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Errors and Misuses of Hypothesis Testing

Type I and Type II Errors

Statistical Power

Use and Misuse of Hypothesis Tests

This material represents §4.1.4 from the course notes, and
problems 12-15 from WeBWorK 6.



Type I and Type II Errors, I

When we perform a hypothesis test, there are two possible
outcomes (reject H0 or fail to reject H0).

The correctness of the result depends on the actual truth of
H0: if H0 is false then it is correct to reject it, while if H0 is
true than it is correct not to reject it.

The other two situations, namely “rejecting a correct null
hypothesis” and “failing to reject an incorrect null hypothesis”
are refered to as hypothesis testing errors.



Type I and Type II Errors, II

Since these two errors are very different, we give them very
different names:

Definition

If we are testing a null hypothesis H0, we commit a type I error if
we reject H0 when H0 was actually true. We commit a type II error
if we fail to reject H0 when H0 was actually false.

We usually summarize these errors with a small table:

H0 \ Result Fail to Reject H0 Reject H0

H0 is true Correct Decision Type I Error

H0 is false Type II Error Correct Decision



Type I and Type II Errors, III

We would like, in general, to minimize the probabilities of making
a type I or type II error.

The probability of committing a type I error is the significance
level α of the test, since by definition this is the probability of
rejecting the null hypothesis when it is actually true.

The probability of committing a type II error is denoted by β.
This value is more difficult to calculate, since it will depend on
the actual nature in which H0 is false.

If we postulate the actual value of the test statistic, we can
calculate the probability of committing a type II error.



Type I and Type II Errors, IV

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202,
corresponding to a significance level α = 2.275%.

1. Find the probability of making a type I error.

2. Find the probability of making a type II error if the true mean
is actually µ, in terms of µ.

3. Evaluate the type-II error probability for
µ = 201, 202, 203, 204, 205.

Note that the type-I error probability is just the significance
level α = 0.02275.



Type I and Type II Errors, IV

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202,
corresponding to a significance level α = 2.275%.

1. Find the probability of making a type I error.

2. Find the probability of making a type II error if the true mean
is actually µ, in terms of µ.

3. Evaluate the type-II error probability for
µ = 201, 202, 203, 204, 205.

Note that the type-I error probability is just the significance
level α = 0.02275.



Type I and Type II Errors, V

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

2. Find the probability of making a type II error if the true mean
is actually µ, in terms of µ.

We want to calculate the probability of failing to reject the
null hypothesis when it is false.

Under the assumption given, the sample mean µ̂ will be
normally distributed with mean µ and standard deviation
20/
√

400 = 1.

Then, the probability of failing to reject the null hypothesis is
P(Nµ,1 ≤ 202) = P(N0,1 ≤ 202− µ), in terms of µ.



Type I and Type II Errors, V

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

2. Find the probability of making a type II error if the true mean
is actually µ, in terms of µ.

We want to calculate the probability of failing to reject the
null hypothesis when it is false.

Under the assumption given, the sample mean µ̂ will be
normally distributed with mean µ and standard deviation
20/
√

400 = 1.

Then, the probability of failing to reject the null hypothesis is
P(Nµ,1 ≤ 202) = P(N0,1 ≤ 202− µ), in terms of µ.



Type I and Type II Errors, VI

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

3. Evaluate the type-II error probability for
µ = 201, 202, 203, 204, 205.

For µ = 201 we get P(N201,1 ≤ 202) = P(N0,1 ≤ 1) = 0.8413.

For µ = 202 we get P(N202,1 ≤ 202) = P(N0,1 ≤ 0) = 0.5.

For µ = 203 we get
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.

For µ = 204 we get
P(N204,1 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.

For µ = 205 we get
P(N205,1 ≤ 202) = P(N0,1 ≤ −3) = 0.00135.



Type I and Type II Errors, VI

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

3. Evaluate the type-II error probability for
µ = 201, 202, 203, 204, 205.

For µ = 201 we get P(N201,1 ≤ 202) = P(N0,1 ≤ 1) = 0.8413.

For µ = 202 we get P(N202,1 ≤ 202) = P(N0,1 ≤ 0) = 0.5.

For µ = 203 we get
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.

For µ = 204 we get
P(N204,1 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.

For µ = 205 we get
P(N205,1 ≤ 202) = P(N0,1 ≤ −3) = 0.00135.



Type I and Type II Errors, VII

We can see that as the true mean gets further away from the mean
predicted by the null hypothesis, the probability of making a type II
error drops.

The idea here is quite intuitive: the bigger the distance
between the true mean and the predicted mean, the better
our hypothesis test will be better at picking up the difference
between them.

If we use the same rejection rule, but instead vary the sample size,
the probability of making either type of error will change.



Type I and Type II Errors, VIII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202.

1. Find the probability of a type I error in terms of n.

2. Find the probability of a type I error for n = 100, 400, 1600.

3. Find the probability of a type II error in terms of n if the true
mean is µ = 203.

4. Find the probability of a type II error for n = 100, 400, 1600 if
the true mean is µ = 203.



Type I and Type II Errors, IX

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

1. Find the probability of a type I error in terms of n.

To find the probability of a type I error, we assume the null
hypothesis is correct, so that µ = 200.

Then the sample mean µ̂ is normally distributed with mean
200 and standard deviation σ = 20/

√
n

Thus, the probability
P(N200,20/

√
n > 202) = P(N(0, 1) >

√
n/10).



Type I and Type II Errors, IX

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

1. Find the probability of a type I error in terms of n.

To find the probability of a type I error, we assume the null
hypothesis is correct, so that µ = 200.

Then the sample mean µ̂ is normally distributed with mean
200 and standard deviation σ = 20/

√
n

Thus, the probability
P(N200,20/

√
n > 202) = P(N(0, 1) >

√
n/10).



Type I and Type II Errors, X

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

2. Find the probability of a type I error for n = 100, 400, 1600.

The probability is P(N200,20/
√
n > 202) = P(N0,1 >

√
n/10).

For n = 100 this is
P(N200,2 > 202) = P(N0,1 > 1) = 0.15866.

For n = 400 this is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275.

For n = 1600 this is
P(N200,0.5 > 202) = P(N0,1 > 4) = 0.0000316 = 3.16 · 10−5.



Type I and Type II Errors, X

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

2. Find the probability of a type I error for n = 100, 400, 1600.

The probability is P(N200,20/
√
n > 202) = P(N0,1 >

√
n/10).

For n = 100 this is
P(N200,2 > 202) = P(N0,1 > 1) = 0.15866.

For n = 400 this is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275.

For n = 1600 this is
P(N200,0.5 > 202) = P(N0,1 > 4) = 0.0000316 = 3.16 · 10−5.



Type I and Type II Errors, XI

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

3. Find the probability of a type II error in terms of n if the true
mean is µ = 203.

By hypothesis, the sample mean µ̂ will now be normally
distributed with mean 203 and standard deviation
σ = 20/

√
n = 1.

Thus, the probability of a type II error is
P(N203,20/

√
n ≤ 202) = P(N0,1 ≤ −

√
n/20).



Type I and Type II Errors, XI

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

3. Find the probability of a type II error in terms of n if the true
mean is µ = 203.

By hypothesis, the sample mean µ̂ will now be normally
distributed with mean 203 and standard deviation
σ = 20/

√
n = 1.

Thus, the probability of a type II error is
P(N203,20/

√
n ≤ 202) = P(N0,1 ≤ −

√
n/20).



Type I and Type II Errors, XII

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

4. Find the probability of a type II error for n = 100, 400, 1600 if
the true mean is µ = 203.

The probability of a type II error is
P(N203,20/

√
n ≤ 202) = P(N0,1 ≤ −

√
n/20).

For n = 100 this is
P(N203,2 ≤ 202) = P(N0,1 ≤ −0.5) = 0.30853.

For n = 400 this is
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.15866.

For n = 1600 this is
P(N203,0.5 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.



Type I and Type II Errors, XII

Example: Scores with the old curriculum are normally distributed
with mean 200 and standard deviation 20, and the new curriculum
scores also have standard deviation 20. We again test
H0 : µ = 200 against Ha : µ > 200 and reject H0 if µ̂ > 202.

4. Find the probability of a type II error for n = 100, 400, 1600 if
the true mean is µ = 203.

The probability of a type II error is
P(N203,20/

√
n ≤ 202) = P(N0,1 ≤ −

√
n/20).

For n = 100 this is
P(N203,2 ≤ 202) = P(N0,1 ≤ −0.5) = 0.30853.

For n = 400 this is
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.15866.

For n = 1600 this is
P(N203,0.5 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.



Type I and Type II Errors, XIII

We saw in an example last time that as the true mean gets further
away from the mean predicted by the null hypothesis, the
probability of making a type II error drops.

The idea here is quite intuitive: the bigger the distance
between the true mean and the predicted mean, the better
our hypothesis test will be better at picking up the difference
between them.

We also saw in another example that if we increase the sample size
(but keep the rejection rule the same) the probabilities of both
types of errors will drop.

The idea again is quite intuitive: the more data we have, the
closer our results will be to reality in all situations.

If we fix the significance level α but increase the sample size, the
probability of a type II error will change (try guessing how).



Type I and Type II Errors, XIV

Example: The school wants to determine how large a sample size
would have been necessary to determine the effectiveness of the
new curriculum. Assume the scores with the old curriculum are
normally distributed with mean 200 and standard deviation 20, and
the new curriculum scores are normally distributed with true mean
203 and standard deviation 20. We test H0 : µ = 200 against
Ha : µ > 200 at the 1% significance level.

1. Find the critical value in terms of n.

2. Find the probability of a type II error in terms of n.

3. Find the probability of a type II error for
n = 100, 400, 900, 1600.



Type I and Type II Errors, XV

Example: The old curriculum scores are normally distributed with
mean 200 and standard deviation 20, and the new curriculum
scores are normally distributed with true mean 203 and standard
deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the
1% significance level.

1. Find the critical value in terms of n.

What we’re looking for is the smallest possible sample mean
that would cause us to reject the null hypothesis.
Under the assumptions of the hypothesis test, µ̂ is normally
distributed with mean 200 and standard deviation σ = 20/

√
n.

Since the test is one-tailed, the critical value of µ̂ is the value
c such that P(N200,20/

√
n > c) = 0.01.

Equivalently, this says P(N0,1 >
c−200
20/
√
n

) = 0.01.

Using a z-table, we can see this occurs when c−200
20/
√
n

= 2.3263

and thus c = 200 + 2.3263 · 20/
√
n.



Type I and Type II Errors, XV

Example: The old curriculum scores are normally distributed with
mean 200 and standard deviation 20, and the new curriculum
scores are normally distributed with true mean 203 and standard
deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the
1% significance level.

1. Find the critical value in terms of n.

What we’re looking for is the smallest possible sample mean
that would cause us to reject the null hypothesis.
Under the assumptions of the hypothesis test, µ̂ is normally
distributed with mean 200 and standard deviation σ = 20/

√
n.

Since the test is one-tailed, the critical value of µ̂ is the value
c such that P(N200,20/

√
n > c) = 0.01.

Equivalently, this says P(N0,1 >
c−200
20/
√
n

) = 0.01.

Using a z-table, we can see this occurs when c−200
20/
√
n

= 2.3263

and thus c = 200 + 2.3263 · 20/
√
n.



Type I and Type II Errors, XVI

Example: The old curriculum scores are normally distributed with
mean 200 and standard deviation 20, and the new curriculum
scores are normally distributed with true mean 203 and standard
deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the
1% significance level.

2. Find the probability of a type II error in terms of n.

In reality, the sample mean µ̂ is normally distributed with
mean 203 and standard deviation σ = 20/

√
n.

From the last slide, we reject the null hypothesis if the sample
mean is greater than c = 200 + 2.3263 · 20/

√
n.

Therefore, the probability of a type II error is

P(N203,20/
√
n ≤ c) = P(N0,1 ≤ 2.3263− 3

√
n

20
), after doing a

bit of simplifying.



Type I and Type II Errors, XVI

Example: The old curriculum scores are normally distributed with
mean 200 and standard deviation 20, and the new curriculum
scores are normally distributed with true mean 203 and standard
deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the
1% significance level.

2. Find the probability of a type II error in terms of n.

In reality, the sample mean µ̂ is normally distributed with
mean 203 and standard deviation σ = 20/

√
n.

From the last slide, we reject the null hypothesis if the sample
mean is greater than c = 200 + 2.3263 · 20/

√
n.

Therefore, the probability of a type II error is

P(N203,20/
√
n ≤ c) = P(N0,1 ≤ 2.3263− 3

√
n

20
), after doing a

bit of simplifying.



Type I and Type II Errors, XX

Example: The old curriculum scores are normally distributed with
mean 200 and standard deviation 20, and the new curriculum
scores are normally distributed with true mean 203 and standard
deviation 20. We test H0 : µ = 200 against Ha : µ > 200 at the
1% significance level.

3. Find the probability of a type II error for
n = 100, 400, 900, 1600.

Now we just plug in the corresponding n to the formula

P(N203,20/
√
n ≤ c) = P(N0,1 ≤ 2.3263− 3

√
n

20
).

For n = 100 we get P(N0,1 ≤ 0.8263) = 0.7957.

For n = 400 we get P(N0,1 ≤ −0.6737) = 0.2503.

For n = 900 we get P(N0,1 ≤ −2.1737) = 0.01486.

For n = 1600 we get P(N0,1 ≤ −3.6737) = 0.0001195.



Type I and Type II Errors, XXII

We can glean a few general insights from from the examples.

First, by adjusting the significance level α, we can affect the
balance between type I errors and type II errors.

A smaller α gives a smaller probability of a type I error but a
greater probability of a type II error: we are more stringent
about rejecting the null hypothesis (so fewer type I errors) but
at the same time that means we also incorrectly fail to reject
the null hypothesis more (so more type II errors).

Second, by increasing the sample size, we decrease the
probabilities of both error types together (though they do not
necessarily drop similar amounts). This is also quite
reasonable: the larger the sample, the closer the sample mean
should be to the true mean and the less variation around the
true mean it will have.



Power, I

With a larger sample size, the test will have a better ability to
distinguish smaller deviations away from the null hypothesis.

Definition

If we are testing a null hypothesis H0, the probability 1− β of
correctly rejecting the null hypothesis when it is false is called the
power of the test.

The power of the test will depend on the significance level α,
the true value of the test parameter, and the size n of the
sample.

For a fixed α and n, we can plot the dependence of the power
on the true value of the test parameter to produce what are
called power curves.



Power, II

To plot a power curve, we need only perform a calculation like the
one in the last example.

Specifically, first we calculate the critical value, and then we
calculate the probability of correctly rejecting the null
hypothesis based on the true value of the test statistic.

For the test we analyzed above, of testing H0 : µ = 200
against Ha : µ > 200 with significance level α = 0.10 and a
sample size n = 400, we want to reject the null hypothesis if
µ̂ > 201.282, and so the power of the test if the true mean is
x is P(Nx ,1 ≥ 201.282 = P(N0,1 ≥ 201.282− x), whose graph
is plotted on the next slide.



Power, III

Here is a fairly typical power curve, from the last example:

Notice that the power increases as the true mean (the x-variable)
increases away from the null-hypothesis mean of 200.



Power, IV

Here are a few brief observations:

As is suggested by the plot, the limit of the power as the true
mean approaches the null hypothesis mean is equal to α.
(This follows by noting the moderately confusing fact that the
type II error coincides with the complement of the type I error
in the limit.)

Furthermore, the power increases monotonically as the true
parameter value moves away from the null hypothesis mean,
and approaches 1 as the true parameter value becomes large.



Power, V

Although it may seem that we would always want the power of the
test to be as large as possible, there are certain non-obvious
drawbacks to this desire.

Specifically, if the power is very large even for small deviations
away from the null hypothesis parameter, then the test will
frequently yield statistically significant results even when the
sample parameter is not very far away from the null
hypothesis parameter.



Power, VI

In some – perhaps most – situations a high power may seem good,
but sometimes it is not.

For example, suppose we want to test whether the new
curriculum actually improves scores above the original mean
µ = 200.

If the power is sufficiently high, the hypothesis test will
indicate a statistically significant result whenever the the
sample mean µ̂ > 200.001.

Now, it certainly is useful to know that the true mean is
statistically significantly different from 200, but in most
situations we would not view this difference as “practically
useful”.



Power, VII

This issue is usually framed as statistical significance versus
practical significance.

With large samples, we may obtain a statistically significant
difference from the hypothesized mean (perhaps even with an
exceedingly small p-value), yet the actual difference is
negligibly small and not actually important in practice.

This highlights one issue with relying solely on p-values on a
measure of evidence quality: it is possible to set up tests (e.g.,
by using a very large sample) that yield extremely small p
values even if the actual result is practically meaningless.

Another, more philosophical, point here is that the null
hypothesis is rarely (if ever) exactly true: thus, if we take a
sufficiently large sample size, we can identify as statistically
significant whatever tiny deviation actually exists, even if this
deviation is not practically relevant.



Some Comments About Significance, I

With these observations in mind, we can see that the precise
choice of the significance level α is entirely arbitrary (which has
been illustrated by the somewhat eclectic selection of values in the
examples we have given so far).

The only particular considerations we have are whether the
choice of α yields acceptably low probabilities of making a
type I or type II error.

In some situations, we would want to be extremely sure, when
we reject the null hypothesis, that it was truly outlandishly
unlikely to have observed the given data by chance: this
corresponds to requiring α to be very small.



More Comments About Significance, II

For example, if the result of the hypothesis test is regarding
whether the numbers in a company’s accounting ledgers are
real or manufactured to cover up embezzling, we would want
to be very sure that any seeming discrepancies were not
merely random chance.

However, in other situations (e.g., in the sciences) where the
statistical test is merely one component of broader analysis of
a topic, we should view the result of a hypothesis test as more
of a suggestion for what to investigate next.

If the p-value is very small, then it suggests that the
alternative hypothesis may be correct, and further study is
warranted.

If the p-value is large, then it suggests that the null
hypothesis is correct, and that additional study is not likely to
yield different results.



These Comments Have A Bit Of An Edge, III

For various historical reasons, the significance level α = 0.05 is
very commonly used.

The value strikes a balance between requiring strong evidence
(only a 5% chance that the result could have arisen by
chance) but not so strong as to tend to ignore good evidence
suggesting the null hypothesis is false (which becomes likely
with smaller values of α).

Indeed, many authors, both in the past and the present, often
call a result with p < 0.05 “statistically significant” (with no
qualifier) and a result with p < 0.01 “very statistically
significant” (and if p < 0.001, one also sometimes sees
“extremely statistically significant”).

Such statements entirely ignore the actual nuances of what
p-values measure, and should be assiduously avoided!



Now It Sounds A Bit Like A Rant, IV

The history of α = 0.05 is often summarized as follows (adapted
from a paper from the American Statistical Association’s
statement on p-values):

Q: Why do so many colleges and grad schools teach p = 0.05?

A: Because that’s still what the scientific community and journal
editors use.

Q: Why do so many people still use p = 0.05?

A: Because that’s what they were taught in college or grad
school.



Rant Impending, V

As I would hope you understand by now, p-values come on a
sliding scale, and there are no obvious lines to draw.

A hypothesis test with p = 0.051 provides almost the same
level of evidence against the null hypothesis as a hypothesis
test with p = 0.049, and there is simply no practical
distinction that should be made between the two.

Nonetheless, the prevalence of the view that results are not
worth reporting unless they have p < 0.05 has led to various
undesirable, and very real, negative consequences.

One such problem is the lack of reporting of experiments that
had negative or “statistically insignificant” results (which is
also partly a cultural issue in research, more generally), which
leads to a bias in the resulting literature.



Very Much Seeming Like A Rant, VI

There are various other related factors that can also contribute to
an overall bias in reported results of hypothesis tests.

When analyzing collected data, it is important to examine
outliers (points far away from the norm), since they may be
the results of errors in data collection or otherwise
unrepresentative of the desired sample.

The presence of outliers often has a large effect on the results
of a hypothesis test, especially one that relies on an estimate
of a standard deviation or variance, and in some situations it
is entirely reasonable to discard outliers.



Yes, It’s Definitely A Rant, VII

However, the process of handling outliers can rise to the level of
scientific misconduct if it is done after the fact.

The phenomenon called p-hacking involves massaging the
underlying data used for a statistical test (e.g., by removing
additional outliers, or putting back outliers that were
previously removed) so that it yields a p-value less than 0.05
rather than greater than 0.05.

Various analyses of published p-values have uncovered a large
proportion of p-values (much larger than would be expected
from typical hypothesis tests) that are just below α = 0.05.



Ranting With Figures, VIII

Here is a sample of p-values
published in medical research
papers:

Citation: Havenaar, Matthias.
“Is medical research facing a
replication crisis?” (2018)



More Ranting, IX

Another related issue is that of performing multiple comparisons on
the same set of data.

This procedure is sometimes (more uncharitably) referred to
as data dredging: sifting through data to find signals in the
underlying noise.

The difficulty with performing multiple comparisons is that
there is a probability α that any given hypothesis test will
yield a statistically significant result even though the null
hypothesis is true, and these probabilities add up if we
perform more tests.

For example, if we perform 40 hypothesis tests where the null
hypothesis is actually true at the α = 0.05 significance level,
we will have a probability 1− 0.9540 ≈ 87% of getting at least
one statistically significant result (i.e., making a type I error),
even though there is no actual result to find.



Ranting With More Pictures, X

We can illustrate this phenomenon (rather amusingly) with some
examples from Spurious Correlations:

Citation: Tyler Vigen (“Spurious Correlations”,
tylervigen.com/spurious-correlations)



Ranting With More Pictures, XI

We can illustrate this phenomenon (rather amusingly) with some
examples from Spurious Correlations:

Citation: Tyler Vigen (“Spurious Correlations”,
tylervigen.com/spurious-correlations)



Ranting With More Pictures, XII
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Yet More Ranting, XIII

When actually performing a large number of hypothesis tests, one
should correct for the fact that multiple tests were performed on
the same data.

Various methods exist for this, such as the
Bonferroni correction, which states that the desired
significance level α should be divided by the total number of
tests performed.

The idea is simply that we want a total probability of
approximately α (among all the tests) of obtaining at least
one type I error among all the tests.

Thus, if we perform 5 different tests on the same data using
the typical α = 0.05, we should actually test at the level
α = 0.01 in order to have an overall total probability of
approximately 0.05 of obtaining at least one type I error.



Continued Ranting, XIV

Multiple hypothesis testing on the same data is not necessarily a
problem if we report the results of all of the tests and give the
actual p-values for each test, since then it is straightforward to
correct for multiple tests.

However, a much more serious issue occurs when we only
report the statistically significant results without noting (or
correcting for) the fact that other hypothesis tests were also
performed and not reported: it is then entirely possible that
most of the reported results are false.

The extent to which false research findings are an actual
problem in scientific research is disputed, and varies
substantially by field, but is obviously a fundamental concern!

See Ioannadis, “Why Most Published Research Findings are
False”, PLoS Medicine (2005) for an argument that this is a
serious and widespread problem.



Ranting With Hypothetical Examples, XV

To illustrate the problem here, consider the hypothetical “Journal
of Advanced Augury”, which publishes papers related to augury,
the classical Roman practice of interpreting the will of the gods by
studying flights of birds.

The editorial board of JAA, trained in the basic practice of
statistics, will only accept papers demonstrating a result with
a p-value in their “statistically significant” range p < 0.05.

So, imagine augurs all over the world, dutifully observing birds
and writing down their corresponding predictions, then
compiling all of their results that come out with p < 0.05 for
the journal.



Ranting With Hypothetical Examples, XVI

Under the quite reasonable assumption that none of these results is
in any sense real1, only about 1 in 20 of them will pass the cutoff
for publication.

Nevertheless, this will still represent plenty of results, all of
which seem impeccably valid: after all, they all passed the
journal’s threshold for statistical significance!

The problem is that we do not see the 95% of experiments
performed that did not pass the p < 0.05 threshold.

This is sometimes called the file drawer problem: that
experiments not meeting the statistical threshold for
publication are not published (they instead go into a file
drawer), which results in a bias in the published results.

1As everyone knows, haruspicy is at least twice as effective as augury in
predicting the future.



Ranting With Dead Fish, XVII

I would like to mention another real paper2 that caused a bit of a
splash (so to speak) in psychology.

The researchers applied functional MRI (fMRI) to a dead
salmon and used standard statistical analysis on the 130,000
voxels in the resulting data to identify several clusters in the
salmon’s brain cavity that correlated well with an emotional
identification task.

The point of the paper was to illustrate the dangers inherent
in performing large numbers of tests on the same data set
without correcting properly for the likely appearance of a large
number of false positives.

2Bennet CM, Baird AA, Miller MB, Wolford GL, “Neural Correlates of
Interspecies Perspective Taking in the Post-Mortem Atlantic Salmon: An
Argument For Proper Multiple Comparisons Correction”, Journal of
Serendipitous and Unexpected Results, 2011.





Ranting With Dead Fish, XIX

Just because it’s so delightful, here are some quotes from the
methods section of the paper:

“One mature Atlantic Salmon (Salmo salar) participated in
the fMRI study. The salmon measured approximately 18
inches long, weighed 3.8 lbs, and was not alive at the time of
scanning. It is not known if the salmon was male or female,
but given the post-mortem state of the subject this was not
thought to be a critical variable.”

“Foam padding was placed within the head coil as a method
of limiting salmon movement during the scan, but proved to
be largely unnecessary as subject motion was exceptionally
low.”



Ranting With Dead Fish, XX

More from the methods section of the paper:

“A mirror directly above the head coil allowed the salmon to
observe experiment stimuli. The task administered to the
salmon involved completing an open-ended mentalizing task.
The salmon was shown a series of photographs depicting
human individuals in social situations with a specified
emotional valence, either socially inclusive or socially
exclusive. The salmon was asked to determine which emotion
the individual in the photo must have been experiencing.”

“The photo stimuli were presented in a block design, with
each block consisting of four photos presented individually for
2.5 seconds each (10 seconds total) followed by 12 seconds of
rest. A total of 12 blocks of photo presentation were
completed with 48 photos presented during the run.”



Ranting With Dead Fish, XXI

The authors spend most of the paper discussing how to avoid
making the same statistical errors that lead one to believe that a
dead salmon is capable of identifying emotional states (and why
some authors don’t seem to want to do that):

“Any time that multiple tests are completed without proper
correction it has the potential to impact the conclusions
drawn from the results.”

“The control of false positives is not a matter of difficulty, as
all major analysis packages for fMRI include some form of
multiple comparisons correction. Rather it seems to be the
case that investigators do not want to jeopardize their results
through a reduction in statistical power. While we must guard
against the elimination of legitimate results through Type II
error, the alternative of continuing forward with uncorrected
statistics cannot be an option.”



Ranting With Another Hypothetical Example, XXII

Let’s do an almost-real example: consider trying to identify genes
that cause breast cancer.

Suppose about 100 of the 20,000 protein-coding genes in the
genome will, if suitably mutated, increase the risk of
developing breast cancer.

Now, we collect some data and do statistics. Suppose that
our test will pick up an actually-related gene 100% of the
time, but if we pick one of the others, then we have a 5%
probability of getting p < 0.05 and flagging it.

We then publish every one of the results where p < 0.05.
What is the probability that the identified gene actually has
anything to do with breast cancer?

In fact, we worked out this kind of calculation in the second week
of class: you can use Bayes’ formula to see that only about 9.1% of
the published results are correct (100 real vs 999.5 false positives).
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Ranting With Another Hypothetical Example, XXIII

If you remember back to the “testing for a disease” Bayes’ formula
example, you’ll remember that the probability of having the disease
given a positive test was actually fairly low, in the situation where
the disease is rare.

The same sort of effect is observable here: if very few of the
studied results are actually real, then most of the results that
have p < 0.05 will be false positives.

The solution to this problem, as in the disease testing
example, is to test again.

For scientific studies, this means performing a
replication study: a study designed to test whether a
particular result is reproducible by a different team working
independently.



Nearly Done Ranting, XXIV

When spurious results are reported as significant, followup studies
will (at least in theory) eventually show that the original results
were erroneous – this is the virtue of the scientific method.

But this phenomenon of having subsequent studies widely
being unable to replicate the results of the originals has led to
a replication crisis in various fields, since it suggests that most
of these original results were actually false.

Although one can reasonably adopt the viewpoint that,
eventually, incorrect results will be identified and extirpated,
having many false results believed to true creates a substantial
waste of resources (in having to perform unnecessary
replication studies and, more broadly, building additional
research on a faulty foundation).



Ranting About How To Fix Things, XXV

Various fixes for these issues have been proposed, such as
decreasing the p-value threshold for publication (the most common
value suggested is p < 0.01). But this change, if adopted, would
not solve the problem on its own.

One reason why is that in most things under reasonable
scientific examination, it is rarely true that there is absolutely
zero effect, especially since we don’t often test things for no
reason.

For example, consider a drug trial. Since biological processes
are so tightly interconnected, it is deeply unlikely that taking
a drug will have absolutely zero effect on an underlying
condition.

So suppose the actual effect is extremely small, say, that on
average, 1 patient in 1,000 sees a net positive effect.



Ranting About Another Hypothetical Example, XXVI

Perhaps everyone is scored on a quality-of-life measure, and the
measure with the drug is 1/100th of a point better on average.
Even with such a small effect, strictly speaking the null hypothesis
is now false: the average effect is not zero.

So now suppose we run a gigantic trial with 1,000,000
participants to decide whether the drug is effective.

It is quite likely we will be able to detect the improvement,
even though it is very small.

If for example the quality-of-life scores are normally
distributed with mean 8.00000 and standard deviation
1.00000, and the observed sample mean is 8.01000, then the
p-value for the resulting one-sided z-test is
P(N8,0.001 ≥ 8.01) = P(N0,1 ≥ 10) = 7.62 · 10−24 (tiny!).

Nonetheless, the drug’s actual effect is practically nonexistent:
1/100th of a point on a 10-point scale on average.



The Penultimate Slide of The Rant, XXVII

I have mentioned these issues because it is very important to be
sanguine about the limitations of hypothesis testing, and how easy
it is to misuse or misinterpret the results of hypothesis tests.

Ultimately, there can be no “magic fix” for these issues:
statistical testing is fundamentally an approximation, and
there is always a positive probability of getting an incorrect
result.

Although these issues are not inherently issues of statistics, I
feel it does you (the students) a major disservice if you only
learn how to apply the basic tests, without being told about
all of the easy-to-make mistakes that go along with using
statistics in the real world.



The Actual End of The Rant, XXVIII

When designing an experiment and a hypothesis test, the best we
can do is to identify an appropriate significance level α and an
appropriate sample size n.

We select α to balance the possibility of making a type I error
against the possibility of making a type II error.

We select n to balance the possibility of making any type of
error with the difficulty and expense of obtaining the
necessary data, and with the likelihood that there probably is
some practically irrelevant deviation from the null hypothesis.

Then we must conduct followup analyses and replication
studies to make sure any observed results are truly real and
practically significant.



Guidelines For p-Values

In 2016, the American Statistical Association released guidelines
for interpretation and usage of p-values:

1. p-values can indicate how incompatible the data are with a
specified statistical model.

2. p-values do not measure the probability that the studied
hypothesis is true, or the probability that the data were
produced by random chance alone.

3. Scientific conclusions and business or policy decisions should
not be based only on whether a p-value passes a specific
threshold.

4. Proper inference requires full reporting and transparency.

5. A p-value, or statistical significance, does not measure the
size of an effect or the importance of a result.

6. By itself, a p-value does not provide a good measure of
evidence regarding a model or hypothesis.



Guidelines For Statistical Inference

I will also quote the conclusion of the ASA’s guidelines:

Good statistical practice, as an essential component of good
scientific practice, emphasizes principles of good study design
and conduct, a variety of numerical and graphical summaries
of data, understanding of the phenomenon under study,
interpretation of results in context, complete reporting and
proper logical and quantitative understanding of what data
summaries mean.

No single index should substitute for scientific reasoning.

From Wasserstein and Lazar, “The ASA Statement on p-Values:
Context, Process, and Purpose” (2016)
https://amstat.tandfonline.com/doi/full/10.1080/

00031305.2016.1154108

https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108
https://amstat.tandfonline.com/doi/full/10.1080/00031305.2016.1154108


Summary

We discussed more facets of type I and type II errors.

We discussed the power of a statistical test and some of its
properties.

We discussed some other issues about using (and misusing)
hypothesis tests.

Next lecture: The t distribution, t-statistic confidence intervals


