P (∪∞

i=1Ei) =
∑∞

i=1 P (Ei).
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◦ Hence we see P (E1 ∪ E2) = P (A) + P (B) + P (C) = P (E1) + P (E2)− P (E1 ∩ E2), as claimed.

◦ For (3), apply the result of (2) with E1 = E and E2 = Ec: since E ∪ Ec = S and E ∩ Ec = ∅ the
statement of (1) reduces to 1 = P (S) = P (E) + P (Ec) − P (∅), and thus by (1) and [P2] we see that
P (Ec) = 1− P (E) as claimed.

• In the particular case where S = {s1, s2, . . . , sk} is a �nite sample space, we can describe what a probability
distribution is more explicitly:

◦ Explicitly, by properties [P2] and [P3], we see that P ({s1})+P ({s2})+· · ·+P ({sk}) = P ({s1, s2, . . . , sk}) =
P (S) = 1.

◦ Thus, by [P1] the numbers P ({s1}), ... , P ({sk}) are all between 0 and 1 inclusive, and have sum 1.

◦ If we make any selection for these values satisfying these conditions, then we may compute the probability
of an arbitrary event E = {t1, . . . , td} by using property [P3] again: P (E) = P ({t1}) + · · ·+ P ({td}).

◦ It is not hard to check that this assignment of P (E) for each subset E of S satis�es all three of [P1]-[P3].

◦ Therefore, a probability distribution on S = {s1, s2, . . . , sk} is simply an assignment of probabilities
between 0 and 1 inclusive to each of the individual outcomes in the sample space, such that the sum of
all the probabilities is 1.

• Example: Consider the sample space S = {H,T} corresponding to �ipping a coin.

◦ By our discussion above, a probability distribution on S is determined by assigning values to P (H) and
P (T ) such that 0 ≤ P (H), P (T ) ≤ 1 and P (H) + P (T ) = 1.

◦ One probability distribution arises from assuming that a head is equally likely to appear as a tail: then
we would have P (H) = P (T ) = 1/2.

◦ A di�erent probability distribution arises from assuming that a tail is twice as likely to appear as a head:
then we would have P (H) = 1/3 while P (T ) = 2/3.

◦ Another probability distribution, for an even more unfair coin, would have P (H) = 0.1 with P (T ) = 0.9:
this represents a coin that lands heads 10% of the time and tails the other 90% of the time.

◦ We even have a probability distribution for a coin that never comes up heads; namely, the one with
P (H) = 0 and P (T ) = 1.

• In the example above, we can see that the choice of probability distribution for this sample space a�ects our
interpretation of how fair the coin is.

◦ We view the probability of an event on a sliding scale from 0 to 1: a probability near 0 means that the
event happens rarely, while a probability near 1 means the event happens often.

◦ If the sample space is �nite, then an event with probability 0 never occurs, while an event with probability
1 always occurs.

◦ However, if the sample space is in�nite, there are situations where events of probability 0 can (perhaps
surprisingly) occur. One example of this is the experiment of choosing a real number uniformly at
random from the interval [0, 1]. The assumption that we choose �uniformly at random� means that every
real number has the same probability of being chosen, but since there are in�nitely many numbers in
the interval, the probability of choosing any particular one is equal to 0. Nonetheless, each time this
experiment is performed, there is some real number chosen as the outcome, even though that particular
outcome has probability 0 of occurring!

1.3.3 Computing Probabilities

• So far, our discussion of probability has been relatively abstract, since we have primarily spoken about
probability distributions.

◦ In order to compute probabilities of particular events, we must make assumptions about the corresponding
probability distributions, such as assuming that a coin is fair (i.e., that heads and tails are equally likely).
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◦ In the particular case where all of the outcomes s1, s2, . . . , sk in the sample space are equally likely, we

would have P (s1) = P (s2) = · · · = P (sk) =
1

k
.

◦ Then the probability of any event E is then simply #(E)/k, which only depends on the number of
outcomes in E. Thus, we may �nd P (E) simply by counting all of the outcomes in E; in particular,
when the sample space is small, we can simply list them all.

• Example: If a fair coin is �ipped 3 times, determine the respective probabilities of obtaining (i) no heads, (ii)
1 head, (iii) 2 heads, and (iv) 3 heads.

◦ The sample space has 23 = 8 outcomes: explicitly, S = {TTT, TTH, THT, THH,HTT,HTH,HHT,HHH}.
◦ Under the assumption that the coin is fair, each of the 8 outcomes is equally likely, so by our analysis
above, the probability of each of the 8 outcomes is 1/8.

◦ Now we simply count to determine each of the respective probabilities.

◦ There is only 1 outcome with no heads (namely, TTT ), so the probability of obtaining no heads is 1/8 .

◦ There are 3 outcomes (namely TTH, THT , and HTT ) with 1 head, so the probability of obtaining 1

head is 3/8 .

◦ There are 3 outcomes (namely THH, HTH, and HHT ) with 2 heads, so the probability of obtaining 2

heads is 3/8 .

◦ There is 1 outcome (namely, HHH) with 3 heads, so the probability of obtaining 3 heads is 1/8 .

• Example: If two fair 6-sided dice are rolled, determine the probabilities of the respective events (i) the two
dice read 6 and 3 in some order, (ii) the sum of the two rolls is equal to 4, (iii) both rolls are equal, (iv) neither
roll is a 2, and (v) at least one roll is a 2.

◦ In this case, the sample space consists of 62 = 36 outcomes representing the 36 ordered pairs (R1, R2)
where R1 is the outcome of the �rst die roll and R2 is the outcome of the second die roll.

◦ Under the assumption that both dice are fair, all 36 outcomes are equally likely, so the probability of
any one of these individual outcomes is 1/36.

◦ Now we simply count to determine each of the respective probabilities.

◦ For event (i), there are two possible outcomes, namely (3, 6) and (6, 3). Thus the probability of this

event is 2/36 = 1/18 .

◦ For event (ii), there are three possible outcomes, namely (1, 3), (2, 2), and (3, 1). Thus the probability

of this event is 3/36 = 1/12 .

◦ For event (iii), there are six possible outcomes, namely (1, 1), (2, 2), (3, 3), (4, 4), (5, 5), and (6, 6). Thus

the probability of this event is 6/36 = 1/6 .

◦ For event (iv), there are 25 possible outcomes, consisting of the 5 · 5 ordered pairs (a, b) where each of a

and b is one of the 5 numbers 1, 3, 4, 5, 6. Thus the probability of this event is 25/36 .

◦ For event (v), one way to compute the probability is simply to list all 11 possible outcomes, namely
(2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6), (1, 2), (3, 2), (4, 2), (5, 2), and (6, 2), to see that the probability of

this event is 11/36 .

◦ Another way to �nd the probability of event (v) is to observe that it is the complement of event (iv),

and thus its probability must be 1− 25/36 = 11/36 .

• When the sample space is large, it can be unreasonable to enumerate all the outcomes in particular events
explicitly. Nonetheless, by counting appropriately, we may still compute probabilities:

• Example: Three cards are randomly dealt from a standard 52-card deck. Determine the probabilities of the
respective events (i) all three cards are aces, (ii) all three cards are the same suit, (iii) one of the cards is the
3 of diamonds, and (iv) at least one card is a jack.
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◦ Let us choose the sample space S to be the set of possible triples (C1, C2, C3) of the three cards dealt in
order from the deck. By the multiplication principle, there are 52 ·51 ·50 such triples, so #S = 52 ·51 ·50.
◦ As with the previous examples, under the assumption that the cards are drawn randomly, each of the
outcomes in S is equally likely.

◦ For event (i), there are 4 choices for the �rst card (any of the 4 aces), 3 choices for the second card (any
of the 3 remaining aces), and 2 choices for the third card. Thus there are 4 · 3 · 2 outcomes that yield

this event, and so the probability that this event occurs is
4 · 3 · 2

52 · 51 · 50
=

1

5525
.

◦ For event (ii), there are 4 choices for the common suit. Once we have chosen the suit, there are 13
choices for the �rst card, 12 for the second, and 11 for the third, yielding a total number of 4 · 13 · 12 · 11

outcomes. Thus the desired probability is
4 · 13 · 12 · 11
52 · 51 · 50

=
22

425
≈ 0.0518.

◦ For event (iii), there are 3 choices for which card is the 3 of diamonds. Once this choice is made, there are
51 possibilities for the �rst remaining card (any card except the 3 of diamonds) and 50 possibilities for
the second remaining card (any card except the 3 of diamonds or the card just chosen), yielding a total

number of 3 · 51 · 50 outcomes. Thus the desired probability is
3 · 51 · 50
52 · 51 · 50

=
3

52
≈ 0.0577. Intuitively,

since we are choosing 3 cards out of 52, and the 3 of diamonds is equally likely to be any one of these
52 cards, it is natural to say that the probability that it is among the 3 cards we have chosen should be
3/52.

◦ For event (iv), we �rst �nd the probability that none of the cards is a jack. If none of the cards is a
jack, then there are 48 · 47 · 46 possible ways to choose the cards (the �rst card can be any card except

the 4 jacks, and so forth), and so the probability that none of the cards is a jack is
48 · 47 · 46
52 · 51 · 50

=
4324

5525
.

Then the probability that at least one card is a jack is the probability of the complementary event, and

is therefore equal to 1− 4324

5525
=

1201

5525
≈ 0.2174.

• Example: A fair coin is �ipped 15 times. Determine the probabilities of the respective events (i) exactly 7
heads are obtained, (ii) at most 2 tails are obtained, (iii) at least 3 tails are obtained, and (iv) the number of
heads is a multiple of 6.

◦ Here, the sample space is the set of 215 = 32768 possible strings of 15 heads or tails, where (as above)
each of the possible outcomes is equally likely.

◦ From our results on combinations, there are exactly
(
15
n

)
possible strings that have n heads and 15 − n

tails, and an equal number that have 15−n heads and n tails. We therefore only need to tally the various
possibilities in each case.

◦ For event (i), there are
(
15
7

)
=

15 · 14 · 13 · 12 · 11 · 10 · 9
7 · 6 · 5 · 4 · 3 · 2 · 1

= 6435 possible outcomes, and thus the proba-

bility of this event is
6435

32768
≈ 0.1964.

◦ For event (ii), a string with at most 2 tails can have 2 tails, 1 tail, or 0 tails, so there are
(
15
2

)
+
(
15
1

)
+
(
15
0

)
=

15 · 14
2

+ 15 + 1 = 121 possible outcomes. Thus the probability of this event is
121

32768
≈ 0.0037.

◦ For event (iii), observe that this event is the complement of event (ii), and therefore its probability is

1 − 121

32768
=

32647

32768
≈ 0.9963. This approach is simpler than the more direct method of observing

that this event occurs if there are 3, 4, 5, ... , or 15 tails, and so the total number of possibilities is(
15
3

)
+
(
15
4

)
+ · · ·+

(
15
15

)
= 32647.

◦ For event (iv), such a string can have 0 heads, 6 heads, or 12 heads, so there are
(
15
0

)
+

(
15
6

)
+

(
15
12

)
=

1 + 5005 + 455 = 5461 possible outcomes. Thus the probability of this event is
5461

32768
≈ 0.1667.
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• Example: A random �ve-card poker hand is dealt from a standard 52-card deck. Determine the probabilities
of the respective events (i) the hand is a straight �ush, (ii) the hand is a four-of-a-kind, (iii) the hand is a full
house (three cards of one rank and a pair in another), (iv) the hand is a �ush (all cards are the same suit)
that is not a straight �ush, (v) the hand is a straight (�ve cards in sequence) that is not a straight �ush, (vi)
the hand is a three-of-a-kind, (vii) the hand is two pair (two pairs of di�erent ranks), (viii) the hand is one
pair, and (ix) the hand is none of the above.

◦ First observe that there are
(
52
5

)
= 2598960 ways to deal a �ve-card hand, where the order of the cards

does not matter. In some cases, it is slightly easier to count hands where we do pay attention the
ordering, in which case there are 52 · 51 · 50 · 49 · 48 total hands instead.

◦ For (i), there are 4 possible suits for a straight �ush and 10 possible card sequences (A-2-3-4-5 through

10-J-Q-K-A) yielding a straight �ush. Thus, the probability of obtaining a straight �ush is
4 · 10

2598960
=

1

64974
≈ 0.0015%.

◦ For (ii), there are 13 possible ranks for the 4-of-a-kind and 48 possibilities for the remaining single card.

Thus, the probability of obtaining a 4-of-a-kind is
13 · 48
2598960

=
1

4165
≈ 0.0240%.

◦ For (iii), there are 13 possible ranks for the 3-of-a-kind and
(
4
3

)
= 4 ways to choose the corresponding

cards, and also 12 possible remaining ranks for the pair and
(
4
2

)
= 6 ways to choose those cards. Thus,

the probability of obtaining a full house is
13 · 4 · 12 · 6
2598960

=
6

4165
≈ 0.1981%.

◦ For (iv), there are 4 possible choices for the suit and then
(
13
5

)
= 1287 choices for the 5 cards in that

suit. Of these, 10 yield straight �ushes by the analysis in (i), so the remaining 1277 do not. Therefore,

the probability of obtaining a �ush that is not a straight �ush is
4 · 1277
2598960

=
1277

649740
≈ 0.1965%.

◦ For (v), there are 10 possible card sequences yielding a straight, and each of the 5 cards can be any of
the four suits, yielding a total of 10 · 45 = 10240 straights. Of these, 40 are straight �ushes, and the
remaining 10200 are not. Therefore, the probability of obtaining a straight that is not a straight �ush is

10200

2598960
=

5

1274
≈ 0.3925%.

◦ For (vi), we use ordered hands. There are
(
5
3

)
= 10 ways to choose the locations of the 3-of-a-kind cards,

and there are 13 possible ranks for the 3-of-a-kind with 4 · 3 · 2 = 24 ways to choose the corresponding
cards. Once these choices are made, there are 48 possibilities for the �rst remaining card and 44 for
the second remaining card (since it must be a di�erent rank). Therefore, the probability of obtaining a

three-of-a-kind is
10 · 13 · 24 · 48 · 44
52 · 51 · 50 · 49 · 48

=
88

4165
≈ 2.1128%.

◦ For (vii), there are
(
13
2

)
= 78 possible ranks for the two pairs and

(
4
2

)
·
(
4
2

)
= 36 ways to choose the cards

in each pair. Once these are chosen, there are 44 possibilities for the last card (since it must be a di�erent

rank than the pairs). Therefore, the probability of obtaining two pair is
78 · 36 · 44
2598960

=
198

4165
≈ 4.7539%.

◦ For (viii), we use ordered hands. There are
(
5
2

)
= 10 ways to choose the locations of the pair cards, 13

possible ranks for the pair, and 4 · 3 = 12 ways to choose the corresponding cards. Once these choices
are made, there are 48 · 44 · 40 possibilities for the remaining three cards (since they must all be di�erent

ranks). Therefore, the probability of obtaining one pair is
10 · 13 · 12 · 48 · 44 · 40
52 · 51 · 50 · 49 · 48

=
352

833
≈ 42.2569%.

◦ For (ix), since we have chosen possibilities above that are all mutually exclusive, the probability of
obtaining none of these events is simply 1 minus the sum of all of them, which ends up simplifying to

1277

2548
≈ 50.1177%.
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• Our general de�nition of probability distribution also allows us to analyze situations where the outcomes in
the sample space are not equally likely.

◦ However, this situation carries the added di�culty that we must now also assign a probability to each
individual outcome in the events we are studying.

◦ We will be able to do this more easily once we discuss conditional probabilities.

1.4 Conditional Probability and Independence

• We now discuss conditional probability, which provides us a way to compute the probability that one event
occurs, given that another event also occurred.

1.4.1 De�nition of Conditional Probability

• As a motivating example, we calculated earlier that if two fair 6-sided dice are rolled, then the probability
that neither roll is a 2 is equal to 25/36. Now suppose we are given the additional information that the �rst
die was a 5, and we ask again for the probability that neither roll was a 2.

◦ There are now only six possible outcomes of this experiment that are consistent with the given informa-
tion, namely, (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), and (5, 6).

◦ Since each of these outcomes was equally likely to occur originally, it is reasonable to say that they
should still be equally likely. Our desired event (of not obtaining a 2) occurs in 5 of the 6 cases, so the
probability of the event is 5/6.

◦ Notice that by providing additional information (namely, that the �rst roll was a 5), the probability that
neither roll was a 2 changes: this is the essential idea of conditional probability.

• In some cases, we can compute conditional probabilities using counting arguments like in our earlier examples.

• Example: Suppose that 100 students in a course have grades and academic standing as given in the table
below.

Category A B C Total

Sophomore 4 8 6 18
Junior 14 11 10 35
Senior 38 4 5 47

Total 56 23 21 100

Compute the probabilities that (i) a randomly-chosen student is getting an A, (ii) a randomly-chosen student
is a junior, (iii) a randomly-chosen junior is getting a A, and (iv) a randomly-chosen A student is a junior.

◦ For event (i), there are 56 A-students out of 100 total students, so the probability is 56/100 = 0.56.

◦ For event (ii), there are 35 juniors out of 100 total students, so the probability is 35/100 = 0.35.

◦ For event (iii), there are 14 A-student juniors out of 35 total juniors, so the probability is 14/35 = 0.4.

◦ For event (iv), there are 14 A-student juniors out of 56 total A-students, so the probability is 14/56 =

0.25.

◦ Event (iii) is an example of a conditional probability, namely, the probability that a student is getting
an A given that the student is a junior. In order to compute this conditional probability, notice that
we restrict our attention only to the set of juniors, and perform our computations as if this is our entire
sample space.

◦ Likewise, event (iv) is also a conditional probability, namely, the probability that a student is a junior,
given that the student is getting an A, and like with event (iii) we restrict our attention only to the set
of A-students and perform our computations as if this is our entire sample space.

◦ More abstractly, let S be the full sample space of all 100 students, and let J represent the event that a
student is a junior and let A represent the event that a student receives an A.
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◦ If we write P (A|J) for the probability that a student is receiving an A given that they are a junior, which
is event (iii), then as we calculated above, P (A|J) is equal to the ratio of juniors receiving an A to the

total number of juniors, or, symbolically, P (A|J) = #(J ∩A)
#(J)

.

◦ Now observe that P (A|J) = #(J ∩A)
#(J)

=
#(J ∩A)/#(S)

#(J)/#(S)
=
P (J ∩A)
P (J)

, which gives us a way to write

P (A|J) in terms of probabilities of events in the sample space (speci�cally, the events J ∩A and J).

• The analysis in the example above motivates a way to de�ne conditional probabilities in general:

• De�nition: If A and B are events and P (B) > 0, we de�ne the conditional probability P (A|B) that A occurs

given that B occurred by P (A|B) =
P (A ∩B)

P (B)
.

◦ Remark: If P (B) = 0, then the conditional probability P (A|B) cannot be computed using this de�nition.
If the sample space is �nite, then the conditional probability P (A|B) does not make sense if P (B) = 0,
because the event B can never occur.

• Example: Suppose two fair 6-sided dice are rolled. If A is the event �neither roll is a 2� and B is the event
�the �rst roll is a 5�, �nd P (A|B) and P (B|A) and describe what these two probabilities mean.

◦ By de�nition, P (A|B) is the probability that A occurs given that B occurred, so in this case it is the
probability that neither roll is a 2, given that the �rst roll is a 5.

◦ Inversely, P (B|A) is the probability that B occurs given that A occurred, so in this case it is the
probability that the �rst roll is a 5 given that neither roll is a 2.

◦ According to the de�nition, we have P (A|B) =
P (A ∩B)

P (B)
and P (B|A) =

P (A ∩B)

P (A)
, so we need only

calculate P (A), P (B), and P (A ∩B).

◦ As we have already calculated by enumerating all of the possible outcomes, P (A) = 25/36 (there are 5 ·5
possible outcomes where neither roll is a 2), P (B) = 1/6 (there are 6 outcomes where the �rst roll is a
5), and P (A ∩B) = 5/36 (there are 5 outcomes where the �rst roll is a 5 and neither roll is a 2).

◦ Hence the formulas give P (A|B) =
5/36

1/6
=

5

6
, which agrees with the calculation we made earlier, and

also P (B|A) = 5/36

25/36
=

1

5
.

• Example: Suppose four fair coins are �ipped. Determine the probabilities of the respective events (i) there
are exactly two heads, given that the �rst �ip is a tail, (ii) the �rst �ip is a tail, given that there are exactly
two heads, and (iii) all four �ips are tails, given that there is at least one tail.

◦ For event (i), if we let A be the event that there are exactly two heads and B be the event that the �rst

�ip is a tail, then we wish to �nd P (A|B) =
P (A ∩B)

P (B)
.

◦ We can see that A ∩ B is the event that the �rst �ip is a tail and there are exactly two heads, which

occurs in three ways: {THHT, THTH, TTHH}, so P (A ∩B) =
3

16
.

◦ Furthermore, we can see that there are 8 ways in which the �rst �ip is a tail (since the remaining 3 �ips

can be either heads or tails) so P (B) =
1

2
.

◦ Thus, we see P (A|B) =
P (A ∩B)

P (B)
=

3/16

1/2
=

3

8
.

◦ For event (ii), using the same events as above, we now wish to �nd P (B|A) = P (A ∩B)

P (A)
.

◦ We can see that there are
(
4
2

)
= 6 ways in which we can obtain exactly two heads, so P (A) =

6

16
=

3

8
.
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◦ Thus, since P (A ∩B) =
3

16
as computed above, we have P (B|A) = P (A ∩B)

P (A)
=

3/16

3/8
=

1

2
.

◦ For event (iii), if we let C be the event that all four �ips are tails and D be the event that there is at

least one tail, then we wish to �nd P (C|D) =
P (C ∩D)

P (D)
.

◦ It is easy to see that C ∩D is simply the event C (since if all four �ips are tails, then there is certainly

at least one tail), so P (C ∩D) = P (C) =
1

16
.

◦ Also, D will occur in every outcome except the one where all four �ips are heads (which occurs with

probability 1/16), so P (D) = 1− 1

16
=

15

16
.

◦ Thus, P (C|D) =
P (C ∩D)

P (D)
=

1/16

15/16
=

1

15
.

1.4.2 Independence

• It is natural to say that two events are independent of one another if the knowledge that one occurs does
not give any additional information about whether the other occurs. We can easily phrase this in terms of
conditional probability:

• De�nition: We say that two events A and B are independent if P (A|B) = P (A), or equivalently, if P (B|A) =
P (B). Two events that are not independent are said to be dependent.

◦ From the de�nition of the conditional probability we know that P (A|B) =
P (A ∩B)

P (B)
, so if we rearrange

the de�nition above, we obtain an equivalent de�nition of independence, namely, that A and B are
independent if P (A ∩B) = P (A) · P (B).

◦ This observation also allows us to see that the two statements of independence are equivalent to each
other.

• Example: Suppose 2 fair 6-sided dice are rolled. Let A be the event �the �rst roll is a 3�, let B be the event
�the second roll is a 6�, and let C be the event �the sum of the two rolls is 6�. Determine whether each of the
pairs of events is independent.

◦ Of the 36 possible outcomes of rolling the two dice, 6 have the �rst roll equal to 3, 6 have the second roll
equal to 6, and 5 have the sum of the two rolls equal to 6. Thus, P (A) = P (B) = 1/6 and P (C) = 5/36.

◦ First, A ∩ B is the event that the �rst roll is a 3 and the second roll is a 6, which can happen in only
1 way, so P (A ∩ B) = 1/36. Since P (A ∩ B) = 1/36 = (1/6) · (1/6) = P (A) · P (B), we see that

A and B are independent .

◦ Second, A ∩ C is the event that the �rst roll is a 3 and the sum of the two rolls is 6, which can happen
in only 1 way (namely, both rolls are 3s), so P (A ∩ C) = 1/36. Since P (A) · P (C) = 5/216 6= 1/36, the

events A and C are not independent .

◦ Third, B∩C is the event that the �rst roll is a 6 and the sum of the two rolls is 6, which can never occur
(since the second die roll cannot be 0), so P (B ∩ C) = 0. Since P (B) · P (C) = 5/216 6= 0, the events

B and C are not independent .

◦ Intuitively, we should expect that A and B are independent because the two rolls of the die do not a�ect
one another. On the other hand, C is not independent from A and B because knowing that one roll is
a 3 means it is possible for the sum of the dice to be 6, while knowing that one roll is a 6 means that a
sum of 6 is impossible.

• Example: A single card is randomly dealt from a standard 52-card deck. Let A be the event �the card is a
spade�, let B be the event �the card is an ace�, and let C be the event �the card is an ace, 2, 3, or 4�. Determine
whether each of the pairs of events is independent.
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◦ Since there are 13 spades, 4 aces, and 16 cards total that are a 2, 3, 4, or 5, we see P (A) = 1/4,
P (B) = 1/13, and P (C) = 4/13.

◦ First, A∩B is the event that the card is the ace of spades, so P (A∩B) = 1/52 = P (A) ·P (B), meaning

that A and B are independent .

◦ Second, A ∩ C is the event that the card is a spade and also an ace, 2, 3, or 4, so it must be the ace, 2,

3, or 4 of spades. Thus P (A ∩ C) = 1/13 = P (A) · P (C), meaning that A and C are independent .

◦ Third, B∩C is the event that the card is an ace and also an ace, 2, 3, or 4, which is the same as saying it

is an ace. Thus P (B∩C) = 1/13 6= 4/169 = P (B) ·P (C), meaning that B and C are not independent .

◦ Remark: This example shows that independence is not transitive: A and B are independent, as are A
and C, yet B and C are not independent.

• If A and B are independent events, then knowing that A occurs does not a�ect the probability that B occurs.
Under this interpretation, it is reasonable to say that Ac and B are also independent events:

• Proposition (Independence of Complements): If A and B are independent events, then so are Ac and B.

◦ Proof: First observe that P (B) = P (A∩B)+P (Ac∩B), since the events A∩B and Ac∩B are mutually
disjoint and have union B.

◦ Then if A and B are independent, we have P (A ∩ B) = P (A)P (B), so we may rearrange the equation
above to see that P (Ac ∩B) = P (B)− P (A)P (B) = [1− P (A)] · P (B) = P (Ac) · P (B).

◦ Hence Ac and B are also independent, as claimed.

• We may also de�ne independence of more than two events at once:

• De�nition: We say that the events E1, E2, . . . , En are collectively independent if P (F1 ∩ F2 ∩ · · · ∩ Fk) =
P (F1) · P (F2) · · · · · P (Fn) for any subset F1, F2, . . . , Fk of E1, E2, . . . , En.

◦ By rearranging this de�nition, one can see that it is equivalent to saying that knowledge of whether some
of the events have occurred does not a�ect the probability of any of the others.

◦ Example: A fair coin is �ipped 3 times. If E1 is the event that the �rst �ip is heads, E2 is the event that the

second �ip is heads, and E3 is the event that the third �ip is heads, then P (E1) = P (E2) = P (E3) =
1

2
,

while P (E1∩E2) =
1

4
= P (E1)P (E2), P (E1∩E3) =

1

4
= P (E1)P (E3), P (E2∩E3) =

1

4
= P (E2)P (E3),

and P (E1 ∩ E2 ∩ E3) =
1

8
= P (E1)P (E2)P (E3). Thus, these three events are collectively independent.

• If any pair of the events is not independent, then the entire collection of events cannot be collectively indepen-
dent. On the other hand, it is possible for all of the pairs to be individually independent, but for the entire
set not to be independent:

• Example: A fair coin is �ipped 3 times. If E12 is the event that �ips 1 and 2 are the same, E13 is the event
that �ips 1 and 3 are the same, and E23 is the event that �ips 2 and 3 are the same, show that each pair of
these events is independent, but the three events together are not collectively independent.

◦ Observe that E12 occurs in 4 of the 8 possible �ip sequences (TTT , TTH, HHT , HHH), as does E13

(TTT , THT , HTH, HHH) and E23 (TTT , HTT , THH, HHH), so P (E12) = P (E13) = P (E23) =
1

2
.

◦ Also, E12 ∩E13 is the event where all 3 �ips are the same, as is E12 ∩E23 and E13 ∩E23, so each of these

events has probability
1

4
. Thus P (E12 ∩ E13) =

1

4
=

1

2
· 1
2
= P (E12) · P (E13) so these two events are

independent, and similarly for the other two pairs.

◦ On the other hand, E12∩E13∩E23 is also the event where all 3 �ips are the same, so P (E12∩E13∩E23) =
1

4
6= 1

8
=

1

2
· 1
2
· 1
2
= P (E12) · P (E13) · P (E23).

• Collective independence allows us to calculate probabilities for sequences of independent events:
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• Example: A baseball player's batting average is 0.378, meaning that she has a probability of 0.378 of getting
a hit on any given at-bat, independently of any other at-bat. If she bats 4 times during a game, compute the
probabilities that she gets (i) four hits during the game, (ii) a hit in her �rst two at-bats but no other hits,
(iii) exactly two hits during the game, and (iv) at least one hit during the game.

◦ For each of the four at-bats, the player has an independent probability 0.378 of getting a hit. Let Ei be
the event of getting a hit on the ith at-bat: then P (Ei) = 0.378 and P (Ec

i ) = 1− 0.378 = 0.622.

◦ Event (i) is E1 ∩ E2 ∩ E3 ∩ E4. Since the four at-bats are independent, the probability of getting a hit

during all four at-bats is therefore P (E1∩E2∩E3∩E4) = P (E1)·P (E2)·P (E3)·P (E4) = 0.3784 ≈ 2.04%.

◦ Event (ii) is E1 ∩ E2 ∩ Ec
3 ∩ Ec

4. Since the four at-bats are independent (and independent events also
have independent complements), the probability of this event is therefore P (E1 ∩ E2 ∩ Ec

3 ∩ Ec
4) =

P (E1) · P (E2) · P (Ec
3) · P (Ec

4) = 0.3782 · 0.6222 ≈ 5.53%.

◦ Event (iii) is the union of
(
4
2

)
= 6 possible events (one of which is event (ii)), each of which has 2 hits

and 2 non-hits in the 4 at-bats. By independence and the calculation for event (ii), each of these events
has probability 0.3782 · 0.6222 and they are all mutually exclusive. Thus, the probability of their union

is simply the sum of their individual probabilities, which is 6 · 0.3782 · 0.6222 ≈ 33.17%.

◦ Event (iv) is the complement of the event of not getting any hits in the game, which is Ec
1∩Ec

2∩Ec
3∩Ec

4.
By independence, we have P (Ec

1 ∩Ec
2 ∩Ec

3 ∩Ec
4) = P (Ec

1) ·P (Ec
2) ·P (Ec

3) ·P (Ec
4) = 0.6224, and therefore

the probability of getting at least one hit in the game is 1− 0.6224 ≈ 85.03%.

1.4.3 Computing Probabilities, Bayes' Formula

• By rearranging the de�nition of conditional probability, we obtain a useful formula for the probability of an
intersection of two events, namely, P (A ∩B) = P (B|A) · P (A).

◦ Intuitively, one may interpret this formula as saying that if we wish to �nd the probability that both
A and B occur, then �rst we compute the probability that A occurs, and then we multiply this by the
probability that B also occurs (given that A occurred).

◦ In many situations, it is much easier to compute the probabilities P (A) and P (B|A) separately by viewing
the events of �choosing A� and then �choosing B given A� as being choices made in a sequence.

◦ We also remark that this formula is the probabilistic version of the �multiplication formula� from our
discussion of counting principles, and we can invoke it in much the same manner.

• Example: Suppose an urn contains 7 red balls and 11 purple balls. If two balls are randomly drawn from the
urn without replacement5, determine the probabilities of the respective events (i) the �rst ball is red, (ii) the
second ball is red given that the �rst ball is red, (iii) both balls are red, and (iv) the �rst ball is purple and
the second ball is red.

◦ Let R1 be the event that the �rst ball is red, R2 be the event that the second ball is red, and P1 be the
event that the �rst ball is purple.

◦ For event (i), we want to compute P (R1). If we use the sample space consisting only of the �rst ball
drawn from the urn, then each of the 18 outcomes is equally likely, and 7 of them yield a red ball drawn,

so we have P (R1) =
7

18
≈ 0.3889.

◦ For event (ii), we want to compute P (R2|R1). If we draw the �rst red ball and then ignore it, drawing
the second ball is the same as drawing one ball from an urn containing 6 red balls and 11 purple balls.

By the same logic as above, the probability that a red ball is drawn now is P (R2|R1) =
6

17
≈ 0.3529.

◦ For event (iii), we want to compute P (R1 ∩ R2). By using the intersection formula, this is equal to

P (R2|R1) · P (R1) =
7

18
· 6
17

=
7

51
≈ 0.1373.

5�Without replacement� means that when a ball is drawn, it is not placed back into the urn. The opposite is �with replacement�,
where each ball is placed back into the urn after it is drawn.
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◦ For event (iv), we want to compute P (P1 ∩R2) = P (R2|P1) · P (P1).

◦ By the same logic as for events (i) and (ii), we see that P (P1) =
11

18
since when we draw the �rst ball,

there are 11 purple balls out of 18 total, and also P (R2|P1) =
7

17
since when we draw the second ball

under the assumption that the �rst one was purple, there are 7 red balls out of 17 total.

◦ Therefore we see that P (P1 ∩R2) = P (R2|P1) · P (P1) =
7

17
· 11
18

=
77

306
≈ 0.2516.

• We may also iteratively apply the result above to obtain formulas for intersections of more than two events.

◦ For example, for three events A,B,C, we have P (A ∩B ∩C) = P (C|A ∩B) · P (A ∩B) = P (C|A ∩B) ·
P (B|A) · P (A).
◦ If we view these probabilities as a sequence of choices, then this formula tells us that we can compute
the probability of A ∩ B ∩ C by �choosing A�, then �choosing B given A�, then �choosing C given both
A and B�.

◦ The same idea extends to intersections of four or more events: the probability of the intersection can be
found by computing the probabilities the events one at a time (each conditional on all of the previous
events listed), and then multiply all of the results.

◦ The advantage to this approach is that it allows us to break complicated events down into simpler ones
whose probabilities can often be computed quickly by working with a small sample space (like in the
example above with the urns where we only considered a single ball being drawn from the urn).

• By combining these ideas with our results on counting, we can solve a wide array of probability problems.

• Example (Monty Hall Problem): On a game show, a contestant chooses one of three doors: behind one door
is a car and behind the other two are goats. The host opens one of the two unchosen doors to reveal a goat,
and then o�ers the contestant the option of switching their choice from their original door to the remaining
unopened door in the hopes of winning the car6. Should the contestant accept the o�er to switch doors?

◦ We want to compute the probability that the car is behind the contestant's door. Suppose we label the
contestant's door number 1, the door opened by the host number 2, and the remaining door number 3.

◦ Let P1, P2, P3 be the events in which the prize is behind door 1, 2, or 3 respectively, and H2 and H3 be
the events in which the host opens door 2 and door 3 respectively. We wish to compute the conditional

probability P (P1|H2) =
P (P1 ∩H2)

P (H2)
.

◦ We know that P (P1) = P (P2) = P (P3) = 1/3 since the car is equally likely to be behind any of the
doors at the start of the game, and also P (H2) = P (H3) = 1/2 since by symmetry the host is equally
likely to open door 2 or door 3.

◦ So we need only compute P (P1 ∩H2) = P (H2|P1) ·P (P1). But P (H2|P1) = P (H3|P1) = 1/2 since if the
prize is behind door 1, the host is equally likely to open door 2 or door 3.

◦ Therefore, we get P (P1 ∩H2) =
1

2
· 1
3
=

1

6
, and then P (P1|H2) =

P (P1 ∩H2)

P (H2)
=

1/6

1/2
=

1

3
.

◦ This means that there is a 1/3 probability that the prize is behind door 1 (the door chosen by the
contestant), and thus there is a 2/3 probability that the prize is behind door 3 (the remaining unchosen
door), so it is better to switch doors.

◦ Remark: This is a famous probability puzzle originally popularized in this form by vos Savant in 1990.
Although she gave the correct answer to the puzzle, she evidently received many thousands of letters
from readers who disagreed with the answer! (It is a very common mistake to argue that because there
are now only 2 doors remaining to choose between, the probability that the prize is behind each of them
must be 1/2. As we have seen, this is not correct!)

6For this particular scenario, we also assume that the car is randomly hidden behind one of the doors, that the host knows what is
behind each door, that the host always opens a door that the contestant has not chosen that reveals a goat (randomly selecting between
the two if the contestant has chosen the car), and that the host always o�ers the contestant the option to switch doors.
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• Example (Two-Children Problem): Suppose that children are equally likely to be male or female7 and that
their sexes are independent. Mr. Jones has two children, and the older child is a girl: what is the probability
that both children are girls? Mr. Smith has two children, and at least one of them is a boy: what is the
probability that both children are boys?

◦ Let BB, BG, GB, and GG be the four possible outcomes for the two children (with the younger sibling
listed �rst): then we have P (BB) = P (BG) = P (GB) = P (GG) = 1/4.

◦ If G2 is the event that the older child is a girl, then P (G2) = 1/2, and so the probability that the Jones

family has two girls is P (GG|G2) = P (GG ∩G2)
P (G2)

=
1/4

1/2
= 1/2.

◦ If B is the event of having at least one boy, then P (B) = 3/4, and so the probability that the Smith

family has two boys is P (BB|B) =
P (BB ∩B)

P (B)
=
P (BB)

P (B)
=

1/4

3/4
= 1/3, not 1/2.

◦ We can reason this out more intuitively by noting that for the Jones family the probability that both
children are girls is the same as the probability that the younger child is a girl, which is 1/2. On the
other hand, for the Smith family, there are three scenarios in which the Smith family has at least one
boy, but in only one of these do they have two boys, so the probability should be 1/3.

◦ Remark: This example illustrates that the value of a probability can change substantially with small
alterations to the given information. It is natural to assume that these two probabilities should be the
same, since the additional information of specifying which of the children is a boy or a girl seems like it
should not make a di�erence, but it does!

• Example (Birthday Problem): Assuming that birthdays are randomly distributed among the 365 days in a
non-leap year, and ignoring February 29th, what is the probability pn that in a group of n people, some pair
have the same birthday? Also determine the smallest number of people for which there is at least a 50%
chance of having two people with the same birthday.

◦ We compute the probability of the complementary event by choosing the birthdays for the members of
the group one at a time and ensuring that no two have the same birthday.

◦ The �rst person may have any birthday. The second person may have any birthday except the �rst
person's birthday, and the probability that this occurs is 364/365.

◦ The third person may have any birthday except that of the �rst and second person, and the probability
that this occurs is 363/365.

◦ We continue in this way, observing that the kth person may have any of 366− k possible birthdays, and
that the probability of this event (conditioned on the previous ones) is (366− k)/365.
◦ Then by our formula for the probability of the intersection of events, the desired probability that there

is a pair of people with the same birthday is pn = 1− 365

365
· 364
365
· 363
365
· · · · · 366− n

365
.

◦ Here is a table of values of this probability for various n:
n 5 10 15 20 22 23 25 30 40 50
pn 2.7% 11.7% 25.3% 41.1% 47.6% 50.7% 56.9% 70.6% 89.1% 97.0%

◦ From the table we can see that the minimal n such that there is a greater-than-50% chance of having at
least one pair of people with the same birthday is n = 23 .

◦ Remark: The fact that the number of people required for a decent probability of having 2 with the same
birthday is only 23 is generally found to be surprising, as many people typically guess that a much larger
number (e.g., around half of 365) would be needed to have a high probability of getting a match.

◦ One way to estimate the correct answer is to observe that the desired event is the union of the events
that one of the pairs of people in the group has the same birthday. The probability that any given pair
has the same birthday is 1/365, and although these events are not disjoint, they are moderately close.
With k people, an estimate for the probability of getting at least one match is then

(
k
2

)
/365, and setting

this equal to 50% leads to an estimate k ≈
√
365 ≈ 19.1, not too far away from the actual answer of 23.

7This is not actually the case for humans; at birth the ratio is approximately 1.03-1.06 males per female, with somewhere between
0.02%-1.7% of live births being intersex, depending on the criterion used. The sexes of siblings are also not completely independent.
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• Example: Suppose A and B are events such that P (A) = 0.6, P (B|A) = 0.7, and P (B|Ac) = 0.2. Find (i)
P (A ∩B), (ii) P (A ∩Bc), (iii) P (Ac ∩B), (iv) P (B), (v) P (A|B), (vi) P (A ∪B), and (vii) P (Ac ∪Bc).

◦ In computing probabilities of this form, it is useful to label the results on a Venn diagram like this one:

◦ For (i), we know that P (A ∩B) = P (B|A) · P (A) = 0.7 · 0.6 = 0.42 .

◦ For (ii), we know that P (A) = 0.6 and from above we also have P (A∩B) = 0.42, so per a Venn diagram

we see that P (A ∩Bc) = 0.6− 0.42 = 0.18 .

◦ For (iii), we may write P (Ac ∩B) = P (B|Ac) · P (Ac) = 0.2 · (1− 0.6) = 0.08 .

◦ For (iv), we know that P (A ∩B) = 0.42 and from above we also have P (Ac ∩B) = 0.08, so per a Venn

diagram we see that P (B) = P (A ∩B) + P (Ac ∩B) = 0.42 + 0.08 = 0.5 .

◦ For (v), we have P (A|B) =
P (A ∩B)

P (B)
=

0.42

0.5
= 0.84 using the results we found above.

◦ For (vi), we have P (A ∪B) = P (A) + P (B)− P (A ∩B) = 0.6 + 0.5− 0.42 = 0.68 .

◦ For (vii), by a Venn diagram we have P (Ac ∪Bc) = 1− P (A ∩B) = 0.58 .

• Example: A medical test for a rare disease will detect the disease in 99% of test samples from patients who
have the disease, but it also has a false positive rate of 0.5%, meaning that it also detects the disease in 0.5%
of test samples from patients who do not have the disease. If 0.1% of the population actually has the disease,
what is the probability that a randomly chosen patient who tests positive actually has the disease?

◦ Let D be the event that a person has the disease and + be the event that they test positive for the

disease: we wish to compute the conditional probability P (D|+) =
P (D ∩+)

P (+)
.

◦ We are given that P (D) = 0.1% = 0.001 and thus P (Dc) = 0.999, and also that P (+|D) = 99% = 0.99
and P (+|Dc) = 0.5% = 0.005.

◦ Therefore, we have P (D ∩+) = P (+|D) · P (D) = 0.99 · 0.001 = 0.00099.

◦ We also have P (+) = P (+∩D) +P (+∩Dc), and we can compute the latter as P (+∩Dc) = P (+|Dc) ·
P (Dc) = 0.005 · 0.999 = 0.004995.

◦ Therefore, P (+) = P (+ ∩D) + P (+ ∩Dc) = 0.005985.

◦ Hence the desired conditional probability is
0.00099

0.005985
≈ 16.54% .

◦ We thus obtain the (perhaps surprising!) result that a patient who tests positive for the disease only
has about a 1-in-6 chance of actually having the disease, despite the fact that the test yields the correct
result 99% of the time for positive patients and 99.5% of the time for negative patients.

◦ Ultimately, the reason for this disparity is that a typical person is very unlikely to have the disease,
and thus there are far more false positives than actual cases of the disease. Thus, even if a person tests
positive once, it is still not especially likely that they have the disease, unless there is some reason to
think that the person was not a random member of the population.

• In the last two examples above, we ended up computing a conditional probability using the values of the
conditional probabilities �in the other order�: in the �rst example we used P (B|A) and P (B|Ac) to �nd
P (A|B), while in the second example we used P (+|D) and P (+|Dc) to �nd P (D|+). We can in fact write
down a general formula for this calculation:
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• Theorem (Bayes' Formula): If A and B are any events, then P (B|A) = P (A|B) · P (B)

P (A|B) · P (B) + P (A|Bc) · P (Bc)
.

More generally, if events B1, B2, . . . , Bk are mutually exclusive and have union the entire sample space, then

P (Bi|A) =
P (A|Bi) · P (Bi)

P (A|B1) · P (B1) + · · ·+ P (A|Bk) · P (Bk)
.

◦ Proof: By de�nition, P (B|A) = P (A ∩B)/P (A), and we also have P (A ∩B) = P (A|B) · P (B).

◦ We also have P (A) = P (A∩B)+P (A∩Bc) since these events are mutually exclusive and have union A.

◦ Then P (A ∩ B) = P (A|B) · P (B) and P (A ∩ Bc) = P (A|Bc) · P (Bc) from the de�nition of conditional
probability; plugging all of these values in yields the formula immediately.

◦ The second formula follows in the same way by writing P (A) = P (A∩B1)+P (A∩B2)+ · · ·+P (A∩Bk).

• Example: Alex has two urns, one labeled H which has 5 black and 4 red balls, and one labeled T which has 4
black and 11 red balls. Alex �ips an unfair coin that has a 2/3 probability of landing heads, and then draws
one ball at random from the correspondingly-labeled urn (H for heads, T for tails). If Alex draws a red ball,
what is the probability that the coin �ip was tails?

◦ Let R, H, and T denote the events of drawing a red ball, �ipping heads, and �ipping tails.

◦ We want P (H|R), which we may get via Bayes' formula: P (H|R) = P (R|H) · P (H)

P (R|H) · P (H) + P (R|T ) · P (T )
◦ We have P (H) = 2/3, P (T ) = 1/3, and also P (R|H) = 4/9 and P (R|T ) = 11/15.

◦ Therefore, P (H|R) = P (R|H) · P (H)

P (R|H) · P (H) + P (R|T ) · P (T )
=

4/9 · 2/3
4/9 · 2/3 + 11/15 · 1/3

=
40

73
≈ 54.8%.

• Example (Prosecutor's Fallacy): A DNA sample from a minor crime is compared to a state forensic database
containing 100,000 records and a single suspect is identi�ed on this basis alone, with no other evidence
suggesting guilt or innocence. From analysis of human genetic variation, it is determined that the probability
that a randomly-selected innocent person would match the DNA sample is 1 in 10000. At the trial, the
prosecutor states that the probability that the suspect is innocent is only 1 in 10000, and observes that this
�gure means that it is overwhelmingly likely the suspect is guilty. Critique this statement.

◦ Suppose M is the event that there is a DNA match, and I is the event that the suspect is innocent.

◦ The conditional probability P (I|M) is the probability that the suspect is innocent given that there is a
DNA match, which is what the prosecutor is claiming is equal to 1/10000.

◦ However, the 1-in-10000 �gure is actually the probability that there is a match given that the suspect is
innocent: this is the conditional probability P (M |I), which as is quite di�erent from P (I|M)!

◦ In this case we may use Bayes' formula to write P (I|M) =
P (M |I) · P (I)

P (M |I) · P (I) + P (M |Ic) · P (Ic)
.

◦ A priori, there is no reason to believe that the given suspect is any more likely to be guilty than any
other person in the database, so we will take P (Ic) = 1/100000 = 0.00001 and then P (I) = 0.99999.

◦ We also take P (M |I) = 1/10000 = 0.0001 as indicated, and P (M |Ic) = 1 since (we presume) the DNA
analysis will always identify a guilty suspect.

◦ Then we obtain P (I|M) =
0.0001 · 0.99999

0.0001 · 0.99999 + 1 · 0.00001
≈ 90.9%.

◦ Our calculation shows there is a 90.9% chance that the suspect is innocent, given the existence of a
positive match and no other evidence: quite a far cry from the prosecutor's claim of 99.999% guilt!

◦ Remark: The confusion of the probability of innocence given a positive match with the probability
of a positive match given innocence is called the �prosecutor's fallacy�, and (as shown with this dra-
matic example) it is a very serious error. In this particular example, one would expect approximately
100000/10000 = 10 DNA matches to come from the database, and given the lack of evidence to say
otherwise, it is no more likely that the given suspect is guilty than any of these 10 people.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2018-2021. You may not reproduce or distribute this
material without my express permission.
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