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The χ2 Distribution

The χ2 Distribution

Confidence Intervals and Hypothesis Tests for Variance

The χ2 Test for Goodness of Fit

This material represents §5.2.1-5.2.3 from the course notes, and
problems 14-17 from WeBWorK 7.



The χ2 Distribution, I

We now move into the second half of the final chapter of the
course: discussing the χ2 distribution and two different χ2 tests,
which allow us to expand our hypothesis tests to testing statements
about the variance (and standard deviation) of a distribution.

All of our hypothesis tests so far have essentially focused on
testing statements about the mean of a distribution.

However, in certain scenarios, some of which we will discuss
now, we might also want to test hypotheses about the
variance of a distribution.

If the underlying distribution is normal, or approximately
normal, we can use the χ2 distribution to construct such tests.



The χ2 Distribution, II

We have previously discussed (at length) methods for constructing
confidence intervals for the mean µ of a normally-distrbuted
random variable with (known or unknown) standard deviation σ,
given a random sample x1, . . . , xn from this normal distribution.

Our present goal is to apply the same ideas to construct
confidence intervals for the variance σ2 (or equivalently the
standard deviation σ) of the normal distribution.

Of course, the problem is only interesting when we do not
already know σ, which is to say, when we are estimating it
from the sample.



The χ2 Distribution, III

As we have discussed at length, the sample variance
S2 = 1

n−1
[
(x1 − x)2 + · · ·+ (xn − x)2

]
gives an unbiased

estimator for σ2.

In order to construct confidence intervals for σ2, it is enough
to write down the underlying distribution of the statistic
(n − 1)S2

σ2
=

(
x1 − x

σ

)2

+ · · ·+
(

xn − x

σ

)2

.

This distribution is essentially given by a χ2 distribution.

Definition

The χ2 distribution with k degrees of freedom is the continuous
random variable Qk whose probability density function

pQk
(x) =

1

2k/2Γ(k/2)
· x (k/2)−1e−x/2 for all real numbers x > 0.



The χ2 Distribution, IV

Examples:

The χ2 distribution with 1 degree of freedom has probability

density function pQ1(x) =
1√
2πx

e−x/2 for x > 0.

The χ2 distribution with 2 degrees of freedom has probability

density function pQ1(x) =
1

2
e−x/2 for x > 0, which is the

exponential distribution with parameter λ = 1/2.

The χ2 distribution with 3 degrees of freedom has probability

density function pQ1(x) =

√
x√

2π
e−x/2 for x > 0.



The χ2 Distribution, V

Here are some plots of χ2 pdfs:



The χ2 Distribution, VI

Here are some plots of χ2 pdfs:



The χ2 Distribution, VII

Here are some plots of χ2 pdfs:



The χ2 Distribution, VIII

Here are some plots of χ2 pdfs:



The χ2 Distribution, IX

Here are some plots of χ2 pdfs:



The χ2 Distribution, X

Here are some plots of χ2 pdfs:



The χ2 Distribution, XI

Definition

The χ2 distribution with k degrees of freedom is the continuous
random variable Qk whose probability density function

pQk
(x) =

1

2k/2Γ(k/2)
· x (k/2)−1e−x/2 for all real numbers x > 0.

It is not hard to show using the probability density function
that the χ2 distribution with k degrees of freedom has mean
k and variance 2k .

From the plots, we see that the χ2 distribution, unlike the
normal and t distributions, is quite skewed to the right, but
the skewness decreases with more degrees of freedom.

As we now show, the χ2 distribution with n − 1 degrees of

freedom is the proper model for the test statistic
(n − 1)S2

σ2
.



The χ2 Distribution, XII

Proposition (χ2 Distribution From Normals)

If X1, . . . ,Xn are independent standard normal random variables
(i.e., with mean 0 and standard deviation 1), then the random
variable Qn = X 2

1 + · · ·+ X 2
n has a χ2 distribution with n degrees

of freedom.

The proof is a relatively straightforward calculation using the
joint pdf of X1, . . . ,Xn (which is simply the product of the
one-variable pdfs, since these variables are independent).

We then just have to set up and evaluate the appropriate
n-dimensional integral to compute the probability density
function of Qn = X 2

1 + · · ·+ X 2
n .

The main idea in the computation of the integral is to convert
to n-dimensional spherical coordinates.



The χ2 Distribution, XII

As an easy corollary to the previous result, we see that the χ2

distribution approaches a normal one as the number of degrees of
freedom grows:

Corollary (χ2 Limit)

As the number of degrees of freedom k increases, the pdf of the χ2

distribution Qk approaches the normal distribution with mean k
and variance 2k.

Proof:

By the proposition, the χ2 distribution Qk is obtained by
summing k independent, identically-distributed random
variables.

Thus, by the central limit theorem, the normalization
Qk − k√

2k
approaches the standard normal distribution N0,1.



The χ2 Distribution, XIII

Now we can give our main result about the χ2 distribution:

Theorem (χ2 Distribution As Sampling Distribution)

Suppose n ≥ 2 and that X1,X2, . . . ,Xn are independent, identically
normally distributed random variables with mean µ and standard

deviation σ. If X =
1

n
(X1 + · · ·+ Xn) denotes the sample mean

and S2 =
1

n − 1

[
(X1 − X )2 + (X2 − X )2 + · · ·+ (Xn − X )2

]
denotes the sample variance, then the distribution of the test

statistic
(n − 1)S2

σ2
is the χ2 distribution Qn−1 with n − 1 degrees

of freedom.



The χ2 Distribution, XIV

Proof:

Let W =
n∑

i=1

[
Xi − µ
σ

]2
. Then

W =
n∑

i=1

[
Xi − µ
σ

]2
=

n∑
i=1

[
(Xi − X ) + (X − µ)

σ

]2

=
n∑

i=1

[
Xi − X

σ

]2
+ 2

n∑
i=1

[
Xi − X

σ

] [
X − µ
σ

]
+

n∑
i=1

[
X − µ
σ

]2
.

The first term is
(n − 1)S2

σ2
, the middle term is zero by

evaluating the sum (since
∑n

i=1 Xi =
∑n

i=1 X ), and the last

term is n

[
X − µ
σ

]2
=

[
X − µ
σ/
√

n

]2
.



The χ2 Distribution, XV

Proof (continued):

So W =
∑n

i=1

[
Xi − µ
σ

]2
=

(n − 1)S2

σ2
+

[
X − µ
σ/
√

n

]2
.

Note that W is the sum of squares of n independent standard
normal variables, so it has a χ2 distribution with n df.

Also, S and X are independent (as we previously noted in our
derivation of the properties of the t distribution).

Since
[
X−µ
σ/
√
n

]2
is the square of a standard normal variable,

and S is independent from it, this means the distribution of
(n−1)S2

σ2 = W −
[
X−µ
σ/
√
n

]2
is given by the sum of squares of

n − 1 independent standard normal variables.

This means (n−1)S2

σ2 has a χ2 distribution with n − 1 degrees
of freedom, as claimed.



χ2 Confidence Intervals, I

The point of the theorem is that we can use the χ2 distribution as
a model for the ratio between the sample variance and the
population variance, after rescaling appropriately.

Thus, we can construct confidence intervals for the population
variance using χ2-statistics and the sample variance.

Specifically, since the statistic
(n − 1)S2

σ2
is modeled by the χ2

distribution Qn−1 with n − 1 degrees of freedom, we can
compute a 100(1− α)% confidence interval using χ2-statistics
in place of the z- and t-statistics that we used for the
confidence intervals for the mean of a normally distributed
random variable.



χ2 Confidence Intervals, II

Here is a plot of the underlying χ2 distribution:

The middle essentially represents the 100(1− α)% CI.



χ2 Confidence Intervals, III

We want the parameters χ2
α/2 and χ2

1−α/2 to satisfy

P(Qn−1 ≤ χ2
α/2) = α/2 = P(Qn−1 ≥ χ2

1−α/2), so that the
total area in each tail of the distribution is α, leaving an area
1− α in the middle.

In other words, we have P(χ2
α/2 ≤ Qn−1 ≤ χ2

1−α/2) = 1− α.

Since
(n − 1)S2

σ2
is χ2-distributed, this is equivalent to saying

that P(χ2
α/2 ≤

(n − 1)S2

σ2
≤ χ2

1−α/2) = 1− α.

We can then rewrite the above equation to get the desired
100(1− α)% confidence interval for σ.



χ2 Confidence Intervals, IV

Proposition (χ2 Confidence Intervals)

A 100(1− α)% confidence interval for the unknown variance σ2 of
a normal distribution with unknown mean and standard deviation

is given by

(
(n − 1)S2

χ2
1−α/2,n

,
(n − 1)S2

χ2
α/2,n

)
where n sample points

x1, . . . , xn are taken from the distribution, µ̂ = 1
n (x1 + · · ·+ xn) is

the sample mean, S =
√

1
n−1 [(x1 − µ̂)2 + · · ·+ (xn − µ̂)2] is the

sample standard deviation, and χ2
α/2,n and χ2

1−α/2,n are the
constants satisfying
P(Qn−1 ≤ χ2

α/2,n−1) = α/2 = P(Qn−1 ≥ χ2
1−α/2,n−1) where Qn−1

is χ2-distributed with n − 1 degrees of freedom.

For σ, take the square root:

√ n − 1

χ2
1−α/2,n−1

S ,

√
n − 1

χ2
α/2,n−1

S

.



χ2 Confidence Intervals, V

In order to compute the necessary χ2 statistics, we must (as with
the normal distribution or t distribution) either use a table of
values or a computer to evaluate the inverse cumulative
distribution function.

We need to compute both χ2
α/2,n and χ2

1−α/2,n, since the χ2

distribution is not symmetric.



χ2 Confidence Intervals, VI

Here is a small table of such values:
Inverse-CDF entries give χ2

β,n such that P(Qn < χ2
β,n) = β.

df 0.005 0.01 0.025 0.05 0.1 0.9 0.95 0.975 0.99 0.995

1 0.0000 0.0002 0.0010 0.0039 0.0158 2.7055 3.8415 5.0239 6.6349 7.8794

2 0.0100 0.0201 0.0506 0.1026 0.2107 4.6052 5.9915 7.3778 9.2103 10.597

3 0.0717 0.1148 0.2158 0.3518 0.5844 6.2514 7.8147 9.3484 11.344 12.838

4 0.2070 0.2971 0.4844 0.7107 1.0636 7.7794 9.4877 11.143 13.276 14.860

5 0.4117 0.5543 0.8312 1.1455 1.6103 9.2364 11.071 12.833 15.086 16.750

6 0.6757 0.8721 1.2373 1.6354 2.2041 10.644 12.592 14.449 16.811 18.548

7 0.9893 1.2390 1.6899 2.1673 2.8331 12.017 14.067 16.012 18.475 20.277

8 1.3444 1.6465 2.1797 2.7326 3.4895 13.361 15.507 17.534 20.090 21.955

9 1.7349 2.0879 2.7004 3.3251 4.1682 14.683 16.919 19.022 21.666 23.589

10 2.1559 2.5582 3.2470 3.9403 4.8652 15.987 18.307 20.483 23.209 25.188

15 4.6009 5.2293 6.2621 7.2609 8.5468 22.307 24.996 27.488 30.578 32.801

20 7.4338 8.2604 9.5908 10.851 12.443 28.412 31.410 34.170 37.566 39.997



χ2 Confidence Intervals, VII

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8. Find 80%, 90%, and 99% confidence
intervals for the standard deviation of the distribution.

We first compute the sample mean µ = 2.6667 and sample
standard deviation S = 4.6762.

Since there are 6 values, the number of degrees of freedom for
the underlying χ2 statistics is 5.

For the 80% confidence interval, the required values are
χ2
0.9,5 = 9.2364 and χ2

0.1,5 = 1.6103, and so the confidence
interval for σ is(√

5

9.2364
· 4.6762,

√
5

1.6103
· 4.6762

)
= (3.4405, 8.2400).



χ2 Confidence Intervals, VII

Example: A normal distribution is sampled six times yielding values
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χ2 Confidence Intervals, VII

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8. Find 80%, 90%, and 99% confidence
intervals for the standard deviation of the distribution.

We first compute the sample mean µ = 2.6667 and sample
standard deviation S = 4.6762.

Since there are 6 values, the number of degrees of freedom for
the underlying χ2 statistics is 5.

For the 80% confidence interval, the required values are
χ2
0.9,5 = 9.2364 and χ2

0.1,5 = 1.6103, and so the confidence
interval for σ is(√

5

9.2364
· 4.6762,

√
5

1.6103
· 4.6762

)
= (3.4405, 8.2400).



χ2 Confidence Intervals, VIII

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8. Find 80%, 90%, and 99% confidence
intervals for the standard deviation of the distribution.

µ = 2.6667, S = 4.6762, df = 5.

For the 90% confidence interval, the required values are
χ2
0.95,5 = 11.0705 and χ2

0.05,5 = 1.1455, and so the confidence

interval for σ is

(√
5

11.0705
· 4.6762,

√
5

1.1455
· 4.6762

)
=

(3.1426, 9.7697).
For the 99% confidence interval, the required values are
χ2
0.995,5 = 16.7496 and χ2

0.005,5 = 0.4117, and so the
confidence interval for σ is(√

5

16.7496
· 4.6762,

√
5

0.4117
· 4.6762

)
=

(2.5549, 16.2962).



χ2 Confidence Intervals, VIII

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8. Find 80%, 90%, and 99% confidence
intervals for the standard deviation of the distribution.

µ = 2.6667, S = 4.6762, df = 5.
For the 90% confidence interval, the required values are
χ2
0.95,5 = 11.0705 and χ2

0.05,5 = 1.1455, and so the confidence

interval for σ is

(√
5

11.0705
· 4.6762,

√
5

1.1455
· 4.6762

)
=

(3.1426, 9.7697).

For the 99% confidence interval, the required values are
χ2
0.995,5 = 16.7496 and χ2

0.005,5 = 0.4117, and so the
confidence interval for σ is(√

5

16.7496
· 4.6762,

√
5

0.4117
· 4.6762

)
=

(2.5549, 16.2962).



χ2 Confidence Intervals, VIII

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8. Find 80%, 90%, and 99% confidence
intervals for the standard deviation of the distribution.

µ = 2.6667, S = 4.6762, df = 5.
For the 90% confidence interval, the required values are
χ2
0.95,5 = 11.0705 and χ2

0.05,5 = 1.1455, and so the confidence

interval for σ is

(√
5

11.0705
· 4.6762,

√
5

1.1455
· 4.6762

)
=

(3.1426, 9.7697).
For the 99% confidence interval, the required values are
χ2
0.995,5 = 16.7496 and χ2

0.005,5 = 0.4117, and so the
confidence interval for σ is(√

5

16.7496
· 4.6762,

√
5

0.4117
· 4.6762

)
=

(2.5549, 16.2962).



χ2 Hypothesis Tests, I

We can also adapt our characterization to give a procedure for
doing a hypothesis test about the unknown variance of a normal
distribution based on an independent sampling of the distribution
yielding n values x1, x2, . . . , xn: this is the χ2 test for variance.

As usual with hypothesis tests, we first select appropriate null
and alternative hypotheses and a significance level α.

Our null hypothesis will be of the form H0: σ2 = c for some
constant c , with an appropriate one-sided or two-sided
alternative hypothesis.

We take the test statistic χ2 =
(n − 1)S2

c
, where S is the

sample standard deviation.

From our results about the χ2 distribution, the test statistic is
χ2-distributed with n − 1 degrees of freedom.



χ2 Hypothesis Tests, II

If the test is one-sided, we can calculate the p-value based on the
alternative hypothesis.

If the hypotheses are H0 : σ2 = c and Ha : σ2 > c , then the
p-value is P(Qn−1 ≥ χ2).

If the hypotheses are H0 : σ2 = c and Ha : σ2 < c , then the
p-value is P(Qn−1 ≤ χ2).

If the hypotheses are H0 : σ2 = c and Ha : σ2 6= c , then it is
not as obvious how to compute a p-value because of the
asymmetry of the χ2 distribution. We will take the convention
of doubling the appropriate one-sided tail probability (as we
did with z tests and t tests).

We then compare the p-value to the significance level and then
either reject or fail to reject the null hypothesis, as usual.



χ2 Hypothesis Tests, III

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8.

1. Test at the 10% and 1% significance levels that the variance
is greater than 16.

2. Test at the 10% and 1% significance levels that the variance
is less than 225.

We calculated the sample standard deviation S = 4.6762
earlier, and the number of degrees of freedom is still 5.



χ2 Hypothesis Tests, IV

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8.

1. Test at the 10% and 1% significance levels that the variance
is greater than 16.

Our hypotheses are H0 : σ2 = 16 and Ha : σ2 > 16, since in
fact the sample variance is greater than 16.

Our test statistic is χ2 =
(n − 1)S2

σ2
=

5 · 4.67622

16
= 6.8333,

and so the p-value is P(Q5 > 6.8333) = 0.2333.

Since the p-value is greater than both significance levels, we
fail to reject the null hypothesis in both cases.

This result is reasonable, since the sample variance is not that
much greater than 16. We can also see that σ = 4 lies well
inside the 80% confidence interval we computed earlier.



χ2 Hypothesis Tests, IV

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8.

1. Test at the 10% and 1% significance levels that the variance
is greater than 16.

Our hypotheses are H0 : σ2 = 16 and Ha : σ2 > 16, since in
fact the sample variance is greater than 16.

Our test statistic is χ2 =
(n − 1)S2

σ2
=

5 · 4.67622

16
= 6.8333,

and so the p-value is P(Q5 > 6.8333) = 0.2333.

Since the p-value is greater than both significance levels, we
fail to reject the null hypothesis in both cases.

This result is reasonable, since the sample variance is not that
much greater than 16. We can also see that σ = 4 lies well
inside the 80% confidence interval we computed earlier.



χ2 Hypothesis Tests, V

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8.

2. Test at the 10% and 1% significance levels that the variance
is less than 225.

Our hypotheses are H0 : σ2 = 225 and Ha : σ2 < 225, since in
fact the sample standard deviation is less than 225.

Our test statistic is χ2 =
(n − 1)S2

σ2
=

5 · 4.67622

225
= 0.4859,

and so the p-value is P(Q5 < 0.4859) = 0.00737.
Since the p-value is less than both significance levels, we fail
reject the null hypothesis in both cases.
This result is also reasonable, since the sample variance is
quite a bit less than 225. We can also see that σ = 15 lies
well outside the 80% confidence interval we computed earlier,
but it is inside the 99% confidence interval (corresponding to
the fact that the p-value is greater than 0.005).



χ2 Hypothesis Tests, V

Example: A normal distribution is sampled six times yielding values
−3, 1, 5, −2, 7, and 8.

2. Test at the 10% and 1% significance levels that the variance
is less than 225.

Our hypotheses are H0 : σ2 = 225 and Ha : σ2 < 225, since in
fact the sample standard deviation is less than 225.

Our test statistic is χ2 =
(n − 1)S2

σ2
=

5 · 4.67622

225
= 0.4859,

and so the p-value is P(Q5 < 0.4859) = 0.00737.
Since the p-value is less than both significance levels, we fail
reject the null hypothesis in both cases.
This result is also reasonable, since the sample variance is
quite a bit less than 225. We can also see that σ = 15 lies
well outside the 80% confidence interval we computed earlier,
but it is inside the 99% confidence interval (corresponding to
the fact that the p-value is greater than 0.005).



χ2 Hypothesis Tests, VI

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

1. Find a 95% confidence interval for the average return.

2. Test at the 2% significance level whether the average rate of
return is above 4%.

3. Find a 95% confidence interval for the standard deviation in
the rate of return.

4. Test at the 4% significance level whether the standard
deviation in the rate of return is below 2.5%.

The sample mean is (5.1% + 4.5% + 7.8% + 4.6%)/4 = 5.5%.

The sample standard deviation is√
1
3 [(5.1%− 5.5%)2 + · · ·+ (4.6%− 5.5%)2] = 1.5556%.



χ2 Hypothesis Tests, VI
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χ2 Hypothesis Tests, VII

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

1. Find a 95% confidence interval for the average return.

We have µ̂ = 5.5% and S = 1.5556%.

Since the standard deviation is unknown, we use a t
confidence interval. For a 95% CI with df = 3, the t-statistic
tα/2,df = 3.1824.

Then the confidence interval is
5.5%± 3.1824 · 1.5556%/

√
4 = (3.02%, 7.97%).



χ2 Hypothesis Tests, VII

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

1. Find a 95% confidence interval for the average return.

We have µ̂ = 5.5% and S = 1.5556%.

Since the standard deviation is unknown, we use a t
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√
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χ2 Hypothesis Tests, VIII

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

2. Test at the 2% significance level whether the average rate of
return is above 4%.

We have µ̂ = 5.5% and S = 1.5556%.
This is a one-sample t test. Our hypotheses are H0 : µ = 4%
and Ha : µ > 4%, since the average rate in the sample was
above 4%.

The test statistic is
µ̂− µ
S/
√

n
=

5.5%− 4%

1.5556%/
√

4
= 1.9285.

Thus, the p-value is P(T3 ≥ 1.9285) = 0.07469.
At the 2% significance level, we fail to reject the null
hypothesis: we do not have strong enough evidence to
conclude the average rate of return exceeds 4%.



χ2 Hypothesis Tests, VIII

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

2. Test at the 2% significance level whether the average rate of
return is above 4%.

We have µ̂ = 5.5% and S = 1.5556%.
This is a one-sample t test. Our hypotheses are H0 : µ = 4%
and Ha : µ > 4%, since the average rate in the sample was
above 4%.

The test statistic is
µ̂− µ
S/
√

n
=

5.5%− 4%

1.5556%/
√

4
= 1.9285.

Thus, the p-value is P(T3 ≥ 1.9285) = 0.07469.
At the 2% significance level, we fail to reject the null
hypothesis: we do not have strong enough evidence to
conclude the average rate of return exceeds 4%.



χ2 Hypothesis Tests, IX

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

3. Find a 95% confidence interval for the standard deviation in
the rate of return.

We have µ̂ = 5.5% and S = 1.5556%.

Here, we must use a χ2 confidence interval. For a 95% CI
with df = 3, the two χ2-statistics we need are
χ2
α/2,df = 0.2158 and χ2

1−α/2,df = 9.3484.

Then the desired confidence interval is(√
3

9.3484
· 1.5556%,

√
3

0.2158
· 1.5556%

)
=

(0.881%, 5.800%).
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χ2 Hypothesis Tests, X

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
they measure the yearly rate of return over four different years,
obtaining 5.1%, 4.5%, 7.8%, and 4.6% returns.

4. Test at the 4% significance level whether the standard
deviation in the rate of return is below 2.5%.

We have µ̂ = 5.5% and S = 1.5556%.
This is a χ2 test for variance. Our hypotheses are
H0 : σ = 2.5% and Ha : σ < 2.5%, since the sample standard
deviation was below 2.5%.

The test statistic is χ2 =
(n − 1)S2

σ2
=

3 · 1.55562

2.52
= 1.1616.

Thus, the p-value is P(Q3 < 1.1616) = 0.2378.
At the 4% significance level, we fail to reject the null
hypothesis: we do not have strong enough evidence to
conclude the standard deviation is below 2.5%.



χ2 Hypothesis Tests, X

Example: An investor wants to determine whether a particular
mutual fund is a good investment and also a stable investment, so
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χ2 Goodness of Fit, I

We often have reasons to believe that sample data should adhere
to a particular shape or distribution. However, in many cases, we
need to verify whether a particular model actually fits the data set
we have collected.

In situations where we have a single variable of interest, we
can often use the hypothesis tests we have already developed
to test the reasonableness of a model.

For example, our z-test for unknown proportion is testing
whether a particular Bernoulli random variable is a good model
for the observed data set (i.e., the collection of successes and
failures observed in a sequence of Bernoulli trials).

However, most situations have a wider array of data values
that we will want to compare to a prediction, and the
hypothesis tests we have previously developed are not suitable
for that more complicated task.



χ2 Goodness of Fit, II

For example, we might want to test whether a die is fair by rolling
it many times and tabulating the number of times each of the
outcomes 1-6 is observed.

Of course, when we roll the die, we do not expect to get a
proportion of precisely 1/6 for each possible outcome.

Indeed, the distribution of the number of each roll will be
binomially distributed.

What we want is a way to combine these results into a single
test statistic to determine whether all of the results are
collectively reasonable or unreasonable.



χ2 Goodness of Fit, III

The following theorem of Pearson gives a χ2 test statistic for
precisely this type of scenario where values are drawn from a
discrete random variable:

Theorem (χ2 Goodness of Fit)

Suppose that a discrete random variable E has outcomes
e1, e2, . . . , ek with respective probabilities p1, p2, . . . , pk . If we
sample this random variable n times, obtaining the respective
outcomes e1, e2, . . . , ek a total of x1, x2, . . . , xk times, then as
n→∞ the random variable

D =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+ · · ·+ (xk − npk)2

npk
is

χ2-distributed with k − 1 degrees of freedom.

We will not prove this theorem, as the actual details are quite
technical (the proof relies on using moment-generating functions).



χ2 Goodness of Fit, IV

A few remarks about the ingredients of the theorem:

Note that each individual total x1, x2, . . . , xk is binomially
distributed (n trials, success probability pi ). The precise joint
distribution of all of these totals is called a
multinomial distribution.

Thus, the quantity npi represents the expected number of
times we would expect to see the outcome ei if we sample the
random variable n times.

As a practical matter, the approximation will be good
whenever the expected frequencies npi are all at least 5 or so.



χ2 Goodness of Fit, V

Some very brief motivation of where the theorem comes from:

Since xi is binomially distributed, that means it is
approximately normally distributed with mean npi and
standard deviation

√
npi (1− pi ).

Equivalently, that means
xi − npi√

npi
is approximately normally

distributed with mean 0 and standard deviation
√

1− pi , and

so the quantity (1− pi )
(x1 − np1)2

np1
is approximately

χ2-distributed with 1 degree of freedom.

Summing over all of the random variables and noting that
(1− p1) + (1− p2) + · · ·+ (1− pn) = n − 1 shows that D is
“almost” the sum of n − 1 χ2-distributed variables each with
1 degree of freedom, which is equivalent to saying that it is a
χ2-distributed variable with n − 1 degrees of freedom.



χ2 Goodness of Fit, VI

Using this theorem, we can give a hypothesis testing procedure for
analyzing the goodness of fit of a model:

We take our test statistic as

d =
(x1 − np1)2

np1
+

(x2 − np2)2

np2
+ · · ·+ (xk − npk)2

npk

=
∑
data

[Observed− Expected]2

Expected
.

Our hypotheses are usually H0 : d = 0 and Ha : d > 0, since
the value d = 0 means the model is perfect and a positive
value of d indicates deviation from the model.



χ2 Goodness of Fit, VII

In order to apply Pearson’s result above, we must verify that most
of the predicted observation sizes npi are at least 5.

We will adopt the convention that at least 80% of the entries
should be at least 5 or larger. (Another option is to combine
some of these small entries into groups that have a predicted
size greater than 5.)

If the hypotheses are satisfied, then the test statistic is
χ2-distributed with k − 1 degrees of freedom, and we can
calculate the p-value as P(Qk−1 ≥ d).

We then compare the p-value to the significance level and then
either reject or fail to reject the null hypothesis, as usual.



χ2 Goodness of Fit, VIII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Test at the 10%, 3%, and 0.4%
significance levels whether the die is fair.

Outcome 1 2 3 4 5 6

Observed 354 347 318 312 333 336

If the die is fair, we would expect each outcome to occur with
probability 1/6, meaning that the expected totals are
2000/6 = 333.3 for each of the six possibilities.

We can tabulate the test statistic more conveniently by
adding a few additional rows to the table.



χ2 Goodness of Fit, VIII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Test at the 10%, 3%, and 0.4%
significance levels whether the die is fair.

Outcome 1 2 3 4 5 6

Observed 354 347 318 312 333 336

If the die is fair, we would expect each outcome to occur with
probability 1/6, meaning that the expected totals are
2000/6 = 333.3 for each of the six possibilities.

We can tabulate the test statistic more conveniently by
adding a few additional rows to the table.



χ2 Goodness of Fit, IX

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Test at the 10%, 3%, and 0.4%
significance levels whether the die is fair.

Outcome 1 2 3 4 5 6

Observed 354 347 318 312 333 336

Expected 333.3 333.3 333.3 333.3 333.3 333.3

(O − E )2/E 1.2813 0.5603 0.7053 1.3653 0.0003 0.0213

Then the test statistic is just given by summing the bottom
row: it comes out as d = 3.934.
There are 6 outcomes hence 6− 1 = 5 degrees of freedom.
Thus, the p-value is P(Q5 ≥ 3.934) = 0.5590. Since this is
well above each of our significance levels, we fail to reject the
null hypothesis in each case.
Remark: The values were obtained by actually simulating a
fair die roll, so it is not surprising that the p-value is large!
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χ2 Goodness of Fit, IX

Our test is set up so that data perfectly fitting the model are not
rejected, only data that are far away from the prediction.

However, in some situations, we may instead want to test
whether a model is “too good to believe” (e.g., if we are
investigating whether it is reasonable to think that the data
have been falsified or altered to adhere too closely to a
model).

In those situations we would instead want the hypotheses to
be H0 : d = c and Ha : d < c for (an arbitrary) positive c ,
and we would compute the p-value instead as P(Qk−1 ≤ d).



χ2 Goodness of Fit, X

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below.

Outcome 1 2 3 4 5 6

Observed 332 334 333 334 333 334

1. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 > c and interpret the result of the test.

2. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 < c and interpret the result of the test.

As before, the expected entry in each cell is 333.3, so we just
add rows to the table like before.
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Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below.

Outcome 1 2 3 4 5 6

Observed 332 334 333 334 333 334

1. Test at the 0.1% significance level against the alternative
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χ2 Goodness of Fit, XI

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below.

Outcome 1 2 3 4 5 6

Observed 332 334 333 334 333 334

Expected 333.3 333.3 333.3 333.3 333.3 333.3

(O − E )2/E 0.0053 0.0013 0.0003 0.0013 0.0003 0.0013

1. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 > c and interpret the result of the test.

The test statistic is just given by summing the bottom row: it
comes out as d = 0.01, with df = 5.

With Ha : d > c, the p-value is P(Q5 ≥ 0.01) = 0.9999995,
so we fail to reject the null hypothesis.

Our interpretation of this result is that we have basically no
evidence suggesting the data don’t fit the model.
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Example: To test for fairness, a six-sided die is rolled 2000 times,
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1. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 > c and interpret the result of the test.
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so we fail to reject the null hypothesis.

Our interpretation of this result is that we have basically no
evidence suggesting the data don’t fit the model.



χ2 Goodness of Fit, XII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below.

Outcome 1 2 3 4 5 6

Observed 332 334 333 334 333 334

Expected 333.3 333.3 333.3 333.3 333.3 333.3

(O − E )2/E 0.0053 0.0013 0.0003 0.0013 0.0003 0.0013

2. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 < c and interpret the result of the test.

The test statistic is d = 0.01, with df = 5.

With Ha : d < c, the p-value is P(Q5 ≤ 0.01) = 0.0000005,
so we reject the null hypothesis.

Our interpretation of this result is that we have extremely
strong evidence that the data fit the model too well,
suggesting that something very suspicious is occurring.
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Example: To test for fairness, a six-sided die is rolled 2000 times,
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Observed 332 334 333 334 333 334

Expected 333.3 333.3 333.3 333.3 333.3 333.3

(O − E )2/E 0.0053 0.0013 0.0003 0.0013 0.0003 0.0013

2. Test at the 0.1% significance level against the alternative
hypothesis Ha : χ2 < c and interpret the result of the test.

The test statistic is d = 0.01, with df = 5.

With Ha : d < c, the p-value is P(Q5 ≤ 0.01) = 0.0000005,
so we reject the null hypothesis.

Our interpretation of this result is that we have extremely
strong evidence that the data fit the model too well,
suggesting that something very suspicious is occurring.



Summary

We introduced the χ2 distribution and characterized its properties
as a sampling distribution.

We discussed confidence intervals and hypothesis tests for the
population variance and standard deviation using χ2-statistics.

We introduced the χ2 test for goodness-of-fit.

Next lecture: The χ2 tests for goodness-of-fit and independence


