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The χ2 Tests for Goodness of Fit and Independence

The χ2 Test for Goodness of Fit

The χ2 Test for Independence

This material represents §5.2.3-5.2.4 from the course notes, and
problems 18-20 from WeBWorK 7.



Formerly Erstwhile Previously Earlier, I

Recall the χ2 distribution:

Definition

The χ2 distribution with k degrees of freedom is the continuous
random variable Qk whose probability density function

pQk
(x) =

1

2k/2Γ(k/2)
· x (k/2)−1e−x/2 for all real numbers x > 0.

It is obtained by summing squares of independent standard
normals:

Proposition (χ2 Distribution From Normals)

If X1, . . . ,Xn are independent standard normal random variables
(i.e., with mean 0 and standard deviation 1), then the random
variable Qn = X 2

1 + · · ·+ X 2
n has a χ2 distribution with n degrees

of freedom.



Formerly Erstwhile Previously Earlier, II

Here is its main property as a sampling distribution:

Theorem (χ2 Distribution As Sampling Distribution)

Suppose n ≥ 2 and that X1,X2, . . . ,Xn are independent, identically
normally distributed random variables with mean µ and standard

deviation σ. If X =
1

n
(X1 + · · ·+ Xn) denotes the sample mean

and S2 =
1

n − 1

[
(X1 − X )2 + (X2 − X )2 + · · ·+ (Xn − X )2

]
denotes the sample variance, then the distribution of the test

statistic
(n − 1)S2

σ2
is the χ2 distribution Qn−1 with n − 1 degrees

of freedom.



Formerly Erstwhile Previously Earlier, III

The following theorem of Pearson gives a χ2 test statistic for the
scenario where values are drawn from a discrete random variable:

Theorem (χ2 Goodness of Fit)

Suppose that a discrete random variable E has outcomes
e1, e2, . . . , ek with respective probabilities p1, p2, . . . , pk . If we
sample this random variable n times, obtaining the respective
outcomes e1, e2, . . . , ek a total of x1, x2, . . . , xk times, then as
n→∞ the random variable

D =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+ · · ·+ (xk − npk)2

npk
is

χ2-distributed with k − 1 degrees of freedom.



Formerly Erstwhile Previously Earlier, IV

Using this theorem, we can give a hypothesis testing procedure for
analyzing the goodness of fit of a model:

We take our test statistic as

d =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+ · · ·+ (xk − npk)2

npk

=
∑
data

[Observed− Expected]2

Expected
.

Our hypotheses are usually H0 : d = 0 and Ha : d > 0, since
the value d = 0 means the model is perfect and a positive
value of d indicates deviation from the model.



Formerly Erstwhile Previously Earlier, V

In order to apply Pearson’s result above, we must verify that most
of the predicted observation sizes npi are at least 5.

We will adopt the convention that at least 80% of the entries
should be at least 5 or larger. (Another option is to combine
some of these small entries into groups that have a predicted
size greater than 5.)

If the hypotheses are satisfied, then the test statistic is
χ2-distributed with k − 1 degrees of freedom, and we can
calculate the p-value as P(Qk−1 ≥ d).

We then compare the p-value to the significance level and then
either reject or fail to reject the null hypothesis, as usual.



Formerly Erstwhile Previously Earlier, VI

Our test is set up so that data perfectly fitting the model are not
rejected, only data that are far away from the prediction.

However, in some situations, we may instead want to test
whether a model is “too good to believe” (e.g., if we are
investigating whether it is reasonable to think that the data
have been falsified or altered to adhere too closely to a
model).

In those situations we would instead want the hypotheses to
be H0 : d = c and Ha : d < c for (an arbitrary) positive c ,
and we would compute the p-value instead as P(Qk−1 ≤ d).



More χ2 for Goodness of Fit, I

Example: To determine whether a pollster is actually conducting
their polls, the tenths-place digits from a random sample of 200 of
their reported results are tabulated. The results are given below. It
is expected that the tenths-place digit from poll percentages of
thousands of people should be essentially uniformly distributed.
Test at the 10%, 1%, and 0.02% significance levels whether the
data appear to adhere to a uniform model.

Tenths Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13

We will add the “Expected” and (O − E )2/E rows to the
table, and then perform the hypothesis test.



More χ2 for Goodness of Fit, I

Example: To determine whether a pollster is actually conducting
their polls, the tenths-place digits from a random sample of 200 of
their reported results are tabulated. The results are given below. It
is expected that the tenths-place digit from poll percentages of
thousands of people should be essentially uniformly distributed.
Test at the 10%, 1%, and 0.02% significance levels whether the
data appear to adhere to a uniform model.

Tenths Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13

We will add the “Expected” and (O − E )2/E rows to the
table, and then perform the hypothesis test.



More χ2 for Goodness of Fit, II

Example: To determine whether a pollster is actually conducting
their polls, the tenths-place digits from a random sample of 200 of
their reported results are tabulated. Test at the 10%, 1%, and
0.02% significance levels whether the data appear to adhere to a
uniform model.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13

Expected 20 20 20 20 20 20 20 20 20 20

(O − E )2/E 8.35 1.8 2.45 28.8 1.25 5 6.05 22.05 3.2 2.45

Our test statistic is d = 8.45 + 1.8 + 2.45 + · · ·+ 2.45 = 81.5.
There are 10 possible outcomes hence 10− 1 = 9 degrees of
freedom.
Thus, the p-value is P(Q9 ≥ 81.5) = 8.13 · 10−14. This is
extremely small, so we reject the null hypothesis at all of the
indicated significance levels.



More χ2 for Goodness of Fit, II

Example: To determine whether a pollster is actually conducting
their polls, the tenths-place digits from a random sample of 200 of
their reported results are tabulated. Test at the 10%, 1%, and
0.02% significance levels whether the data appear to adhere to a
uniform model.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 7 26 13 44 25 10 9 41 12 13

Expected 20 20 20 20 20 20 20 20 20 20

(O − E )2/E 8.35 1.8 2.45 28.8 1.25 5 6.05 22.05 3.2 2.45

Our test statistic is d = 8.45 + 1.8 + 2.45 + · · ·+ 2.45 = 81.5.
There are 10 possible outcomes hence 10− 1 = 9 degrees of
freedom.
Thus, the p-value is P(Q9 ≥ 81.5) = 8.13 · 10−14. This is
extremely small, so we reject the null hypothesis at all of the
indicated significance levels.



More χ2 for Goodness of Fit, III

Example: The pollster, in response to the accusations from the
previous test, defends their innocence by sending another sample of
200 polls. Test at the 10%, 1%, and 0.02% significance levels
whether the results are believable.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 22 21 20 20 19 18 20 19 21 20

We would expect (with a perfect model) to get an entry of 20
in each row.

This time, the numbers are all very suspiciously close to 20.
We will now test whether the uniform model is too accurate
(with the left tail for the distribution rather than the right
tail).



More χ2 for Goodness of Fit, III

Example: The pollster, in response to the accusations from the
previous test, defends their innocence by sending another sample of
200 polls. Test at the 10%, 1%, and 0.02% significance levels
whether the results are believable.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 22 21 20 20 19 18 20 19 21 20

We would expect (with a perfect model) to get an entry of 20
in each row.

This time, the numbers are all very suspiciously close to 20.
We will now test whether the uniform model is too accurate
(with the left tail for the distribution rather than the right
tail).



More χ2 for Goodness of Fit, IV

Example: The pollster, in response to the accusations from the
previous test, defends their innocence by sending another sample of
200 polls. Test at the 10%, 1%, and 0.02% significance levels
whether the results are believable.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 22 21 20 20 19 18 20 19 21 20

Expected 20 20 20 20 20 20 20 20 20 20

(O − E )2/E 0.2 0.05 0 0 0.05 0.2 0 0.05 0.05 0

Our test statistic is d = 0.2 + 0.05 + 0 + · · ·+ 0 = 0.6.

As before there are 10− 1 = 9 degrees of freedom.

Thus, the p-value is P(Q9 ≤ 0.6) = 6.64 · 10−5. This is once
again extremely small, so we reject the null hypothesis at all
of the indicated significance levels.



More χ2 for Goodness of Fit, IV

Example: The pollster, in response to the accusations from the
previous test, defends their innocence by sending another sample of
200 polls. Test at the 10%, 1%, and 0.02% significance levels
whether the results are believable.

Digit 0 1 2 3 4 5 6 7 8 9

Observed 22 21 20 20 19 18 20 19 21 20

Expected 20 20 20 20 20 20 20 20 20 20

(O − E )2/E 0.2 0.05 0 0 0.05 0.2 0 0.05 0.05 0

Our test statistic is d = 0.2 + 0.05 + 0 + · · ·+ 0 = 0.6.

As before there are 10− 1 = 9 degrees of freedom.

Thus, the p-value is P(Q9 ≤ 0.6) = 6.64 · 10−5. This is once
again extremely small, so we reject the null hypothesis at all
of the indicated significance levels.



More χ2 for Goodness of Fit, V

The last two examples demonstrate how we can use the χ2 test to
assess whether data have been obviously forged: we can check
whether they deviate too much from an expected model, and also
whether they are too close to an expected model.

Of course, in the latter case, it is important to be careful
about interpreting the p-value appropriately.

Large samples may tend to make the p-value smaller
(indicating close adherence to the model).

To calibrate one’s sense of the p-value here, one may do
simulations with randomly-generated data of the same sample
size, to look at the actual distributions of p-values.



More χ2 for Goodness of Fit, VI

Since we’re discussing digits, I’ll also mention another distribution
of digits one should tend to see in certain situations.

For quantities that range over several orders of magnitude,
their leading digits should not be uniformly distributed, but
rather follow Benford’s law:

Digit 1 2 3 4 5 6 7 8 9

Benford 30.1% 17.6% 12.5% 9.7% 7.9% 6.7% 5.8% 5.1% 4.6%

The idea is that the base-10 logarithm of the number (modulo
1) should be approximately uniform, meaning that the leading
digit d should appear with probability log10(1 + 1/d).

Benford’s law applies to quantities such as stock prices, house
prices, population numbers, and lengths of rivers.

One can prove that leading digits of fast-growing sequences
like the factorials and powers of 2 obey Benford’s law.



More χ2 for Goodness of Fit, VII

Example: It is believed that a Poisson model is appropriate to
model the number of collisions at a particular busy intersection in
a given week. The collisions are tabulated over a 5-year period (a
total of 261 weeks), and the results are given below. Test at the
9% and 1% significance levels the accuracy of the model

1. with parameter λ = 2.2.

2. with parameter λ = 2.9.

# Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

If the Poisson model is accurate, we would expect the

proportion of outcomes yielding d collisions to be
λde−λ

d!
, so

the expected number of occurrences would be 261 times this
quantity.
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Example: It is believed that a Poisson model is appropriate to
model the number of collisions at a particular busy intersection in
a given week. The collisions are tabulated over a 5-year period (a
total of 261 weeks), and the results are given below. Test at the
9% and 1% significance levels the accuracy of the model

1. with parameter λ = 2.2.

2. with parameter λ = 2.9.

# Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

If the Poisson model is accurate, we would expect the

proportion of outcomes yielding d collisions to be
λde−λ

d!
, so

the expected number of occurrences would be 261 times this
quantity.



More χ2 for Goodness of Fit, VIII

Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

1. with parameter λ = 2.2.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 28.92 63.63 69.99 51.32 28.23 12.42 4.55 1.95

(O − E )2/E 4.9128 13.7927 0.2270 0.2635 3.3833 5.9271 12.174 13.109

Here, we have 2 entries out of 8 that are less than 5. This is a
sufficiently large percentage that we can use our χ2 test.

Another option would be to combine the last two cells to
make “6+” and then do the calculation.



More χ2 for Goodness of Fit, VIII

Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

1. with parameter λ = 2.2.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 28.92 63.63 69.99 51.32 28.23 12.42 4.55 1.95

(O − E )2/E 4.9128 13.7927 0.2270 0.2635 3.3833 5.9271 12.174 13.109

Here, we have 2 entries out of 8 that are less than 5. This is a
sufficiently large percentage that we can use our χ2 test.

Another option would be to combine the last two cells to
make “6+” and then do the calculation.



More χ2 for Goodness of Fit, IX

Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

1. with parameter λ = 2.2.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 28.92 63.63 69.99 51.32 28.23 12.42 4.55 1.95

(O − E )2/E 4.9128 13.7927 0.2270 0.2635 3.3833 5.9271 12.174 13.109

Our test statistic is
d = 4.9128 + 13.7927 + 0.2270 + · · ·+ 13.1090 = 53.7898.

There are 8 outcomes hence 8− 1 = 7 degrees of freedom.

Thus, the p-value is P(Q7 ≥ 53.7898) = 2.588 · 10−9.

Since this is far below our significance levels, we reject the
null hypothesis in both cases: the model appears incorrect.
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Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

1. with parameter λ = 2.2.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 28.92 63.63 69.99 51.32 28.23 12.42 4.55 1.95

(O − E )2/E 4.9128 13.7927 0.2270 0.2635 3.3833 5.9271 12.174 13.109

Our test statistic is
d = 4.9128 + 13.7927 + 0.2270 + · · ·+ 13.1090 = 53.7898.

There are 8 outcomes hence 8− 1 = 7 degrees of freedom.

Thus, the p-value is P(Q7 ≥ 53.7898) = 2.588 · 10−9.

Since this is far below our significance levels, we reject the
null hypothesis in both cases: the model appears incorrect.



More χ2 for Goodness of Fit, X

Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

2. with parameter λ = 2.9.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 14.36 41.65 60.39 58.38 42.32 24.55 11.86 7.50

(O − E )2/E 0.4849 0.2699 0.5215 0.1952 0.4414 0.5125 0.0016 0.0327

Our test statistic is d = 0.4849 + · · ·+ 0.0327 = 2.4597.

As above there are 7 degrees of freedom, so the p-value is
P(Q7 ≥ 2.4597) = 0.9301.

The p-value is now quite large, so we fail to reject the null
hypothesis. The model seems quite good!



More χ2 for Goodness of Fit, X

Example: Collisions are tabulated over a 5-year period (a total of
261 weeks), and the results are given below. Test at the 9% and
1% significance levels the accuracy of a Poisson model

2. with parameter λ = 2.9.

Collisions 0 1 2 3 4 5 6 7+

Observed 17 45 66 55 38 21 12 7

Expected 14.36 41.65 60.39 58.38 42.32 24.55 11.86 7.50

(O − E )2/E 0.4849 0.2699 0.5215 0.1952 0.4414 0.5125 0.0016 0.0327

Our test statistic is d = 0.4849 + · · ·+ 0.0327 = 2.4597.

As above there are 7 degrees of freedom, so the p-value is
P(Q7 ≥ 2.4597) = 0.9301.

The p-value is now quite large, so we fail to reject the null
hypothesis. The model seems quite good!



More χ2 for Goodness of Fit, XI

In this last example, we could have performed a maximum
likelihood estimation for the Poisson parameter to find the ideal λ
fitting the observed data.

The maximum likelihood estimator for that example ends up
being λ̂ = 2.7586, which is not far from the actual value.

However, if we do this sort of “tuning” of the model to fit the
data, we would expect to get somewhat better agreement than
without being able to adjust a parameter to get a better fit.



More χ2 for Goodness of Fit, XII

To obtain reliable results, we must correct the χ2 test in the
situation where we select parameters to fit the data.

The usual method of correction is as follows: if we use a
model with r unknown parameters that have been calculated
to obtain optimal fit to the observed data, we should use a χ2

test with k − 1− r degrees of freedom (rather than k − 1).

Roughly speaking, each unknown parameter removes one
degree of freedom from the hypothesis test, since each
parameter value we are allowed to choose will allow us to
model one additional outcome from the list of k correctly.



χ2 for Independence, I

As a final application of the χ2 test, we will apply it to study the
independence of discrete random variables.

I wanted to do this as the last topic because I think it is a nice
way of tying our course together, since it is about a topic
from the very beginning of the term.

Recall that we can test whether two discrete random variables
X and Y are independent by checking whether the joint pdf
pX ,Y (x , y) = pX (x) · pY (y) is the product of the individual
pdfs.

If we construct a joint probability distribution table, we can
check whether X and Y are independent by computing the
row and column sums, and then testing whether each entry
pX ,Y (x , y) in the table is the product of its associated row
sum pX (x) and its associated column sum pY (y).



χ2 for Independence, I

So suppose, now, that we are computing the joint distribution
table for two random variables X and Y by sampling a population.

We would expect the entries in the resulting table (which are
now counts of individual observations) to show some random
variation in their values away from the true proportion
pX ,Y (x , y).

Thus, if we try to determine whether X and Y are
independent using the criterion pX ,Y (x , y) = pX (x) · pY (y), it
is very unlikely that we would see exact independence.

We can, however, adapt Pearson’s χ2 test for goodness-of-fit
to give a hypothesis test for independence: the scenario we are
describing is essentially identical to the one we just analyzed.



χ2 for Independence, II

Here is the main theorem:

Theorem (χ2 Independence)

Suppose that the discrete random variables X and Y have
outcomes x1, . . . , xa and y1, . . . , yb. Suppose that (X ,Y ) is
sampled n times, such that the outcome xi occurs a proportion pi
times, the outcome yj occurs a proportion qj times, and the
outcome pair (xi , yj) occurs ai ,j times for each 1 ≤ i ≤ a and
1 ≤ j ≤ b. Then, as n→∞, the random variable

D =
a∑

i=1

b∑
j=1

(ai ,j − npiqj)
2

npiqj
is χ2-distributed with (a− 1)(b − 1)

degrees of freedom.



χ2 for Independence, III

Here is the rough idea:

If X and Y are independent, then npiqj is the expected
number of times we should obtain the outcomes xi
(probability pi ) and yj (probability qj) together.

Thus, we are computing the same sum

D =
∑
data

[Observed− Expected]2

Expected
as before.

The proof of this result is similar to the one we gave earlier for

goodness-of-fit: for large n, each of the ratios
(ai ,j − npiqj)

2

npiqj
will behave like a scaled χ2 distribution with 1 degree of
freedom.



χ2 for Independence, IV

Let me briefly try to explain the non-obvious fact about why the
number of degrees of freedom is (a− 1)(b − 1).

Essentially, the idea is that if we are filling entries into the
joint pdf table of X and Y , then all of the entries in the a× b
table are completely determined once we fill in the upper left
(a− 1)× (b − 1) table, under the presumption that we also
know the row and column sums pi and qj (because we extract
pi and qj from the data, we view them as parameters that we
have selected).

We can fill in all the entries because once we have all but one
entry in a given row, we can fill in the last entry since we
know the row sum. The same holds true for the columns, so
applying this for each row and column (including the bottom
row that we just filled) allows us to fill the entire grid.



χ2 for Independence, V

On the other hand, if we have fewer than (a− 1)(b − 1)
entries, we cannot fill the entire grid.

Thus, the total number of independent values is
(a− 1)(b − 1), so this is the number of degrees of freedom.

An equivalent (and more highbrow) way to make this
observation is that the entries in the upper (a− 1)× (b − 1)
subgrid form a basis for the vector space consisting of the
entries of the grid with fixed row and column sums.



χ2 for Independence, VI

Using the theorem, we can give a hypothesis testing procedure for
analyzing the independence of two random variables X and Y :

First, we write down the a× b joint probability distribution
table for the observed values of X and Y , and compute the
row proportions pi and column proportions qj .

Then we compute the expected value of each entry npiqj , and
calculate the test statistic as

d =
a∑

i=1

b∑
j=1

(ai ,j − npiqj)
2

npiqj
=
∑
data

[Observed− Expected]2

Expected
.

We take as our hypotheses H0 : d = 0 and Ha : d > 0, since
the value d = 0 means that the model is perfect (indicating
that all of the entries are exactly equal to the predicted value,
which means X and Y are independent) and a positive value
of d indicates deviation from independence.



χ2 for Independence, VII

In order to apply Pearson’s theorem, we must verify that most of
the predicted observation sizes npi are at least 5.

We will adopt the same convention as before that at least
80% of the entries should be at least 5 or larger.

If that is the case, then the test statistic is χ2-distributed with
(a− 1)(b − 1) degrees of freedom, and we can calculate the
p-value as P(Q(a−1)(b−1) ≥ d).

We then compare the p-value to the significance level and then
either reject or fail to reject the null hypothesis, as usual.



χ2 for Independence, VIII

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Observed Tenure-Track Non-Tenure-Track

Male 20 8

Female 4 8



χ2 for Independence, IX

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Observed Tenure-Track Non-Tenure-Track

Male 20 8

Female 4 8

There are 40 faculty in total, so we can compute the row and
column proportions and then fill in the table of expected
values



χ2 for Independence, IX

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Observed Tenure-Track Non-Tenure-Track

Male 20 8

Female 4 8

There are 40 faculty in total, so we can compute the row and
column proportions and then fill in the table of expected
values



χ2 for Independence, X

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Observed Tenure-Track Non-Tenure-Track

Male 20 8

Female 4 8

We get the following table of expected results:

Expected Tenure-Track Non-Tenure-Track Proportion

Male 40 · 0.42 = 16.8 40 · 0.28 = 11.2 0.7

Female 40 · 0.18 = 7.2 40 · 0.12 = 4.8 0.3

Proportion 0.6 0.4



χ2 for Independence, XI

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Exp (Obs) Tenure-Track Non-Tenure-Track

Male 16.8 (20) 11.2 (8)

Female 7.2 (4) 4.8 (8)

The test statistic is
(20− 16.8)2

16.8
+

(8− 11.2)2

11.2
+

(4− 7.2)2

7.2
+

(8− 4.8)2

4.8
= 5.0794.

The total number of degrees of freedom is (2− 1)(2− 1) = 1.



χ2 for Independence, XI

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Exp (Obs) Tenure-Track Non-Tenure-Track

Male 16.8 (20) 11.2 (8)

Female 7.2 (4) 4.8 (8)

The test statistic is
(20− 16.8)2

16.8
+

(8− 11.2)2

11.2
+

(4− 7.2)2

7.2
+

(8− 4.8)2

4.8
= 5.0794.

The total number of degrees of freedom is (2− 1)(2− 1) = 1.



χ2 for Independence, XII

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Exp (Obs) Tenure-Track Non-Tenure-Track

Male 16.8 (20) 11.2 (8)

Female 7.2 (4) 4.8 (8)

With d = 5.0794 and df = 1, the p-value is
P(Q1 ≥ 5.0794) = 0.02421.
Since the p-value is below the 9% significance level but above
the 0.8% significance level, we reject the null hypothesis in
the first case but not in the second case.
Our interpretation of the test is that we have moderately
strong evidence that the variables are not independent.



χ2 for Independence, XII

Example: The faculty members in a university mathematics
department are either tenure-track or non-tenure-track. These
categories are broken down further by gender as indicated below.
Test at the 9% and 0.8% significance levels whether the two
variables of tenure track status and gender are independent.

Exp (Obs) Tenure-Track Non-Tenure-Track

Male 16.8 (20) 11.2 (8)

Female 7.2 (4) 4.8 (8)

With d = 5.0794 and df = 1, the p-value is
P(Q1 ≥ 5.0794) = 0.02421.
Since the p-value is below the 9% significance level but above
the 0.8% significance level, we reject the null hypothesis in
the first case but not in the second case.
Our interpretation of the test is that we have moderately
strong evidence that the variables are not independent.



χ2 for Independence, XIII

Example: A survey is taken of 400 households asking about the
number of children and the number of TVs in the household. Test
at the 11% and 2% significance levels whether the number of TVs
is independent of the number of children.

Observed 0 Children 1 Child 2 Children 3+ Children

0 TVs 10 25 29 16

1 TV 19 88 104 29

2+ TVs 9 24 29 18

As before, we compute the row and column proportions and
then fill in the table of expected values.



χ2 for Independence, XIII

Example: A survey is taken of 400 households asking about the
number of children and the number of TVs in the household. Test
at the 11% and 2% significance levels whether the number of TVs
is independent of the number of children.

Observed 0 Children 1 Child 2 Children 3+ Children

0 TVs 10 25 29 16

1 TV 19 88 104 29

2+ TVs 9 24 29 18

As before, we compute the row and column proportions and
then fill in the table of expected values.



χ2 for Independence, XIV

Example: A survey is taken of 400 households asking about the
number of children and the number of TVs in the household. Test
at the 11% and 2% significance levels whether the number of TVs
is independent of the number of children.

Observed 0 Children 1 Child 2 Children 3+ Children

0 TVs 10 25 29 16

1 TV 19 88 104 29

2+ TVs 9 24 29 18

Expected 0 Children 1 Child 2 Children 3+ Children Proportion

0 TVs 7.6 27.4 32.4 12.6 0.2

1 TV 22.8 82.2 97.2 37.8 0.6

2+ TVs 7.6 27.4 32.4 12.6 0.2

Proportion 0.095 0.3425 0.405 0.1575



χ2 for Independence, XV

Example: Test at the 11% and 2% significance levels whether the
number of TVs is independent of the number of children.

Exp (Obs) 0 Children 1 Child 2 Children 3+ Children

0 TVs 7.6 (10) 27.4 (25) 32.4 (29) 12.6 (16)

1 TV 22.8 (19) 82.2 (88) 97.2 (104) 37.8 (29)

2+ TVs 7.6 (9) 27.4 (24) 32.4 (29) 12.6 (18)

Then d = (10−7.6)2

7.6 + (25−27.4)2

27.4 + · · ·+ (18−12.6)2

12.6 = 9.1602.

The total number of degrees of freedom is (4− 1)(3− 1) = 6,
so the p-value is given by P(Q6 ≥ 9.1602) = 0.1648.

Since the p-value is above the 11% and 2% significance levels,
we fail reject the null hypothesis in both cases

Our interpretation is that we have fairly weak evidence that
the variables are not independent. (It’s not zero, but it’s not
very compelling.)



χ2 for Independence, XV

Example: Test at the 11% and 2% significance levels whether the
number of TVs is independent of the number of children.

Exp (Obs) 0 Children 1 Child 2 Children 3+ Children

0 TVs 7.6 (10) 27.4 (25) 32.4 (29) 12.6 (16)

1 TV 22.8 (19) 82.2 (88) 97.2 (104) 37.8 (29)

2+ TVs 7.6 (9) 27.4 (24) 32.4 (29) 12.6 (18)

Then d = (10−7.6)2

7.6 + (25−27.4)2

27.4 + · · ·+ (18−12.6)2

12.6 = 9.1602.

The total number of degrees of freedom is (4− 1)(3− 1) = 6,
so the p-value is given by P(Q6 ≥ 9.1602) = 0.1648.

Since the p-value is above the 11% and 2% significance levels,
we fail reject the null hypothesis in both cases

Our interpretation is that we have fairly weak evidence that
the variables are not independent. (It’s not zero, but it’s not
very compelling.)



χ2 for Independence, XVI

Example: A poll is taken on a trenchant political issue and the
support is broken down by age group, as shown below. Test at the
8%, 2%, and 0.3% significance levels whether the level of support
is independent of the age group.

Observed Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 20 13 12 8

Oppose 7 9 14 17

As before, we find the row and column proportions and then use
them to fill in the table of expected values.



χ2 for Independence, XVI

Example: A poll is taken on a trenchant political issue and the
support is broken down by age group, as shown below. Test at the
8%, 2%, and 0.3% significance levels whether the level of support
is independent of the age group.

Observed Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 20 13 12 8

Oppose 7 9 14 17

As before, we find the row and column proportions and then use
them to fill in the table of expected values.



χ2 for Independence, XVII

Example: A poll is taken on a trenchant political issue and the
support is broken down by age group, as shown below. Test at the
8%, 2%, and 0.3% significance levels whether the level of support
is independent of the age group.

Observed Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 20 13 12 8

Oppose 7 9 14 17

Expected Age 18-29 Age 30-49 Age 50-64 Age 65+ Proportion

Support 14.31 11.66 13.78 13.25 0.53

Oppose 12.69 10.34 12.22 11.75 0.47

Proportion 0.27 0.22 0.26 0.25



χ2 for Independence, XVIII

Example: Test at the 8%, 2%, and 0.3% significance levels
whether the level of support is independent of the age group.

Exp (Obs) Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 14.31 (20) 11.66 (13) 13.78 (12) 13.25 (8)

Oppose 12.69 (7) 10.34 (9) 12.22 (14) 11.75 (17)

The test statistic is (20−14.31)2

14.31 + · · ·+ (17−11.75)2

11.75 = 10.057.

The total number of degrees of freedom is (4− 1)(2− 1) = 3,
so the p-value is given by P(Q3 ≥ 10.057) = 0.01809.

Since the p-value is below the 8% and 2% significance levels,
we reject the null hypothesis in those cases. It is above the
0.3% significance level, so we fail to reject there.

Our interpretation of the test is that we have fairly strong
evidence that the variables are not independent: the support
does appear to depend on the age group.



χ2 for Independence, XVIII

Example: Test at the 8%, 2%, and 0.3% significance levels
whether the level of support is independent of the age group.

Exp (Obs) Age 18-29 Age 30-49 Age 50-64 Age 65+

Support 14.31 (20) 11.66 (13) 13.78 (12) 13.25 (8)

Oppose 12.69 (7) 10.34 (9) 12.22 (14) 11.75 (17)

The test statistic is (20−14.31)2

14.31 + · · ·+ (17−11.75)2

11.75 = 10.057.

The total number of degrees of freedom is (4− 1)(2− 1) = 3,
so the p-value is given by P(Q3 ≥ 10.057) = 0.01809.

Since the p-value is below the 8% and 2% significance levels,
we reject the null hypothesis in those cases. It is above the
0.3% significance level, so we fail to reject there.

Our interpretation of the test is that we have fairly strong
evidence that the variables are not independent: the support
does appear to depend on the age group.



Fisher’s Exact Test, I

As a final example, I will discuss Fisher’s exact test, which gives an
exact hypothesis testing method for 2× 2 tables without the need
for a χ2 approximation.

In this case, there is only 1 degree of freedom.

Per the discussion earlier, the idea is that if the row and
column totals are known, then only the single upper-left entry
is required to determine the full table.



Fisher’s Exact Test, II

Fisher’s original example was of the “lady tasting tea”, who
claimed to be able to decide, solely by the flavor, whether a cup of
tea with milk had the milk poured into the tea or the tea poured
into the milk.

In the real experiment, eight cups of tea with milk were
poured, four with milk first and four with tea first.

The lady tasted each (under blind conditions) and decided
whether the tea or the milk had been poured first.

The problem is to decide, based on how many cups the lady
identifies correctly, how plausible it is that she really can tell
the difference.

Under the null hypothesis of random guessing, we assume that
the lady would guess exactly 4 cups of each type, since (as
part of the test conditions) she is told that there will be 4
cups of each type.



Fisher’s Exact Test, III

We can break down the results as follows:

Observed Lady: Milk first Lady: Tea first

Milk poured first a b

Tea poured first c d

To obtain the table above the lady will always guess a + c of
the cups to have milk first and b + d to have tea first, so there
are a total

(a+b+c+d
a+c

)
possible tables satisfying this condition.

To obtain the specific table above, exactly a of the a + c cups
the lady says have milk must actually have milk, and exactly d
of the cups the lady says have tea must actually have tea.

There are
(a+c

a

)
·
(b+d

d

)
ways of making these selections, so

the total probability of obtaining the given table is(a+c
a

)(b+d
d

)
/
(a+b+c+d

a+c

)
.



Fisher’s Exact Test, IV

We can then compute the probability of obtaining a result at least
as close to completely accurate by summing over the possible
tables with upper-left entry at least as large as the observed value.

For example, if the results had been

Observed Lady: Milk first Lady: Tea first

Milk poured first 3 1

Tea poured first 1 3

then the probability of obtaining this precise table is(4
3

)(4
3

)
/
(8
4

)
= 16

70 ≈ 0.2286. The only result yielding more
correct responses would be the table with entries (4, 0), (0, 4)

which occurs with probability
(4
4

)(4
4

)
/
(8
4

)
=

1

70
≈ 0.0143.

Thus, the tail probability is the sum 16
70 + 1

70 ≈ 0.2429.

We would not view this as conclusive evidence!



Fisher’s Exact Test, V

In fact, the results of the actual test were that the lady correctly
identified all 8 cups.

Observed Lady: Milk first Lady: Tea first

Milk poured first 4 0

Tea poured first 0 4

In that case, the probability of obtaining the result by random

guessing is
(4
4

)(4
4

)
/
(8
4

)
=

1

70
≈ 0.0143.

That is much more compelling evidence that she was not
actually guessing.

We can use Fisher’s exact test in scenarios with small sample sizes
for 2× 2 tables, and it often yields better results than the χ2

approximation.



Closing Remarks, I

We are now at the end of our discussion of hypothesis tests.

What I’d like to mention, though, is that there are lots of
other hypothesis tests out there.

Some of them, like the z test and t test, have broad
applicability and are fairly robust. That’s why we teach you
about them in introductory courses, since you can get good
mileage from them.

Others, like Fisher’s exact test, are for very specific situations.
They are very good, but only for the particular situation in
which they apply.

It is very important to make sure that any hypotheses of the
tests you do use are actually applicable! (For example, don’t
use a t test with exponentially-distributed data and a sample
size n = 5.)



Closing Remarks, II

What I am hoping you’ll take from all of this is the importance of
asking the right question about the quantity you really want to
understand, and using the most appropriate statistical methods
available.

Most modern statistical methods rely on computer simulation
and numerical approximation to check whether the techniques
are reliable.

It is also entirely possible that you might end up wanting to
ask something that isn’t easily answered by any of the tests
you’ve seen.

You may end up having to search for an appropriate statistical
method, or even try to design your own. (Not something for
amateurs! Take more statistics classes if you’re going to be
doing serious statistical analysis in your research!)



Closing Remarks, III

You should also now feel comfortable reading actual uses of
statistics in scientific papers.

You may not be familiar with the precise tests being used, but
you now should have a good grasp of the language and
terminology.

In particular, I would hope that you can now spot a lot of the
misuses of statistics that I’ve spoken at length about.

One thing I’ll call your attention to is ∼ very small sample sizes.

Beware any results that have very small sample sizes, since (as
we have seen) most tests have a very low power with a small
sample: there is a high probability of getting unreliable results.

Furthermore, populations tend to have more outliers than
normal distributions would predict, and this will lower the
accuracy of t tests.



Summary

We did more examples of the χ2 test for goodness-of-fit.

We discussed the χ2 test for independence.

We discussed Fisher’s exact test.

Next lecture: There isn’t one: the lectures are over! (Though the
TA is holding a review session tomorrow and I am holding one on
Saturday, both from 1-3pm.)



It’s The End!

We’re now at the end of the course (except of course for the last
WeBWorK and the final).

I hope you enjoyed learning some probability and statistics with me
this semester as much as I enjoyed teaching it. Although I am a
number theorist and pure mathematician, I was also trained as a
scientist and thus, teaching you about the probabilistic and
statistical arts is something I enjoy getting to do.

In particular, I would hope that you now have a better
understanding of the power, but also of the limitations, of
hypothesis testing and of statistics, so that you can be more aware
of how these things work out in the real world.


