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t Distributions and Confidence Intervals

t Distributions

Confidence Intervals with t Statistics

This material represents §4.2.1-4.2.2 from the course notes, and
problems 16-20 from WeBWorK 6.

This also represents the last of the material for Midterm 3.



Overview of §5

We now move into the fifth and final chapter of the course, which
deals with some additional types of hypothesis tests based on the
normal distribution.

In contrast with the z-tests, which require knowing the
population standard deviation, our goal in this chapter is to
construct hypothesis tests for normally-distributed quantities
whose parameters are unknown.

First we will discuss t tests and confidence intervals, for the
mean of approximately normally distributed variables with an
unknown standard deviation.

Then we will discuss χ2 tests and confidence intervals, for the
variance of a sum of approximately normally distributed
variables, which can also be used to to assess independence
and goodness of fit.



t Distributions, I

In our discussion of hypothesis testing so far, we have relied on z
tests, which require an approximately normally distributed test
statistic whose standard deviation is known.

However, in most situations, it is unlikely that we would
actually know the population standard deviation.

[Insert your own example of some quantity you’d want to
estimate here, and then explain why you probably don’t know
the population standard deviation.]

Instead, in such cases, we must estimate the population
standard deviation from the sample standard deviation.

We already discussed the problem of estimating the population
standard deviation from a sample back in our discussion of
estimators.



t Distributions, II

Suppose values x1, . . . , xn are drawn from a normal distribution
with unknown mean µ and unknown standard deviation σ.

Let x = 1
n (x1 + · · ·+ xn) be the sample mean.

We showed that the maximum likelihood estimate

σ̂ =

√
1

n

[
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

]
for the

standard deviation is biased.

Instead of σ̂, we use the sample standard deviation

S =

√
1

n − 1

[
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

]
, whose

square S2 is an unbiased estimator of the population variance
σ2.



t Distributions, III

It may seem reasonable to say that if we use the estimated
standard deviation S in place of the unknown population σ, then
we should be able to use a z test with the resulting approximation.

However, this turns out not to be the case!

This might be surprising, because in other situations, such as
the normal approximation to the binomial distribution, we
have been able to adapt z tests with estimated standard
deviations.

However (if you recall) when I gave those explanations, I
included a careful analysis of how far off the standard
deviation estimate was, and showed it introduced a very small
error.

As we will see, that is not what happens here!



t Distributions, IV

To make things more explicit, we convert the discussion to a
distribution with a single unknown parameter.

We do this by looking at the normalized ratio
x − µ
S/
√

n
, which

has mean 0 and standard deviation 1.

This ratio is analogous to the z-score
x − µ
σ/
√

n
, whose

distribution (under the assumptions of the null hypothesis
that the true mean is µ) is the standard normal distribution of
mean 0 and standard deviation 1.

If we take
x − µ
S/
√

n
as our test statistic, then (as we will show)

this test statistic is not normally distributed!

The distribution is similar in shape to the normal distribution,
but it is in fact different, and is called the t distribution.



t Distributions, V

We can illustrate visually the lack of normality of the normalized

test statistic
x − µ
S/
√

n
by simulating a sampling procedure.

Explicitly, suppose that X is normally distributed with mean
µ = 0 and standard deviation σ = 1, and we want to test the
hypothesis that the mean actually is equal to 0 using the

normalized test statistic
x − µ
S/
√

n
with n = 3.

To understand the behavior of
x − µ
S/
√

n
, we sample the standard

normal distribution to obtain 3 data points x1, x2, x3 and then

compute
x − µ
S/
√

n
using the sample mean x and estimated

standard deviation S .



t Distributions, VI

Here is a histogram showing a total of 10000 samples, along with
the pdf of the standard normal distribution:



t Distributions, VII

Here is a histogram showing a total of 10000 samples, along with
the pdf of the standard normal distribution:



t Distributions, VIII

Compare the results of those two histograms:

The first one simulates the test statistic
x − µ
σ/
√

n
.

It matches the normal distribution very closely, which it
should, since x actually is normally distributed with mean µ
and standard deviation σ/

√
n!

The second one simulates the test statistic
x − µ
S/
√

n
.

It differs quite a bit from the normal distribution: there are
values occurring in the tails of the distribution far more often
than they do for the normal distribution, while the values near
the center occur slightly less often than predicted.



t Distributions, X

Here are some more plots of simulations (n = 5):



t Distributions, XI

Here are some more plots of simulations (n = 10):



t Distributions, XII

Here are some more plots of simulations (n = 20):



t Distributions, XIII

Here are some more plots of simulations (n = 100):



The Gamma Function, I

I will give the definition of the correct model, called the
t-distribution, in a moment, but to do so we first need a few facts
about the gamma function:

Definition

If z is a positive real numbera, the gamma function Γ(z) is defined
to be the value of the improper integral Γ(z) =

∫∞
0 xz−1e−x dx.

aIn fact, this definition also makes perfectly good sense if z is a complex
number whose real part is positive (which is why I used the letter z here).

The gamma function arises naturally in complex analysis,
number theory, and combinatorics, in addition to our use here
in statistics.
By integrating by parts, one may see that Γ(z + 1) = zΓ(z)
for all z . Combined with the easy observation that Γ(1) = 1,
we can see that Γ(n) = (n − 1)! for all positive integers n.



The Gamma Function, II

In addition to the values Γ(n) = (n − 1)!, the values of the gamma
function at half-integers can also be computed explicitly.

To compute Γ(1/2), we may substitute u =
√

x to see
Γ(1/2) = 2

∫∞
0 e−u

2
du =

√
π, as we calculated before when

analyzing the normal distribution.

Then, by using the identity Γ(z + 1) = zΓ(z), we can

calculate Γ(n + 1
2) = (n − 1

2)(n − 3
2) · · · · · 12

√
π =

(2n)!

22nn!

√
π.

If you like, you can confuse your friends by telling them that
1
2 ! =

√
π/2, which also follows from this calculation.



t Distributions, I

With Γ taken care of, here is the official definition of the t
distribution:

Definition

The t distribution with k degrees of freedom is the continuous
random variable Tk whose probability density function

pTk
(x) =

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 for all real numbers x.

We will show in a moment that the t distribution with n − 1

degrees of freedom is the proper model for the test statistic
x − µ
S/
√

n
.



t Distributions, II

Some history:

The t distribution was first derived in 1876 by Helmert and
Lüroth, and then appeared in several other papers.

It is often referred to as Student’s t distribution, because an
analysis was published under the pseudonym “Student” by
William Gosset in 1908, who because of his work at Guinness
did not publish the results under his own name.

The standard version of the story holds that Guinness wanted
all its staff to publish using pseudonyms to protect its brewing
methods and related data, since a paper had been previously
published by one of its statisticians that inadvertently revealed
some of its trade secrets.



t Distributions, III

Examples:

The t distribution with 1 degree of freedom has probability

density function pT1(x) =
1

π(1 + x2)
, which is the Cauchy

distribution.

The t distribution with 2 degrees of freedom has probability

density function pT2(x) =
1

(2 + x2)3/2
.

The t distribution with 3 degrees of freedom has probability

density function pT3(x) =
6
√

3

π(3 + x2)2
.



t Distributions, IV

Here are a few basic properties of the t distributions (remember

that the pdf is pTk
(x) =

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2):

Since pTk
(−x) = pTk

(x), the pdf is symmetric about 0 (just
like the normal distribution).

Per the symmetry about 0, we would typically expect that the
expected value of the distribution would be 0. This is true
when k ≥ 2, but in fact the expected value is undefined when
k = 1 (the integral is a non-convergent improper integral).

It is more difficult to compute the variance, but by
manipulating the integrals appropriately, one can eventually
show that the variance is undefined for k = 1 (expected value

is undefined), ∞ for k = 2, and
k

k − 2
for k > 2.



t Distributions, V

Another very important property:

Proposition (t Distributions and Normal Distributions)

As k →∞, the probability density function

pTk
(x) =

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 for the t distribution

approaches the standard normal distribution.

Proof:

Using the fact that limk→∞(1 + y/k)k = ey , we can see that
limk→∞(1 + x2/k)−(k+1)/2 = e−x

2/2.

Thus, lim
k→∞

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 =
1√
2π

e−x
2/2.

The limit of the constant follows from Stirling’s formula, our
calculation of Γ(k/2) five slides ago, or by observing that the
limit function must be a pdf.



t Distributions, V

Another very important property:

Proposition (t Distributions and Normal Distributions)

As k →∞, the probability density function

pTk
(x) =

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 for the t distribution

approaches the standard normal distribution.

Proof:

Using the fact that limk→∞(1 + y/k)k = ey , we can see that
limk→∞(1 + x2/k)−(k+1)/2 = e−x

2/2.

Thus, lim
k→∞

Γ(k+1
2 )

√
kπΓ(k2 )

· (1 + x2/k)−(k+1)/2 =
1√
2π

e−x
2/2.

The limit of the constant follows from Stirling’s formula, our
calculation of Γ(k/2) five slides ago, or by observing that the
limit function must be a pdf.



t Distributions, VI

Our main result is the following:

Theorem (Modeling Property of the t Distribution)

Suppose n ≥ 2 and that X1,X2, . . . ,Xn are independent, identically
normally distributed random variables with mean µ and standard

deviation σ. If X =
1

n
(X1 + · · ·+ Xn) denotes the sample mean

and S =

√
1

n − 1

[
(X1 − X )2 + (X2 − X )2 + · · ·+ (Xn − X )2

]
denotes the sample standard deviation, then the distribution of the

normalized test statistic
X − µ
S/
√

n
is the t distribution Tn−1 with

n − 1 degrees of freedom.

We will only outline the proof, since most of the actual
calculations are rather technical and unenlightening.



t Distributions, VIII

Proof (outline):

First, we show that the sample mean X and the sample
standard deviation S are independent. This is relatively
intuitive, but the proof requires the observation that
orthogonal changes of variable preserve independence.

Next, we compute the probability density functions for the
numerator X − µ (which is normal with mean 0 and standard
deviation σ/

√
n) and the denominator.



t Distributions, IX

Proof (outline) (continued):

We are finding the PDF of the denominator term S/
√

n.

First, we compute the probability density of
n − 1

σ2
S2 =

1

σ2
[
(X1 − X )2 + (X2 − X )2 + · · ·+ (Xn − X )2

]
=

(X1−µ
σ )2 + (X2−µ

σ )2 + · · ·+ (Xn−1−µ
σ )2.

This last expression is the sum of the squares of n − 1
independent standard normal distributions, which is known as
a χ2 distribution (which we discuss in more detail next week).

The pdf of the denominator
1

S/
√

n
can then be computed

using the pdf above, using standard techniques for computing
the pdf of a function of a random variable.



t Distributions, X

Proof (outline) (continued) (continued):

Now we have the PDFs of both X − µ and
1

S/
√

n
.

Because since X − µ and S/
√

n were shown to be
independent, the joint pdf for X − µ and S/

√
n is simply the

product of their individual pdfs.

Then, at last, we can the probability density function for
X − µ
S/
√

n
= (X − µ) · 1

S/
√

n
can be calculated by evaluating an

appropriate integral of the joint pdf of X − µ and S/
√

n.

All that’s left is to actually perform all the calculations!



t Distributions, XVIII

To illustrate, here’s the normal distribution:



t Distributions, XIX

... and here’s the t distribution (much better!):



t Distributions, XVIII

Here’s the sample for n = 5:



t Distributions, XIX

And the t distribution with the same dataset:



t Confidence Intervals, I

Before we discuss how to use the t distribution for hypothesis
testing (next lecture), we will explain how to use t statistics to find
confidence intervals (the rest of this lecture).



t Confidence Intervals, II

The idea is quite simple: if we want to find a confidence interval
for the unknown mean of a normal distribution whose standard
deviation is also unknown, we can estimate the mean using the t
distribution.

Specifically, since the normalized statistic
x − µ
S/
√

n
is modeled by

the t-distribution Tn−1 with n − 1 degrees of freedom, we can
compute a 100(1− α)% confidence interval using a t-statistic
in place of the z-statistic that we used for normally distributed
random variables whose standard deviation was known.



t Confidence Intervals, III

Here is the picture for the normal distribution:

Note zα/2 (called c last week) has P(N0,1 ≥ zα/2) = α/2.



t Confidence Intervals, IV

Here is the picture for the t distribution:

Here tα/2,df has P(Tn−1 ≥ tα/2,df ) = α/2.



t Confidence Intervals, V

So what we want is to find the value tα/2,df that plays the role of
zα/2 for the t distribution.

You can think of this value as the number of standard
deviations in the margin of error for the confidence interval.

If we find tα/2,df such that
P(−tα/2,df < Tn−1 < tα/2,df ) = 1− α, then this yields the
100(1− α)% confidence interval
µ̂± tα/2,df

S√
n

= (µ̂− tα/2,df
S√
n
, µ̂+ tα/2,df

S√
n

).

Using the symmetry of the t distribution,
P(−tα/2,df < Tn−1 < tα/2,df ) = 1− α is equivalent to
P(Tn−1 < −tα/2,df ) = α/2, or also to
P(tα/2,df < Tn−1) = 1− (α/2), which allows us to compute
the value of tα/2,df by evaluating the inverse cumulative
distribution function for Tn−1.



t Confidence Intervals, VI

We can summarize this discussion as follows:

Proposition

A 100(1− α)% confidence interval for the unknown mean µ of a
normal distribution with unknown standard deviation is given by

µ̂± tα/2,df
S√
n

= (µ̂− tα/2,df
S√
n
, µ̂+ tα/2,df

S√
n

) where n sample

points x1, . . . , xn are taken from the distribution,
µ̂ = 1

n (x1 + · · ·+ xn) is the sample mean,

S =
√

1
n−1 [(x1 − µ̂)2 + · · ·+ (xn − µ̂)2] is the sample standard

deviation, and tα/2,df is the constant satisfying
P(−tα/2,df < Tn−1 < tα/2,df ) = 1− α.

Note that the number of degrees of freedom is df = n − 1, not n.



t Confidence Intervals, VII

Some specific values of tα/2,df for various common values of n and
α are given in the table below (note that the last row for n =∞
represents the entry for the normal distribution):
Entries give tα/2,df such that P(−tα/2,df < Tdf < tα/2,df ) = 1− α

df 50% 80% 90% 95% 98% 99% 99.5% 99.9%

1 1 3.0777 6.3138 12.706 31.820 63.657 127.32 636.62

2 0.8165 1.8856 2.9200 4.3027 6.9646 9.9248 14.089 31.599

3 0.7649 1.6477 2.3534 3.1824 4.5407 5.8409 7.4533 12.924

4 0.7407 1.5332 2.1318 2.7764 3.7469 4.6041 5.5976 8.6103

5 0.7267 1.4759 2.0150 2.5706 3.3649 4.0321 4.7733 6.8688

10 0.6998 1.3722 1.8125 2.2281 2.7638 3.1693 3.5814 4.5869

20 0.6870 1.3253 1.7247 2.0860 2.5280 2.8453 3.1534 3.8495

50 0.6794 1.2987 1.6759 2.0086 2.4033 2.6778 2.9370 3.4960

100 0.6770 1.2901 1.6602 1.9840 2.3642 2.6259 2.8707 3.3905

∞ 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905



t Confidence Intervals, VIII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

1. A 90% confidence interval for the average score on the exam.

2. A 95% confidence interval for the average score on the exam.

3. A 99.5% confidence interval for the average score on the
exam.

4. The 90%, 95%, and 99.5% confidence intervals for the
average score if the population standard deviation were known
to be 9.1 points.

5. Compare the z and t confidence intervals calculated above.

We need to look up the appropriate entries from the t table,
with df = 21− 1 = 20 (20 degrees of freedom).



t Confidence Intervals, VIII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

1. A 90% confidence interval for the average score on the exam.

2. A 95% confidence interval for the average score on the exam.

3. A 99.5% confidence interval for the average score on the
exam.

4. The 90%, 95%, and 99.5% confidence intervals for the
average score if the population standard deviation were known
to be 9.1 points.

5. Compare the z and t confidence intervals calculated above.

We need to look up the appropriate entries from the t table,
with df = 21− 1 = 20 (20 degrees of freedom).



t Confidence Intervals, IX

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

1. A 90% confidence interval for the average score on the exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 1.7247.

Thus, the 90% confidence interval is
µ̂± 1.7247 · S/

√
n = (74.77, 81.62).



t Confidence Intervals, IX

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

1. A 90% confidence interval for the average score on the exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 1.7247.

Thus, the 90% confidence interval is
µ̂± 1.7247 · S/

√
n = (74.77, 81.62).



t Confidence Intervals, X

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

2. A 95% confidence interval for the average score on the exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 2.0860.

Thus, the 95% confidence interval is
µ̂± 2.0860 · S/

√
n = (74.06, 82.34).



t Confidence Intervals, X

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

2. A 95% confidence interval for the average score on the exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 2.0860.

Thus, the 95% confidence interval is
µ̂± 2.0860 · S/

√
n = (74.06, 82.34).



t Confidence Intervals, XI

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

4. A 99.5% confidence interval for the average score on the
exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 3.1534.

Thus, the 99.5% confidence interval is
µ̂± 3.1534 · S/

√
n = (71.94, 84.46).



t Confidence Intervals, XI

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

4. A 99.5% confidence interval for the average score on the
exam.

We have µ̂ = 78.2, S = 9.1, and n = 15.

The confidence interval is given by µ̂± tα/2,df (S/
√

n).

The entry in the table for tα/2,df is 3.1534.

Thus, the 99.5% confidence interval is
µ̂± 3.1534 · S/

√
n = (71.94, 84.46).



t Confidence Intervals, XII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

5. The 90%, 95%, and 99.5% confidence intervals for the
average score if the population standard deviation were known
to be 9.1 points.

We now have µ̂ = 78.2, σ = 9.1, and n = 15.

The confidence interval is given by µ̂± zα/2(σ/
√

n).

We can find the entries for the z scores in the bottom row of
the table, with n =∞.

The 90% confidence interval is
µ̂± 1.6449 · σ/

√
n = (74.93, 81.46), the 95% confidence

interval is µ̂± 1.9600 · σ/
√

n = (74.31, 82.09), and the 99.5%
confidence interval is µ̂± 2.8070 · σ/

√
n = (72.63, 83.77).



t Confidence Intervals, XII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

5. The 90%, 95%, and 99.5% confidence intervals for the
average score if the population standard deviation were known
to be 9.1 points.

We now have µ̂ = 78.2, σ = 9.1, and n = 15.

The confidence interval is given by µ̂± zα/2(σ/
√

n).

We can find the entries for the z scores in the bottom row of
the table, with n =∞.

The 90% confidence interval is
µ̂± 1.6449 · σ/

√
n = (74.93, 81.46), the 95% confidence

interval is µ̂± 1.9600 · σ/
√

n = (74.31, 82.09), and the 99.5%
confidence interval is µ̂± 2.8070 · σ/

√
n = (72.63, 83.77).



t Confidence Intervals, XII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

6. Compare the z and t confidence intervals calculated above.

Here’s a table:

Confidence t z

90% (74.77,81.62) (74.93, 81.46)

95% (74.06,82.34) (74.31, 82.09)

99.5% (71.94,84.46) (72.63, 83.77)

Unsurprisingly, knowing the population standard deviation gives us
narrower confidence intervals, but they’re pretty close to the ones
using the sample standard deviation: that’s because 21 is a
reasonably big sample.



t Confidence Intervals, XII

Example: The exam scores in a statistics class are expected to be
normally distributed. 21 students’ scores are sampled, and the
average score is 78.2 points with a sample standard deviation of
9.1 points. Find the following:

6. Compare the z and t confidence intervals calculated above.

Here’s a table:

Confidence t z

90% (74.77,81.62) (74.93, 81.46)

95% (74.06,82.34) (74.31, 82.09)

99.5% (71.94,84.46) (72.63, 83.77)

Unsurprisingly, knowing the population standard deviation gives us
narrower confidence intervals, but they’re pretty close to the ones
using the sample standard deviation: that’s because 21 is a
reasonably big sample.



t Confidence Intervals, XIII

Example: A normal distribution with unknown mean and standard
deviation is sampled five times, yielding the values 1.21, 4.60, 4.99,
−2.21, and 3.21.

1. Find the sample mean and sample standard deviation.

2. Find 80%, 90%, 95%, and 99.9% confidence intervals for the
true mean of the distribution.

3. Find confidence intervals for a normal distribution whose
standard deviation is the same as this sample estimate.

4. Compare the two sets of confidence intervals.



t Confidence Intervals, XIV

Example: A normal distribution with unknown mean and standard
deviation is sampled five times, yielding the values 1.21, 4.60, 4.99,
−2.21, and 3.21.

1. Find the sample mean and sample standard deviation.

The sample mean is
µ̂ = 1

5(1.21 + 4.60 + 4.99− 2.21 + 3.21) = 2.36.

The sample variance is S2 =
1

4

[
(1.21−2.36)2+(4.60−2.36)2

+(4.99−2.36)2+(−2.21−2.36)2+(3.21−2.36)2
]

= 8.7161.

The sample standard deviation is then S =
√

8.7161 = 2.9523.

Most calculators (and basically all software) has functions that will
compute these values for you. The mean is not so bad, but the
standard deviation is rather annoying to evaluate by hand.
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t Confidence Intervals, XV

Example: A normal distribution with unknown mean and standard
deviation is sampled five times, yielding the values 1.21, 4.60, 4.99,
−2.21, and 3.21.

2. Find 80%, 90%, 95%, and 99.9% confidence intervals for the
true mean of the distribution.

We have µ̂ = 2.36, S = 2.9523, df = n − 1 = 4.

The confidence interval is µ̂± tα/2,df (S/
√

n).

We just need to use the table / a calculator to get tα/2,df .

The 80% CI is µ̂± 1.5332 · S/
√

n = (0.3357, 4.3843).

The 90% CI is µ̂± 2.1318 · S/
√

n = (−0.4546, 5.1746).

The 95% CI is µ̂± 2.7764 · S/
√

n = (−1.3057, 6.0257).

The 99.9% CI is µ̂± 8.6103 · S/
√

n = (−9.0083, 13.7283).
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t Confidence Intervals, XVI

Example: A normal distribution with unknown mean and standard
deviation is sampled five times, yielding the values 1.21, 4.60, 4.99,
−2.21, and 3.21.

3. Find confidence intervals for a normal distribution whose
standard deviation is the same as this sample estimate.

Now µ̂ = 2.36 and σ = 2.9523, with n =∞.

The confidence interval is µ̂± zα/2(σ/
√

n).

The 80% CI is µ̂± 1.2816 · σ/
√

n = (0.6679, 4.0521).

The 90% CI is µ̂± 1.6449 · σ/
√

n = (0.1882, 4.5118).

The 95% CI is µ̂± 1.9600 · σ/
√

n = (−0.2278, 4.9478).

The 99.9% CI is µ̂± 3.2905 · σ/
√

n = (−1.9845, 6.7045).
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t Confidence Intervals, XVII

Example: A normal distribution with unknown mean and standard
deviation is sampled five times, yielding the values 1.21, 4.60, 4.99,
−2.21, and 3.21.

4. Compare the two sets of confidence intervals.

Confidence t z

80% (0.3357,4.3843) (0.6679,4.0521)

90% (-0.4546,5.1746) (0.1882,4.5118)

95% (-1.3057,6.0257) (-0.2278,4.9478)

99.9% (-9.0083,13.7283) (-1.9845,6.7045)

Note how much narrower the z CIs are!

For example, if we erroneously quoted the 80% normal
confidence interval, by using the cdf for the t distribution we
can see that it is actually only a 64% confidence interval for
the t statistic: quite a bit lower!
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t Confidence Intervals, XVIII

Example: To estimate the reaction yield, a new chemical synthesis
is run three times, giving yields of 41.3%, 52.6%, and 56.1%.

1. Find the sample mean and sample standard deviation.

2. Find 50%, 80%, 90%, and 95% confidence intervals for the
true reaction yield, under the assumption that the reaction
yield is approximately normally distributed.

Since the reaction yield is approximately normally distributed,
but we do not know the standard deviation, it is appropriate
to use the t distribution here.
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t Confidence Intervals, XIX

Example: To estimate the reaction yield, a new chemical synthesis
is run three times, giving yields of 41.3%, 52.6%, and 56.1%.

1. Find the sample mean and sample standard deviation.

The sample average is
µ̂ = 1

3(41.3% + 52.6% + 56.1%) = 50%.

The sample standard deviation is S =√
1

2

[
(41.3%− 50%)2 + (52.6%− 50%)2 + (56.1%− 50%)2

]
= 7.7350%.
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t Confidence Intervals, XX

Example: To estimate the reaction yield, a new chemical synthesis
is run three times, giving yields of 41.0%, 52.6%, and 56.1%.

2. Find 50%, 80%, 90%, and 95% confidence intervals for the
true reaction yield, under the assumption that the reaction
yield is approximately normally distributed.

We have µ̂ = 50%, S = 7.7350%, n = 3.

The confidence interval is µ̂± tα/2,df (S/
√

n).

We just need to use the table / a calculator to get tα/2,df .

The 50% CI is µ̂± 0.8165 · S/
√

n = (46.35%, 53.65%).

The 80% CI is µ̂± 1.8856 · S/
√

n = (41.58%, 58.42%).

The 90% CI is µ̂± 2.9200 · S/
√

n = (36.96%, 63.04%).

The 95% CI is µ̂± 4.3027 · S/
√

n = (30.79%, 69.21%).
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Example: To estimate the reaction yield, a new chemical synthesis
is run three times, giving yields of 41.0%, 52.6%, and 56.1%.
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true reaction yield, under the assumption that the reaction
yield is approximately normally distributed.
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t Confidence Intervals, XXI

Example: Your intrepid Math 3081 instructor has written five
chapters of notes, totaling 25pp, 36pp, 18pp, 21pp, and 31pp.
Assume that the number of pages per chapter of notes is
approximately normally distributed.

1. Find the sample mean and sample standard deviation.

2. Find 50%, 80%, 90%, and 99% confidence intervals for the
average number of pages per chapter.

3. Given that I have written 56 chapters’ worth of notes for my
courses over the last eight years, find a point estimate for the
total number of pages in these chapters, as well as 50%, 80%,
90%, and 99% confidence intervals.



t Confidence Intervals, XXII

Example: Your intrepid Math 3081 instructor has written five
chapters of notes, totaling 25pp, 36pp, 18pp, 21pp, and 31pp.
Assume that the number of pages per chapter of notes is
approximately normally distributed.

1. Find the sample mean and sample standard deviation.

The sample mean is µ̂ = 1
5(25 + 36 + 18 + 21 + 31) = 26.2.

The sample variance is S2 =
1

4

[
(25− 26.2)2 + (36− 26.2)2 +

(18− 26.2)2 + (21− 26.2)2 + (31− 26.2)2
]

= 53.7, so the

sample standard deviation is S =
√

53.7 = 7.3280.
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t Confidence Intervals, XXIII

Example: Your intrepid Math 3081 instructor has written five
chapters of notes, totaling 25pp, 36pp, 18pp, 21pp, and 31pp.
Assume that the number of pages per chapter of notes is
approximately normally distributed.

2. Find 50%, 80%, 90%, and 99% confidence intervals for the
average number of pages per chapter.

We have µ̂ = 26.2, S = 7.3280, and df = n − 1 = 4.

We just need to use the table / a calculator to get tα/2,df .

The 50% CI is µ̂± 0.7407 · S/
√

n = (23.8, 28.6).

The 80% CI is µ̂± 1.5332 · S/
√

n = (21.2, 31.2).

The 90% CI is µ̂± 2.1318 · S/
√

n = (19.2, 33.2).

The 99% CI is µ̂± 4.6041 · S/
√

n = (11.1, 41.3).
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t Confidence Intervals, XXIV

Example: Your intrepid Math 3081 instructor has written five
chapters of notes, totaling 25pp, 36pp, 18pp, 21pp, and 31pp.
Assume that the number of pages per chapter of notes is
approximately normally distributed.

3. Given that I have written 56 chapters’ worth of notes for my
courses over the last eight years, find a point estimate for the
total number of pages in these chapters, as well as 50%, 80%,
90%, and 99% confidence intervals.

We just scale the confidence intervals we just calculated by 56.

The 50% CI is 56(µ̂± 0.7407 · S/
√

n) = (1331, 1603).

The 80% CI is 56(µ̂± 1.5332 · S/
√

n) = (1186, 1749).

The 90% CI is 56(µ̂± 2.1318 · S/
√

n) = (1076, 1858).

The 95% CI is 56(µ̂± 4.6041 · S/
√

n) = (622, 2312).

In case you were wondering, the actual number of pages is 1,239.
(Do you believe this number? How would you test it?)
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Summary

We introduced the t distributions and some of their properties.

We discussed how to construct confidence intervals using t
statistics.

Next lecture: One-sample t tests, two-sample t tests.


