2.2.18. Find $A \cap B \cap C$ if $A = \{x: 0 \le x \le 4\}$, $B = \{x: 2 \le x \le 6\}$, and $C = \{x: x = 0, 1, 2, ...\}$.

- **2.2.26.** Suppose that three events -A, B, and C—are defined on a sample space S. Use the union, intersection, and complement operations to represent each of the following events:
- (a) none of the three events occurs
- (b) all three of the events occur
- (c) only event A occurs
- (d) exactly one event occurs
- (e) exactly two events occur

2.2.34. Let A, B, and C be any three events. Use Venn diagrams to show that

(a)
$$A \cup (B \cup C) = (A \cup B) \cup C$$

(b)
$$A \cap (B \cap C) = (A \cap B) \cap C$$

2.3.2. Let *A* and *B* be any two events defined on *S*. Suppose that P(A) = 0.4, P(B) = 0.5, and $P(A \cap B) = 0.1$. What is the probability that *A* or *B* but not both occur?

2.4.2. Find $P(A \cap B)$ if P(A) = 0.2, P(B) = 0.4, and P(A|B) + P(B|A) = 0.75.