- **6.2.1.** State the decision rule that would be used to test the following hypotheses. Evaluate the appropriate test statistic and state your conclusion.
- (a) H_0 : $\mu = 120$ versus H_1 : $\mu < 120$; $\overline{y} = 114.2$, n = 25, $\sigma = 18$, $\alpha = 0.08$
- **(b)** H_0 : $\mu = 42.9$ versus H_1 : $\mu \neq 42.9$; $\overline{y} = 45.1$, n = 16, $\sigma = 3.2$, $\alpha = 0.01$
- (c) H_0 : $\mu = 14.2$ versus H_1 : $\mu > 14.2$; $\overline{y} = 15.8$, n = 9, $\sigma = 4.1$, $\alpha = 0.13$

- **6.2.3.** (a) Suppose H_0 : $\mu = \mu_0$ is rejected in favor of H_1 : $\mu \neq \mu_0$ at the $\alpha = 0.05$ level of significance. Would H_0 necessarily be rejected at the $\alpha = 0.01$ level of significance?
- **(b)** Suppose H_0 : $\mu = \mu_0$ is rejected in favor of H_1 : $\mu \neq \mu_0$ at the $\alpha = 0.01$ level of significance. Would H_0 necessarily be rejected at the $\alpha = 0.05$ level of significance?

6.3.4. Suppose H_0 : p = 0.45 is to be tested against H_1 : p > 0.45 at the $\alpha = 0.14$ level of significance, where p = P(ith trial ends in success). If the sample size is two hundred, what is the smallest number of successes that will cause H_0 to be rejected?

6.4.5. If H_0 : $\mu = 240$ is tested against H_1 : $\mu < 240$ at the $\alpha = 0.01$ level of significance with a random sample of twenty-five normally distributed observations, what proportion of the time will the procedure fail to recognize that μ has dropped to two hundred twenty? Assume that $\sigma = 50$.

6.4.7. If H_0 : $\mu = 200$ is to be tested against H_1 : $\mu < 200$ at the $\alpha = 0.10$ level of significance based on a random sample of size n from a normal distribution where $\sigma = 15.0$, what is the smallest value for n that will make the power equal to at least 0.75 when $\mu = 197$?