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Matched Pairs and Robustness of t Tests

Matched Pairs

Robustness of t Tests

More Examples of t Tests

This material represents §5.1.4-5.1.5 from the course notes, and
problems 10-14 from WeBWorK 7.



Recall, I

Last time, we discussed Student’s equal-variances two-sample
t-test for comparing the means of two independent,
normally-distributed populations A and B with unknown standard
deviations that are assumed to be equal.

For this test, our null hypothesis is of the form H0:
µA − µB = c for some constant c that is our hypothesized
value for the difference of the means (usually 0).

We take the test statistic t =
(µ̂A − µ̂B)− c

Spool

√
1

nA
+

1

nB

, where

Spool =

√
(nA − 1)S2

A + (nB − 1)S2
B

nA + nB − 2
is the pooled standard

deviation estimate.

The test statistic is t-distributed with nA + nB − 2 degrees of
freedom.



Recall, II

We also discussed Welch’s unequal-variances two-sample t-test for
comparing the means of two independent, normally-distributed
populations A and B with unknown standard deviations, where we
do not assume the population standard deviations are equal.

Our null hypothesis is again of the form H0: µA − µB = c for
some constant c that is our hypothesized value for the
difference of the means (usually 0).

The test statistic is t =
(µ̂A − µ̂B)− c

Sunpool
, where we use the

unpooled standard deviation Sunpool =

√
S2
A

nA
+

S2
B

nB
.

The test statistic is (approximately) t-distributed with
(S2

A/nA + S2
B/nB)2

1
nA−1 (S2

A/nA)2 + 1
nB−1 (S2

B/nB)2
degrees of freedom.



Two One-Sample t Tests: Matched Pairs, I

We now discuss one additional scenario involving t tests and the
comparison of two samples, involving matched pairs.

In matched-pairs comparisons, we are comparing the means of
two sets of paired data.

A common situation is to make a before-and-after comparison
of measurements taken before applying a treatment to
measurements taken after applying the treatment; we want to
know if the treatment affected the average outcome.

Although this scenario involves two data sets, the
matched-pairs design means that the initial and later
measurements will be correlated, so it is not appropriate to
use a two-sample t test.

Instead, what we do is compute the difference in the results
(for each individual), and use a one-sample t test to compare
the average outcome to 0.



Matched Pairs, II

Example: An instructor has 6 students take a pre-assessment,
complete a study module, and then a post-assessment. The results
are below. Test at the 9%, 1%, and 0.3% significance levels if the
students’ scores improved after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

Here, we have matched-pair data, because the measurements
of the scores are coming from the same students. Since the
values in the samples are not independent, but come from
matched pairs, we want to use a one-sample t test here.



Matched Pairs, II

Example: An instructor has 6 students take a pre-assessment,
complete a study module, and then a post-assessment. The results
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Matched Pairs, III

Example: Test at the 9%, 1%, and 0.3% significance levels if the
students’ scores improved after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

Our hypotheses are H0 : µpost = µpre and Ha : µpost > µpre,
which we can rephrase in terms of the difference in means
µdiff = µpost − µpre as H0: µdiff = 0 and Ha : µdiff > 0.

Our test statistic is the difference in means µdiff, which will be
t-distributed with 6− 1 = 5 degrees of freedom.
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Example: Test at the 9%, 1%, and 0.3% significance levels if the
students’ scores improved after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

Our hypotheses are H0 : µpost = µpre and Ha : µpost > µpre,
which we can rephrase in terms of the difference in means
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Matched Pairs, IV

Example: Test at the 9%, 1%, and 0.3% significance levels if the
students’ scores improved after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

Our sample data set consists of the six differences of scores
{13, 17, 7,−1, 30, 12}, with mean µ̂diff = 13 and sample
standard deviation S = 10.3730, and the value of the sample

statistic is t =
µ̂diff − 0

S/
√
n

= 3.0698.

Thus, the p-values is P(T5 ≥ 3.0698) = 0.01389.

Since the p-value is below 9% we reject the null hypothesis at
that significance level, but since it is above 1% and 0.3% we
fail to reject at those significance levels.



Matched Pairs, IV

Example: Test at the 9%, 1%, and 0.3% significance levels if the
students’ scores improved after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

Our sample data set consists of the six differences of scores
{13, 17, 7,−1, 30, 12}, with mean µ̂diff = 13 and sample
standard deviation S = 10.3730, and the value of the sample

statistic is t =
µ̂diff − 0

S/
√
n

= 3.0698.

Thus, the p-values is P(T5 ≥ 3.0698) = 0.01389.

Since the p-value is below 9% we reject the null hypothesis at
that significance level, but since it is above 1% and 0.3% we
fail to reject at those significance levels.



Matched Pairs, V

Example: Find a 95% confidence interval for the average
improvement in a student’s test score after studying:

Student A B C D E F

Pre-study 61 71 90 81 55 81

Post-study 74 88 97 80 85 93

We can construct a confidence interval using the fact that the

test statistic
µdiff

S/
√
n

will be t-distributed with 6− 1 = 5

degrees of freedom.

Since the sample mean is µ̂diff = 13 with sample standard
deviation S = 10.3730, and the t-statistic tα/2,df for α = 95%
and df = 5 is t = 2.5706, the desired confidence interval is
13± 2.5706 · 10.3730/

√
5 = (2.1142, 23.8858).
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test statistic
µdiff

S/
√
n

will be t-distributed with 6− 1 = 5

degrees of freedom.
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Matched Pairs, VI

Example: To determine whether a new drug lowers blood serum
LDL cholesterol levels, 300 patients are given the drug, and their
cholesterol levels are measured before starting a course of the drug,
and then again after 5 years of taking the drug. The starting LDL
levels averaged 173.86 mg/dL with a sample standard deviation of
29.75 mg/dL, while the ending LDL levels averaged 168.25 mg/dL
with a sample standard deviation of 30.20 mg/dL. The sample
standard deviation for the differences for each patient was 39.44
mg/dL. Assume all relevant quantities are normally distributed.

1. Test at the 1% significance level whether LDL levels were
lower after 5 years.

2. Give 99% confidence intervals for the starting LDL level, the
ending LDL level, and the difference in LDL levels.

3. Explain why it is not possible to conclude from these
calculations that the drug lowered LDL levels.



Matched Pairs, VII

Example: 300 patients have starting LDL levels averaging 173.86
mg/dL with a sample standard deviation of 29.75 mg/dL, and the
ending LDL levels averaging 168.25 mg/dL with a sample standard
deviation of 30.20 mg/dL. The sample standard deviation for the
differences for each patient was 39.44 mg/dL.

1. Test at the 1% significance level whether LDL levels were
lower after 5 years.

Here, we have matched-pair data, because the values are
taken from the same patients before and after, so we want to
use a one-sample t test on the differences [end] - [start].

Our hypotheses are H0 : µdiff = 0 and Ha : µdiff > 0.

Our sample data set consists of the 600 differences of LDL
levels (so df = 299), with mean
µ̂diff = 173.86− 168.25 = 5.61 mg/dL and sample standard
deviation Sdiff = 39.44 mg/dL.
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1. Test at the 1% significance level whether LDL levels were
lower after 5 years.

Here, we have matched-pair data, because the values are
taken from the same patients before and after, so we want to
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Matched Pairs, VIII

Example: 300 patients have starting LDL levels averaging 173.86
mg/dL with a sample standard deviation of 29.75 mg/dL, and the
ending LDL levels averaging 168.25 mg/dL with a sample standard
deviation of 30.20 mg/dL. The sample standard deviation for the
differences for each patient was 39.44 mg/dL.

1. Test at the 1% significance level whether LDL levels were
lower after 5 years.

We have df = 599, µ̂diff = 175.28− 168.25 = 5.61 mg/dL,
and Sdiff = 39.44 mg/dL.

The test statistic is
5.61 mg/dL

(39.44 mg/dL)/
√

300
= 2.4637.

Thus, the p-value is P(T299 ≥ 2.4637) = 0.00702.

Since the p-value is below 1%, we reject the null hypothesis
and conclude that the LDL levels were indeed lowered.



Matched Pairs, IX

Example: 300 patients have starting LDL levels averaging 173.86
mg/dL with a sample standard deviation of 29.75 mg/dL, and the
ending LDL levels averaging 168.25 mg/dL with a sample standard
deviation of 30.20 mg/dL. The sample standard deviation for the
differences for each patient was 39.44 mg/dL.

2. Give 99% confidence intervals for the starting LDL level, the
ending LDL level, and the difference in LDL levels.

Here df = 299 so the t-statistic for a 99% CI is t = 1.9679.
Start: (173.86 mg/dL)± 1.9639 · (29.75 mg/dL)/

√
300

= (170.48 mg/dL , 177.24 mg/dL).
End: (168.25 mg/dL)± 1.9639 · (30.20 mg/dL)/

√
300

= (164.82 mg/dL , 171.68 mg/dL).
Difference: (−5.61 mg/dL)± 1.9639 · (39.44 mg/dL)/

√
300

= (−10.09 mg/dL ,−1.13 mg/dL).
Note that although the 99% CIs for the starting and ending
LDL levels, the 99% CI for the difference does not contain 0.
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Matched Pairs, X

Example: LDL example.

3. Explain why it is not possible to conclude from these
calculations that the drug lowered LDL levels.

The point here is not statistical in nature: although LDL
levels were lowered, this study does not establish that the
lowering was caused by the drug.

To establish that, we would need to use a double-blind
protocol that also includes a placebo group, since the results
could be caused by the placebo effect.

They could also an effect of participant selection: if people
with high LDL levels are recruited by the study, one would
expect to see regression to the mean.
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Matched Pairs, XI

Regression to the mean is a very common phenomenon that can be
observed in all sorts of places: sports statistics, medical trials,
heights of parents and children, successful stocks, etc.

To explain: there is variation in the measured quantity, so
some high performers are actually closer to normal performers
that were just measured on a “high” day. When measured
again, they are much more likely to tend to have a lower
measurement.

Since we are only selecting high performers, our sample will be
biased towards selecting elements that had lucky variation
upwards, and in the future they will be more likely to land at a
lower value.

The same thing occurs in the reverse direction if we select low
performers: their future average will tend to move upwards.



Robustness of t Tests, I

Over the last six lectures or so, we talked about z tests, the t
distribution, and t tests.

All of our discussion of z tests and t tests has been predicated
on the assumption that the underlying populations we are
studying are normally distributed.

In reality, except for very rare examples arising in physics with
phenomena having exact theoretical models, no population is
precisely normally distributed.

It is therefore important to study how well the tests we have
developed will perform in situations where the underlying
distributions are not exactly normal.

What we are investigating is called robustness: the accuracy
of the tests when applied to distributions that are not exactly
the ones predicted by the model.



Robustness of t Tests, II

Our concern is similar to that which motivated our discussion of
the t distribution and t tests.

Specifically, when we do not know the standard deviation, we
could simply have tried using z tests but with S in place of σ.
The resulting test would then not be exact, but we could hope
that it is fairly close.

As we have explained, with small samples using a z place
instead of a t test will generally be much less accurate (in the
sense that the type I and type II error probabilities will
generally be much larger).

However, with large samples (e.g., n around 100 or more) then
the difference between the standard normal distribution and
the t distribution is negligible, and so using a z test in place
of a t test in such situations does not introduce much error.



Robustness of t Tests, III

In principle, if we had a different underlying distribution (e.g., a
uniform distribution), we could develop analogues of the z test and
t test specifically for that underlying distribution.

In fact there are many other statistical tests that have been
developed precisely to allow accurate study of data sets that
have very non-normally-shaped distributions.

What we would like to know, though, is how necessary it is to
expend this effort to develop a different test statistic for
different types of data distributions.

It turns out that the t test is actually fairly robust, in that it
performs fairly well even with distributions that are moderately
non-normal.



Robustness of t Tests, IV

Here are simulations of the t-statistic for sampling a uniform
distribution:



Robustness of t Tests, V

Here are simulations of the t-statistic for sampling a uniform
distribution:



Robustness of t Tests, VI

Here are simulations of the t-statistic for sampling the “peak”
distribution with p(x) = 1− |x | on [−1, 1]:



Robustness of t Tests, VII

Here are simulations of the t-statistic for sampling the “peak”
distribution with p(x) = 1− |x | on [−1, 1]:



Robustness of t Tests, VIII

Here are simulations of the t-statistic for sampling the Poisson
distribution with λ = 3:



Robustness of t Tests, IX

Here are simulations of the t-statistic for sampling the Poisson
distribution with λ = 3:



Robustness of t Tests, X

Here are simulations of the t-statistic for sampling the exponential
distribution with parameter λ = 1/2:



Robustness of t Tests, XI

Here are simulations of the t-statistic for sampling the exponential
distribution with parameter λ = 1/2:



Robustness of t Tests, XII

We can see from the simulations that the t distribution is fairly
close for the uniform and peak distributions, it is off a bit for the
Poisson, and it is very far off for the exponential.

The uniform and peak distributions are both symmetric and
do not have wide tails.

The Poisson distribution is more skewed and has a long tail. It
also has the difficulty that it is discrete and that small samples
will sometimes yield all identical values (giving a sample
standard deviation of 0, yielding an undefined test statistic):
this explains the peculiar spike at 0.

The exponential distribution is very skewed, which causes the
resulting test statistic also to be skewed. We can see that the
t distribution is not a very good model here even with a
sample size n = 10.



Robustness of t Tests, XIII

In general, the t distribution models the sample statistic
x − µ
S/
√
n

well when the underlying distribution is symmetric, but not when
the underlying distribution is asymmetric or skewed to one side.

Thus, when the underlying distribution is asymmetric /
skewed, t tests will not give reliable results with small samples.

With large sample sizes (the exact definition of large, of
course, depends on the scenario, but as we have seen in our
discussion of the central limit theorem, usually n = 100− 200
or so is quite sufficient), the central limit theorem will
eventually take over and cause the sample average to be
approximately normally distributed, even if the original
distribution was asymmetric or skewed.

In such cases, since the t distribution is so close to the normal
distribution, either the t test or the z test will be reliable.



Robustness of t Tests, XIV

Here are the results of simulating the test statistic for larger n with
exponentially distributed data:



Robustness of t Tests, XV

We can see here that although there is still some skewness in the
histogram, it is now better approximated by the t distribution:



More t Tests, I

Example: A campus group wants to investigate whether male and
female faculty are paid equally. A random sample of faculty is
selected: the 50 male faculty have an average salary of $142,081
with a sample standard deviation of $47,683 while the 50 female
faculty have an average salary of $118,956 with a sample standard
deviation of $44,549. Assume salaries are normally distributed.

1. Use Student’s equal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% CI for the difference.

2. Use Welch’s unequal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% CI for the difference.



More t Tests, II

Example: The 50 male faculty have avg salary $142,081 with std
dev $47,683, while the 50 female faculty have avg salary $118,956
with std dev $44,549. Assume salaries are normally distributed.

1. Use Student’s equal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% CI for the difference.

Our hypotheses are H0 : µm = µf with alternative
Ha : µm 6= µf .

The pooled standard deviation is

Spool = $

√
(50− 1) · 476832 + (50− 1) · 445492

50 + 50− 2
= $46142,

with df = 50 + 50− 2 = 98.

Our test statistic is then t =
µ̂m − µ̂f

Spool

√
1
nm

+ 1
nf

= 2.5058, so the

p-value is 2P(T98 ≥ 2.5058) = 0.0139.
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More t Tests, III

Example: The 50 male faculty have avg salary $142,081 with std
dev $47,683, while the 50 female faculty have avg salary $118,956
with std dev $44,549. Assume faculty salaries are approximately
normally distributed.

1. Use Student’s equal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% confidence interval for the difference between the
two groups’ average salaries.

Since the p-value is below 3%, we reject the null hypothesis
and conclude that there is a difference between the two
groups’ average salaries.

With df = 98 and α = 5%, we have tα/2,df = 1.9845, so the

95% CI is ($142081− $118956)− 1.9845 · $46142
√

1
50 + 1

50

= ($4704, $41546).



More t Tests, IV

Example: The 50 male faculty have avg salary $142,081 with std
dev $47,683, while the 50 female faculty have avg salary $118,956
with std dev $44,549. Assume salaries are normally distributed.

2. Use Welch’s unequal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% CI for the difference.

Our hypotheses are H0 : µm = µf with alternative
Ha : µm 6= µf .

The unpooled standard deviation is

Sunpool = $

√
476832

49
+

445492

49
= $9228, with df = 97.55.

Our test statistic is then t =
µ̂m − µ̂f
Sunpool

= 2.5058, so the

p-value is 2P(T97.55 ≥ 2.5058) = 0.0139.



More t Tests, IV

Example: The 50 male faculty have avg salary $142,081 with std
dev $47,683, while the 50 female faculty have avg salary $118,956
with std dev $44,549. Assume salaries are normally distributed.

2. Use Welch’s unequal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% CI for the difference.

Our hypotheses are H0 : µm = µf with alternative
Ha : µm 6= µf .

The unpooled standard deviation is
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√
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+

445492

49
= $9228, with df = 97.55.

Our test statistic is then t =
µ̂m − µ̂f
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= 2.5058, so the

p-value is 2P(T97.55 ≥ 2.5058) = 0.0139.



More t Tests, V

Example: The 50 male faculty have avg salary $142,081 with std
dev $47,683, while the 50 female faculty have avg salary $118,956
with std dev $44,549. Assume faculty salaries are approximately
normally distributed.

2. Use Welch’s equal-variances t-test to test at the 3% level
whether the two groups have different average salaries, and
give a 95% confidence interval for the difference between the
two groups’ average salaries.

Since the p-value is below 3%, we reject the null hypothesis
and conclude that there is a difference between the two
groups’ average salaries.

With df = 97.55 and α = 5%, we have tα/2,df = 1.9846, so
the 95% CI is ($142081− $118956)− 1.9846 · $9228
= ($4811, $41439).



More t Tests, VI

Example: The campus group brings these results to the university
administration, who agree that it compellingly indicates that male
faculty (avg salary $142,081) are paid more on average than female
faculty (avg salary $118,956). The administration wants to know
which division is responsible, so they break the data down further:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

3. Test at the 3% level whether average salaries for male STEM
faculty are higher or lower than for female STEM faculty.

4. Test at the 3% level whether average salaries for male HSS
faculty are higher or lower than for female HSS faculty.

5. Briefly describe what conclusions one may draw about the
original question of whether female faculty are underpaid.



More t Tests, VII

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

3. Test at the 3% level whether average salaries for male STEM
faculty are higher or lower than for female STEM faculty.

For STEM, H0 : µm = µf with alternative Ha : µm < µf .

If we use Student’s t-test, the pooled standard deviation is

Spool = $
√

(40−1)·305872+(10−1)·325782

40+10−2 = $30970, with
df = 40 + 10− 2 = 48.

Our test statistic is t = µ̂m−µ̂f

Spool

√
1
nm

+
1
nf

= −3.0551, so the

p-value is P(T48 ≤ −3.0551) = 0.00183 for Student’s t-test.
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More t Tests, VIII

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

3. Test at the 3% level whether average salaries for male STEM
faculty are higher or lower than for female STEM faculty.

If instead we use Welch’s t-test, the unpooled standard
deviation is Sunpool = $11381 with df = 13.26.

Our test statistic is t = µ̂m−µ̂f

Spool

√
1
nm

+
1
nf

= −2.9393 and the

p-value is P(T13.26 ≤ −2.9393) = 0.00565 for Welch’s t-test.

In either case, the p-value is below 3%, so we reject the null
hypothesis. Our interpretation is that for STEM faculty, the
female average salary is higher.



More t Tests, VIII

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

3. Test at the 3% level whether average salaries for male STEM
faculty are higher or lower than for female STEM faculty.

If instead we use Welch’s t-test, the unpooled standard
deviation is Sunpool = $11381 with df = 13.26.

Our test statistic is t = µ̂m−µ̂f

Spool

√
1
nm

+
1
nf

= −2.9393 and the

p-value is P(T13.26 ≤ −2.9393) = 0.00565 for Welch’s t-test.

In either case, the p-value is below 3%, so we reject the null
hypothesis. Our interpretation is that for STEM faculty, the
female average salary is higher.



More t Tests, IX

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

4. Test at the 3% level whether average salaries for male HSS
faculty are higher or lower than for female HSS faculty.

For HSS, H0 : µm = µf with alternative Ha : µm < µf .

If we use Student’s t-test, the pooled standard deviation is
Spool = $21738, with df = 40 + 10− 2 = 48.

Our test statistic is then t =
µ̂m − µ̂f

Spool

√
1
nm

+ 1
nf

= −4.2317, so

the p-value is P(T48 ≤ −4.2317) = 0.000052.



More t Tests, IX

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

4. Test at the 3% level whether average salaries for male HSS
faculty are higher or lower than for female HSS faculty.

For HSS, H0 : µm = µf with alternative Ha : µm < µf .

If we use Student’s t-test, the pooled standard deviation is
Spool = $21738, with df = 40 + 10− 2 = 48.

Our test statistic is then t =
µ̂m − µ̂f

Spool

√
1
nm

+ 1
nf

= −4.2317, so

the p-value is P(T48 ≤ −4.2317) = 0.000052.



More t Tests, X

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

4. Test at the 3% level whether average salaries for male HSS
faculty are higher or lower than for female HSS faculty.

If instead we use Welch’s t-test, the unpooled standard
deviation is Sunpool = $8585 with df = 12.32.

Our test statistic is t = µ̂m−µ̂f

Spool

√
1
nm

+
1
nf

= −3.7884 and the

p-value is P(T12.32 ≤ −3.7884) = 0.000124 for Welch’s t-test.

In either case, the p-value is below 3%, so we reject the null
hypothesis. Our interpretation is that for HSS faculty, the
female average salary is higher.



More t Tests, X

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

4. Test at the 3% level whether average salaries for male HSS
faculty are higher or lower than for female HSS faculty.

If instead we use Welch’s t-test, the unpooled standard
deviation is Sunpool = $8585 with df = 12.32.

Our test statistic is t = µ̂m−µ̂f

Spool

√
1
nm

+
1
nf

= −3.7884 and the

p-value is P(T12.32 ≤ −3.7884) = 0.000124 for Welch’s t-test.

In either case, the p-value is below 3%, so we reject the null
hypothesis. Our interpretation is that for HSS faculty, the
female average salary is higher.



More t Tests, XI

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

5. Briefly describe what conclusions one may draw about the
original question of whether female faculty are underpaid.

This is where things become tricky, because if we look at both
divisions together, we saw very clearly that the average salary
for female faculty was less than for male faculty (statistically
significant at the 3% level).

On the other hand, in the STEM division, the average salary
for female faculty was greater than that for male faculty
(significant at the 3% level), and the same also held for the
HSS division!



More t Tests, XI

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

5. Briefly describe what conclusions one may draw about the
original question of whether female faculty are underpaid.

This is where things become tricky, because if we look at both
divisions together, we saw very clearly that the average salary
for female faculty was less than for male faculty (statistically
significant at the 3% level).

On the other hand, in the STEM division, the average salary
for female faculty was greater than that for male faculty
(significant at the 3% level), and the same also held for the
HSS division!



More t Tests, XII

Example: Salary data broken down by division:
STEM faculty: 40 male (avg $160691, std dev $30587).

10 female (avg $194143, std dev $32578).
HSS faculty: 10 male (avg $67638, std dev $25056)

40 female (avg $100160, std dev $20897).

5. Briefly describe what conclusions one may draw about the
original question of whether female faculty are underpaid.

It seems hard to reconcile those three facts: female faculty are
paid more in each individual division, but less overall.
Here’s why: there are more male faculty in STEM, which also
has higher salaries than HSS. So, even though the female
faculty are better paid in each division, more of them are in
the lower-paying division, so their overall average is lower.
This is an example of Simpson’s paradox: it is the
phenomenon where a trend or result holds inside of subgroups,
but is reversed when the groups are combined.



More t Tests, XIV

Simpson’s paradox presents a serious problem when using statistics
and grouping populations together.

These statistical methods alone are not capable of identifying
whether there is a “confounding” (or “lurking”) variable that
may be affecting the results but is not included in the
collected data.

Simpson’s paradox also yields difficult-to-reconcile
conclusions, such as in this case with faculty salaries.

It is very easy to give misleading statistics: here, both the
“male faculty are paid more” and “female faculty are paid
more” camps have t-tests showing that they’re “correct”!

This is one more reason why it is so important to study an
experimental question from many different directions, and use
a variety of statistical summaries.



More t Tests, XV

Looking at the actual distributions might have suggested that the
presence of another variable that might be relevant (or at the very
least, that the overall distributions look quite skewed):



More t Tests, XVI

Looking at the actual distributions might have suggested that the
presence of another variable that might be relevant (or at the very
least, that the overall distributions look quite skewed):



More t Tests, XVII

Looking at the actual distributions might have suggested that the
presence of another variable that might be relevant (or at the very
least, that the overall distributions look quite skewed):



Summary

We discussed matched-pairs tests.

We discussed the robustness of t tests.

We did more examples of t tests.

Next lecture: The χ2 distribution and estimating variance


