
Math 3081 (Probability and Statistics)

Lecture #20 of 27 ∼ August 9th, 2021

Unknown Proportion and Errors in Hypothesis Testing

More z Tests for Unknown Proportion

Type I and Type II Errors

This material represents §4.2.3-4.3.1 from the course notes, and
problems 11-15 from WeBWorK 6.



Review, I

Suppose we have a binomially distributed test statistic Bn,p

counting the number of successes in n trials with success
probability p.

If np (the number of successes) and n(1− p) (the number of
failures) are both larger than 5, we are in the situation where
the normal approximation to the binomial is good: then
P(a ≤ Bn,p ≤ b) will be well approximated by
P(a− 0.5 < N

np,
√

np(1−p) < b + 0.5), where N is normally

distributed with mean µ = np and standard deviation
σ =

√
np(1− p). (Note that we have incorporated the

continuity correction in our estimate.)

We can then test the null hypothesis H0 : p = c by
equivalently testing the equivalent hypothesis H0 : np = nc
using the normal approximation via a one-sample z test,
where our test statistic is the number of observed successes k .



Review, II

Using the mean µ = np and standard deviation σ =
√
np(1− p),

we can compute the p-value.

If the hypotheses are H0 : p = c and Ha : p > c , the
associated p-value is
P(Bn,p ≥ k) ≈ P(N

np,
√

np(1−p) > k − 0.5).

If the hypotheses are H0 : p = c and Ha : p < c , the
associated p-value is
P(Bn,p ≤ k) ≈ P(N

np,
√

np(1−p) < k + 0.5).

Finally, if the hypotheses are H0 : p = c and Ha : p 6= c , the
associated p-value is P(|Bn,p − c | ≥ |k − c |) ≈2P(N

np,
√

np(1−p) > k − 0.5) if k > c

2P(N
np,
√

np(1−p) < k + 0.5) if k < c
.

We then compare the p-value to the significance level α.



Another Binomial Example, I

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.



Another Binomial Example, II

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

Chapter 1 Review: the probability p of getting the ace of
spades in a 5-card hand will be 5/52 if the deck is fair.

Chapter 2 Review: Since the probability of getting the ace of
spades is 5/52, the expected number of times to get the ace
of spades should be 520 · 5/52 = 50.



Another Binomial Example, II

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

Chapter 1 Review: the probability p of getting the ace of
spades in a 5-card hand will be 5/52 if the deck is fair.

Chapter 2 Review: Since the probability of getting the ace of
spades is 5/52, the expected number of times to get the ace
of spades should be 520 · 5/52 = 50.



Another Binomial Example, III

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

Chapter 3 Review: The actual proportion should be p = 5/52.

Using the normal approximation to the binomial (appropriate
since np and n(1− p) are large), the true number of successes
should be approximately normal with mean np = 50 and
standard deviation

√
np(1− p) = 6.7225.

Thus, the 80% confidence interval is
50± 1.2816 · 6.7225 = (41.4, 58.6).

The 95% confidence interval is
50± 1.9600 · 6.7225 = (36.8, 63.2).



Another Binomial Example, III

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

Chapter 3 Review: The actual proportion should be p = 5/52.

Using the normal approximation to the binomial (appropriate
since np and n(1− p) are large), the true number of successes
should be approximately normal with mean np = 50 and
standard deviation

√
np(1− p) = 6.7225.

Thus, the 80% confidence interval is
50± 1.2816 · 6.7225 = (41.4, 58.6).

The 95% confidence interval is
50± 1.9600 · 6.7225 = (36.8, 63.2).



Another Binomial Example, IV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.

Chapter 4 Review: Our hypotheses are H0: p = 5/52 and Ha:
p > 5/52.

Our test statistic is the number of hands with an ace of
spades, which is binomially distributed with mean np = 50
and standard deviation

√
np(1− p) = 6.7225.

Our p-value is then
P(B520,5/52 ≥ 78) ≈ P(N50,6.7225 > 77.5) = 0.0000215.

This p-value is minuscule, so we reject the null hypothesis in
all cases: our opponent does appear to be cheating!



Another Binomial Example, IV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.

Chapter 4 Review: Our hypotheses are H0: p = 5/52 and Ha:
p > 5/52.

Our test statistic is the number of hands with an ace of
spades, which is binomially distributed with mean np = 50
and standard deviation

√
np(1− p) = 6.7225.

Our p-value is then
P(B520,5/52 ≥ 78) ≈ P(N50,6.7225 > 77.5) = 0.0000215.

This p-value is minuscule, so we reject the null hypothesis in
all cases: our opponent does appear to be cheating!



Another Binomial Example, V

Example: A coin is flipped 3000 times, yielding 1600 heads. Test
at the 4% and the 0.1% significance levels whether the coin is fair.

Our hypotheses are H0 : p = 1/2 and Ha : p 6= 1/2.

Since k = 1600 and n − k = 1400 are large, we can use the
normal approximation.

The number of heads is approximately normally distributed
with hypothesized mean np = 1500 and standard deviation√
np(1− p) ≈ 27.386.

Thus, the p-value is 2P(B3000,0.5 ≥ 1600) ≈
2P(N1500,27.386 > 1599.5) = 2P(N0,1 > 3.6332) ≈ 0.028%.

Since the p-value is below both significance levels, we reject
the null hypothesis in both cases.



Another Binomial Example, V

Example: A coin is flipped 3000 times, yielding 1600 heads. Test
at the 4% and the 0.1% significance levels whether the coin is fair.

Our hypotheses are H0 : p = 1/2 and Ha : p 6= 1/2.

Since k = 1600 and n − k = 1400 are large, we can use the
normal approximation.

The number of heads is approximately normally distributed
with hypothesized mean np = 1500 and standard deviation√
np(1− p) ≈ 27.386.

Thus, the p-value is 2P(B3000,0.5 ≥ 1600) ≈
2P(N1500,27.386 > 1599.5) = 2P(N0,1 > 3.6332) ≈ 0.028%.

Since the p-value is below both significance levels, we reject
the null hypothesis in both cases.



Another Binomial Example, VI

What if the binomial distribution is not well approximated by the
normal distribution?

In such cases, we can work directly with the binomial
distribution explicitly, or (in the event n is large but np or
n(1− p) is small) we could use a Poisson approximation.

Of course, in principle, we could always choose to work with
the exact distribution, but when n is large computing the
necessary probabilities becomes cumbersome, which is why we
usually use the normal approximation instead.



Another Binomial Example, VII

Example: A 6-sided die is rolled 18 times, yielding six 4s. Test at
the 15%, 4%, and 1% significance levels the hypothesis that the
true probability of rolling a 4 is equal to 1/6.

Our hypotheses are H0 : p = 1/6 and Ha : p 6= 1/6.

Under the conditions of the null hypothesis, the total number
of 4s rolled is binomially distributed with parameters n = 18
and p = 16. Here, np = 3 is too small for us to apply the
normal approximation to the binomial distribution, so we will
work directly with the binomial distribution itself.



Another Binomial Example, VII

Example: A 6-sided die is rolled 18 times, yielding six 4s. Test at
the 15%, 4%, and 1% significance levels the hypothesis that the
true probability of rolling a 4 is equal to 1/6.

Our hypotheses are H0 : p = 1/6 and Ha : p 6= 1/6.

Under the conditions of the null hypothesis, the total number
of 4s rolled is binomially distributed with parameters n = 18
and p = 16. Here, np = 3 is too small for us to apply the
normal approximation to the binomial distribution, so we will
work directly with the binomial distribution itself.



Another Binomial Example, VIII

Example: A 6-sided die is rolled 18 times, yielding six 4s. Test at
the 15%, 4%, and 1% significance levels the hypothesis that the
true probability of rolling a 4 is equal to 1/6.

Our hypotheses are H0 : p = 1/6 and Ha : p 6= 1/6.

The desired p-value is P(
∣∣B18,1/6 − 3

∣∣ ≥ |6− 3|) =
P(B18,1/6 ≥ 6) + P(B18,1/6 ≤ 0) = 0.1028.

The result is statistically significant at the 15% significance
level, and we accordingly reject the null hypothesis.

However, it is not statistically significant at the 4% or 1%
significance levels, and so we fail to reject the null hypothesis
in these cases.

We interpret this result as saying that there is moderate
evidence against the hypothesis that the probability of rolling
a 4 is equal to 1/6.



Another Binomial Example, VIII

Example: A 6-sided die is rolled 18 times, yielding six 4s. Test at
the 15%, 4%, and 1% significance levels the hypothesis that the
true probability of rolling a 4 is equal to 1/6.

Our hypotheses are H0 : p = 1/6 and Ha : p 6= 1/6.

The desired p-value is P(
∣∣B18,1/6 − 3

∣∣ ≥ |6− 3|) =
P(B18,1/6 ≥ 6) + P(B18,1/6 ≤ 0) = 0.1028.

The result is statistically significant at the 15% significance
level, and we accordingly reject the null hypothesis.

However, it is not statistically significant at the 4% or 1%
significance levels, and so we fail to reject the null hypothesis
in these cases.

We interpret this result as saying that there is moderate
evidence against the hypothesis that the probability of rolling
a 4 is equal to 1/6.



Comparing Two Proportions, I

If we have two independent, binomially-distributed quantities each
of which is well approximated by a normal distribution, we can use
the method for a two-sample z test to set up a hypothesis test for
the difference of these quantities: we refer to this as a
two-sample z-test for unknown proportion.



Comparing Two Proportions, II

Suppose the two populations are A and B.

We use the null hypothesis H0 : pA − pB = 0 to test whether
pA = pB , and take our test statistic to be the difference
between the proportions.

By hypothesis, A is approximately normally distributed with
mean pA and standard deviation σA =

√
pA(1− pA)/nA while

B is approximately normally distributed with mean pB and
standard deviation σB =

√
pB(1− pB)/nB .

Under the assumption that H0 is true, the test statistic
pA − pB is normally distributed with mean 0 (the true mean
postulated by the null hypothesis).



Comparing Two Proportions, II

However, the null hypothesis H0 : pA − pB = 0 does not actually
tell us the standard deviations of pA and pB (that would only be
the case if the null hypothesis were to state a specific value for pA
and for pB).

What we must do instead is estimate the two standard
deviations using the sample data.

Here, under the null hypothesis assumption that the two
proportions are actually equal, we can calculate a
pooled estimate for the true proportion p by putting the two
samples together.



Comparing Two Proportions, III

Suppose sample A has kA successes in nA trials and sample B has
kB successes in nB trials.

Then, together, there were kA + kB successes in nA + nB
trials, so our pooled estimate for both pA and pB is

ppool =
kA + kB
nA + nB

.

Then the standard deviation of A is σA =

√
ppool(1− ppool)

nA

and the standard deviation of B is σB =

√
ppool(1− ppool)

nB
.

That means the standard deviation of A− B is

σA−B =
√
σ2A + σ2B =

√
ppool(1− ppool)

(
1

nA
+

1

nB

)
.



Comparing Two Proportions, IV

Once we have the standard deviation, we then perform our
hypothesis test as normal.

The desired p-value is then the probability that the
normally-distributed random variable NµA−B ,σA−B

will take a
value further from the hypothesized value 0 (in the direction
of the alternative hypothesis, as applicable) than the observed
test statistic z = p̂A − p̂B .



To Pool or Not To Pool? That Is The Question

We will note that there is another way to estimate the standard
deviation:

Specifically, we could estimate the two standard deviations
from their sample proportions separately as
σA =

√
p̂A(1− p̂A)/nA and σB =

√
p̂B(1− p̂B)/nB .

These are called the unpooled standard deviations, and they

give a slightly different estimate

√
p̂A(1− p̂A)

nA
+

p̂B(1− p̂B)

nB
for the standard deviation of A− B.



To Pool or Not To Pool? Is There An Answer?

There is not universal consensus on the usage of the pooled versus
unpooled standard deviations.

Ultimately, our choice of test statistic and parameters is up to
us: we can do hypothesis tests however we want.

The only real issue is whether one approach yields more
reliable results than the other.

As a practical matter, if the sample proportions p̂A and p̂B are
actually close to each other, these values will both also be
close to ppool, and thus the two estimates for σA−B will also
be very close.

One should use the unpooled standard deviations to perform
more complicated tests on the observed proportions (e.g., if
we wanted to test whether the proportion for A exceeded the
proportion for B by 2% or more).



Two Proportions Examples, I

Example: In a sample from a statistics class taught with a
traditional curriculum, 125 students out of 311 received an A
(40.2%), whereas in a sample from a statistics class taught with a
revised curriculum, 86 students out of 284 received an A (30.3%).
If pt is the proportion of students getting an A with the traditional
curriculum and pr is the proportion of students getting an A with
the revised curriculum, test the null hypothesis pt = pr at the
10%, 5%, 1%, and 0.1% significance levels

1. with alternative hypothesis pt > pr .

2. with alternative hypothesis pt < pr .

3. with alternative hypothesis pt 6= pr .

The proportion of students getting an A in each of the
samples will be binomially distributed, and the parameters are
all in the range where the normal approximation is applicable.



Two Proportions Examples, I

Example: In a sample from a statistics class taught with a
traditional curriculum, 125 students out of 311 received an A
(40.2%), whereas in a sample from a statistics class taught with a
revised curriculum, 86 students out of 284 received an A (30.3%).
If pt is the proportion of students getting an A with the traditional
curriculum and pr is the proportion of students getting an A with
the revised curriculum, test the null hypothesis pt = pr at the
10%, 5%, 1%, and 0.1% significance levels

1. with alternative hypothesis pt > pr .

2. with alternative hypothesis pt < pr .

3. with alternative hypothesis pt 6= pr .

The proportion of students getting an A in each of the
samples will be binomially distributed, and the parameters are
all in the range where the normal approximation is applicable.



Two Proportions Examples, II

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

1. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt > pr .

The null hypothesis is H0 :pt − pr = 0 with alternative
hypothesis pt − pr > 0.

Here, we have nt = 311, nr = 284, p̂t = 125/311 = 0.4019,
and p̂r = 86/284 = 0.3028, so that p̂t−r = 0.0991.

To find the pooled standard deviation, we have
ppool = (125 + 86)/(311 + 284) = 0.3546. Then

σt−r ,pool =

√
ppool(1− ppool)

[
1

nA
+

1

nB

]
= 0.03927.



Two Proportions Examples, II

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

1. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt > pr .

The null hypothesis is H0 :pt − pr = 0 with alternative
hypothesis pt − pr > 0.

Here, we have nt = 311, nr = 284, p̂t = 125/311 = 0.4019,
and p̂r = 86/284 = 0.3028, so that p̂t−r = 0.0991.

To find the pooled standard deviation, we have
ppool = (125 + 86)/(311 + 284) = 0.3546. Then

σt−r ,pool =

√
ppool(1− ppool)

[
1

nA
+

1

nB

]
= 0.03927.



Two Proportions Examples, III

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

1. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt > pr .

We have σt−r ,pool = 0.03927, so the p-value is
P(N0,0.03927 ≥ 0.0991) = P(N0,1 ≥ 2.5242) ≈ 0.00580.

Thus, the result is statistically significant at the 10%, 5%, and
1% significance levels, and we accordingly reject the null
hypothesis in these cases, but it is not statistically significant
at the 0.1% significance level.

We interpret this result as saying that there is strong evidence
for the hypothesis that the students with the traditional
curriculum had a higher proportion of As than the students
with the revised curriculum.



Two Proportions Examples, IV

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

2. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt < pr .

The null hypothesis is H0 :pt − pr = 0 with alternative
hypothesis pt − pr < 0. The parameters are the same as
before: the only difference is that the p-value is now
P(N0,0.03927 ≤ 0.0991) = P(N0,1 ≤ 2.5242) ≈ 0.99420.

Thus, the result is (extremely!) not statistically significant at
any of the indicated significance levels, and we fail to reject
the null hypothesis in all cases.

We interpret this result as saying that there is essentially zero
evidence for the hypothesis that the students with the revised
curriculum had the higher proportion of As.



Two Proportions Examples, IV

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

2. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt < pr .

The null hypothesis is H0 :pt − pr = 0 with alternative
hypothesis pt − pr < 0. The parameters are the same as
before: the only difference is that the p-value is now
P(N0,0.03927 ≤ 0.0991) = P(N0,1 ≤ 2.5242) ≈ 0.99420.

Thus, the result is (extremely!) not statistically significant at
any of the indicated significance levels, and we fail to reject
the null hypothesis in all cases.

We interpret this result as saying that there is essentially zero
evidence for the hypothesis that the students with the revised
curriculum had the higher proportion of As.



Two Proportions Examples, V

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

3. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt 6= pr .

The alternative hypothesis is now pt − pr 6= 0. The
parameters are the same, so the p-value is
P(|N0,0.03927 − 0| ≥ |0.0991− 0|) = 2P(N0,0.03927 ≥
0.0991) = 2P(N0,1 ≥ 2.5242) ≈ 0.01160.

Thus, the result is statistically significant at the 10% and 5%
significance levels, so we accordingly reject the null hypothesis
there, but not at the 1% or 0.1% significance levels.

We interpret this result as saying that there is relatively strong
evidence for the hypothesis that the students with the two
curricula had different proportions of As.



Two Proportions Examples, V

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

3. Test the null hypothesis pt = pr at the 10%, 5%, 1%, and
0.1% significance levels with alternative hypothesis pt 6= pr .

The alternative hypothesis is now pt − pr 6= 0. The
parameters are the same, so the p-value is
P(|N0,0.03927 − 0| ≥ |0.0991− 0|) = 2P(N0,0.03927 ≥
0.0991) = 2P(N0,1 ≥ 2.5242) ≈ 0.01160.

Thus, the result is statistically significant at the 10% and 5%
significance levels, so we accordingly reject the null hypothesis
there, but not at the 1% or 0.1% significance levels.

We interpret this result as saying that there is relatively strong
evidence for the hypothesis that the students with the two
curricula had different proportions of As.



Pooled Versus Unpooled, Again

Example: With a traditional curriculum, 125 students out of 311
received an A (40.2%), whereas with a revised curriculum, 86
students out of 284 received an A (30.3%).

If we wanted to use the unpooled standard deviations, we
would have σt =

√
p̂t(1− p̂t)/nt = 0.02780,

σr =
√
p̂r (1− p̂r )/nr = 0.02726.

Then
σt−r ,unpool =

√
p̂t(1− p̂t)/nt + p̂r (1− p̂r )/nr = 0.03894.

This is almost exactly the same as the pooled standard
deviation σt−r ,pool = 0.03927.

So as a practical matter here, it makes essentially no difference
whether we used the pooled or unpooled standard deviation.



Two Proportions Examples, VI

Example: A pollster conducts a poll on the favorability of
Propositions ♣ and ♥. They poll 2,571 people and find that 1,218
of them favor Proposition ♣ (47.4%) and 1,344 of them favor
Proposition ♥ (52.3%). Perform hypothesis tests at the 8% and
1% significance levels that

1. Proposition ♣ has at least 50% support.

2. Proposition ♣ has exactly 50% support.

3. Proposition ♥ has at least 50% support.

4. Proposition ♥ has exactly 55% support.

5. Proposition ♥ has more support than Proposition ♣.



Two Proportions Examples, VII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

1. Proposition ♣ has at least 50% support.

Our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ < 0.50, since
Proposition ♣ actually does have under 50% support.

Here, we have np = n(1− p) = 1285.5 so we can use the
normal approximation. Note that np = 1285.5 and√

np(1− p) = 25.35.

We compute the p-value as P(B2571,0.5 ≤ 1218) ≈
P(N1285.5,25.35 < 1218.5) = P(N0,1 < −2.6427) = 0.00411.

Thus, the result is statistically significant at both the 8% and
1% significance levels.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♣ is 50% or above.



Two Proportions Examples, VII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

1. Proposition ♣ has at least 50% support.

Our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ < 0.50, since
Proposition ♣ actually does have under 50% support.

Here, we have np = n(1− p) = 1285.5 so we can use the
normal approximation. Note that np = 1285.5 and√
np(1− p) = 25.35.

We compute the p-value as P(B2571,0.5 ≤ 1218) ≈
P(N1285.5,25.35 < 1218.5) = P(N0,1 < −2.6427) = 0.00411.

Thus, the result is statistically significant at both the 8% and
1% significance levels.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♣ is 50% or above.



Two Proportions Examples, VIII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

2. Proposition ♣ has exactly 50% support.

Our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ 6= 0.50.

We have the same parameters as above (np = 1285.5 and√
np(1− p) = 25.35), so the p-value is ≈ 2P(N1285.5,25.35 <

1218.5) = 2P(N0,1 < −2.6427) = 0.00822.

Thus, the result is statistically significant at both the 8% and
1% significance levels.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♣ is equal to 50%.



Two Proportions Examples, VIII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

2. Proposition ♣ has exactly 50% support.

Our hypotheses are H0 : p♣ = 0.50 and Ha : p♣ 6= 0.50.

We have the same parameters as above (np = 1285.5 and√
np(1− p) = 25.35), so the p-value is ≈ 2P(N1285.5,25.35 <

1218.5) = 2P(N0,1 < −2.6427) = 0.00822.

Thus, the result is statistically significant at both the 8% and
1% significance levels.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♣ is equal to 50%.



Two Proportions Examples, IX

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

3. Proposition ♥ has at least 50% support.

Our hypotheses are H0 : p♥ = 0.50 and Ha : p♥ > 0.50, since
the sample suggests Proposition ♥ has at least 50% support.

We still have the same parameters (only the actual test
statistic value will differ), so the p-value is
P(B2571,0.5 ≥ 1344) ≈ P(N1285.5,25.35 > 1343.5) = P(N0,1 >
2.2877) = 0.01107.

Thus, the result is statistically significant at the 8%
significance level, but not statistically significant at the 1%
significance level.

Interpretation: there is moderately strong evidence against the
hypothesis that the support for Proposition ♥ is 50% or below.



Two Proportions Examples, IX

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

3. Proposition ♥ has at least 50% support.

Our hypotheses are H0 : p♥ = 0.50 and Ha : p♥ > 0.50, since
the sample suggests Proposition ♥ has at least 50% support.

We still have the same parameters (only the actual test
statistic value will differ), so the p-value is
P(B2571,0.5 ≥ 1344) ≈ P(N1285.5,25.35 > 1343.5) = P(N0,1 >
2.2877) = 0.01107.

Thus, the result is statistically significant at the 8%
significance level, but not statistically significant at the 1%
significance level.

Interpretation: there is moderately strong evidence against the
hypothesis that the support for Proposition ♥ is 50% or below.



Two Proportions Examples, X

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

4. Proposition ♥ has exactly 55% support.

Our hypotheses are H0 : p♥ = 0.55 and Ha : p♥ 6= 0.55.

Here, n = 2571 and p = 0.55 so np = 1414.05 and√
np(1− p) = 25.225.

Then the p-value is ≈ 2P(N1414.05,25.225 < 1344.5) =
P(N0,1 < −2.7571) = 0.00291.

Thus, the result is statistically significant at both the 8% and
1% significance levels, and we accordingly reject the null
hypothesis.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♥ is 55%.



Two Proportions Examples, X

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

4. Proposition ♥ has exactly 55% support.

Our hypotheses are H0 : p♥ = 0.55 and Ha : p♥ 6= 0.55.

Here, n = 2571 and p = 0.55 so np = 1414.05 and√
np(1− p) = 25.225.

Then the p-value is ≈ 2P(N1414.05,25.225 < 1344.5) =
P(N0,1 < −2.7571) = 0.00291.

Thus, the result is statistically significant at both the 8% and
1% significance levels, and we accordingly reject the null
hypothesis.

Interpretation: there is strong evidence against the hypothesis
that the support for Proposition ♥ is 55%.



Two Proportions Examples, XI

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

This is a two-sample test so our null hypothesis is
H0 : p♣ − p♥ = 0.

We want to test whether or not Proposition ♥ has more
support than Proposition ♣: this requires a one-sided
alternative hypothesis.

Because the sampling suggests that Proposition ♥ does
actually have more support than Proposition ♣, we want the
alternative in that direction.

Thus, we take our hypotheses as H0 : p♣ − p♥ = 0 and
Ha : p♣ − p♥ < 0.



Two Proportions Examples, XI

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

This is a two-sample test so our null hypothesis is
H0 : p♣ − p♥ = 0.

We want to test whether or not Proposition ♥ has more
support than Proposition ♣: this requires a one-sided
alternative hypothesis.

Because the sampling suggests that Proposition ♥ does
actually have more support than Proposition ♣, we want the
alternative in that direction.

Thus, we take our hypotheses as H0 : p♣ − p♥ = 0 and
Ha : p♣ − p♥ < 0.



Two Proportions Examples, XII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

Here, we have n♣ = n♥ = 2571, p̂♣ = 1218/2571 = 0.4737,
and p̂♥ = 1344/2571 = 0.5228, so that p̂♣−♥ = −0.04901.

To find the pooled standard deviation, we have
ppool = (1218 + 1344)/(2571 + 2571) = 0.4982, so then

σ♣−♥,pool =

√
ppool(1− ppool)

[
1

n♣
+

1

n♥

]
= 0.01395.



Two Proportions Examples, XII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

Here, we have n♣ = n♥ = 2571, p̂♣ = 1218/2571 = 0.4737,
and p̂♥ = 1344/2571 = 0.5228, so that p̂♣−♥ = −0.04901.

To find the pooled standard deviation, we have
ppool = (1218 + 1344)/(2571 + 2571) = 0.4982, so then

σ♣−♥,pool =

√
ppool(1− ppool)

[
1

n♣
+

1

n♥

]
= 0.01395.



Two Proportions Examples, XIII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

The pooled standard deviation is σ♣−♥,pool = 0.01395.

Then the desired p-value is
P(N0,0.01395 < −0.04901) = P(N0,1 < −3.5143) = 0.000220.

Thus, the result is statistically significant at both the 8% and
1% significance levels, and we accordingly reject the null
hypothesis.

Interpretation: there is very strong evidence that Proposition
♥ has more support than Proposition ♣.



Two Proportions Examples, XIII

Example: 2,571 people are polled: 1,218 favor Proposition ♣
(47.4%) and 1,344 favor Proposition ♥ (52.3%). Perform
hypothesis tests at the 8% and 1% significance levels that

5. Proposition ♥ has more support than Proposition ♣.

The pooled standard deviation is σ♣−♥,pool = 0.01395.

Then the desired p-value is
P(N0,0.01395 < −0.04901) = P(N0,1 < −3.5143) = 0.000220.

Thus, the result is statistically significant at both the 8% and
1% significance levels, and we accordingly reject the null
hypothesis.

Interpretation: there is very strong evidence that Proposition
♥ has more support than Proposition ♣.



Errors in Hypothesis Testing, I

Now that we have some concrete methods for testing hypotheses,
and have worked through enough examples to get a sense of how
hypothesis testing works (and doesn’t work!), we can discuss some
of the finer points.

Specifically, we will discuss errors in hypothesis testing, and a
number of related misinterpretations and misuses of
hypothesis testing.



Errors in Hypothesis Testing, II

When we perform a hypothesis test, there are two possible
outcomes (reject H0 or fail to reject H0).

The correctness of the result depends on the actual truth of
H0: if H0 is false then it is correct to reject it, while if H0 is
true than it is correct not to reject it.

The other two situations, namely “rejecting a correct null
hypothesis” and “failing to reject an incorrect null hypothesis”
are refered to as hypothesis testing errors.



Errors in Hypothesis Testing, III

Since these two errors are very different, we give them very
different names:

Definition

If we are testing a null hypothesis H0, we commit a type I error if
we reject H0 when H0 was actually true. We commit a type II error
if we fail to reject H0 when H0 was actually false.

We usually summarize these errors with a small table:

H0 \ Result Fail to Reject H0 Reject H0

H0 is true Correct Decision Type I Error

H0 is false Type II Error Correct Decision



Errors in Hypothesis Testing, IV

The names for these two errors are very unintuitive, and it must
simply be memorized which one is which.

If we view a positive result as one in which we reject the null
hypothesis, which in most cases is the practical interpretation,
then a type I error corresponds to a false positive (a positive
test on an actual negative sample) while a type II error
corresponds to a false negative (a negative test on an actual
positive sample).

For example, if the purpose of the hypothesis test is to
determine whether or not to mark an email as spam (with H0

being that the email is not spam), a type I error would be
marking a normal email as spam, while a type II error would
be marking a spam email as normal.



Not Actually Real Statistical Errors

Citation:
Randall Munroe
(“Error Types”,
xkcd #2303,
xkcd.com/2303)



Errors in Hypothesis Testing, V

We would like, in general, to minimize the probabilities of making
a type I or type II error.

The probability of committing a type I error is the significance
level α of the test, since by definition this is the probability of
rejecting the null hypothesis when it is actually true.

The probability of committing a type II error is denoted by β.
This value is more difficult to calculate, since it will depend on
the actual nature in which H0 is false.

If we postulate the actual value of the test statistic, we can
calculate the probability of committing a type II error.



Errors in Hypothesis Testing, VI

Example: A new mathematics curriculum is being tested in schools
to see if students score more highly on standardized tests. The
scores for students using the old curriculum are normally
distributed with mean 200 and standard deviation 20. It is assumed
that scores using the new curriculum are also normally distributed
with mean µ and standard deviation 20. The hypothesis
H0 : µ = 200 is tested against the alternative Ha : µ > 200 using a
sample of 400 students using the new curriculum. The null
hypothesis will be rejected if the sample mean µ̂ > 202.

1. Find the probability of making a type I error.

2-5. Find the probability of making a type II error if the true mean
is actually 201 / 202 / 203 / 204 / 205.



Errors in Hypothesis Testing, VII

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

1. Find the probability of making a type I error.

We want to calculate the probability of rejecting the null
hypothesis when it is true.

If the null hypothesis is true, then the sample mean µ̂ will be
normally distributed with mean 200 and standard deviation
20/
√

400 = 1.

Then, the probability of rejecting the null hypothesis is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275. (Note that this
value is the significance level α for this hypothesis test.)



Errors in Hypothesis Testing, VII

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

1. Find the probability of making a type I error.

We want to calculate the probability of rejecting the null
hypothesis when it is true.

If the null hypothesis is true, then the sample mean µ̂ will be
normally distributed with mean 200 and standard deviation
20/
√

400 = 1.

Then, the probability of rejecting the null hypothesis is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275. (Note that this
value is the significance level α for this hypothesis test.)



Errors in Hypothesis Testing, VIII

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

2. Find the probability of making a type II error if the true mean
is actually 201.

We want to calculate the probability of failing to reject the
null hypothesis when it is false.

Under the assumption given, the sample mean µ̂ will be
normally distributed with mean 201 and standard deviation
20/
√

400 = 1.

Then, the probability of failing to reject the null hypothesis is
P(N201,1 ≤ 202) = P(N0,1 ≤ 1) = 0.8413: quite large.



Errors in Hypothesis Testing, VIII

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

2. Find the probability of making a type II error if the true mean
is actually 201.

We want to calculate the probability of failing to reject the
null hypothesis when it is false.

Under the assumption given, the sample mean µ̂ will be
normally distributed with mean 201 and standard deviation
20/
√

400 = 1.

Then, the probability of failing to reject the null hypothesis is
P(N201,1 ≤ 202) = P(N0,1 ≤ 1) = 0.8413: quite large.



Errors in Hypothesis Testing, IX

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

3. Find the probability of making a type II error if the true mean
is actually 202.

Now µ̂ is normally distributed with mean 202 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N202,1 ≤ 202) = P(N0,1 ≤ 0) = 0.5.

4. Find the probability of making a type II error if the true mean
is actually 203.

Now µ̂ is normally distributed with mean 203 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.



Errors in Hypothesis Testing, IX

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

3. Find the probability of making a type II error if the true mean
is actually 202.

Now µ̂ is normally distributed with mean 202 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N202,1 ≤ 202) = P(N0,1 ≤ 0) = 0.5.

4. Find the probability of making a type II error if the true mean
is actually 203.

Now µ̂ is normally distributed with mean 203 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.



Errors in Hypothesis Testing, IX

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

3. Find the probability of making a type II error if the true mean
is actually 202.

Now µ̂ is normally distributed with mean 202 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N202,1 ≤ 202) = P(N0,1 ≤ 0) = 0.5.

4. Find the probability of making a type II error if the true mean
is actually 203.

Now µ̂ is normally distributed with mean 203 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.



Errors in Hypothesis Testing, X

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

5. Find the probability of making a type II error if the true mean
is actually 204.

Now µ̂ is normally distributed with mean 204 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N204,1 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.

6. Find the probability of making a type II error if the true mean
is actually 205.

Now µ̂ is normally distributed with mean 205 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N205,1 ≤ 202) = P(N0,1 ≤ −3) = 0.00135.



Errors in Hypothesis Testing, X

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

5. Find the probability of making a type II error if the true mean
is actually 204.

Now µ̂ is normally distributed with mean 204 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N204,1 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.

6. Find the probability of making a type II error if the true mean
is actually 205.

Now µ̂ is normally distributed with mean 205 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N205,1 ≤ 202) = P(N0,1 ≤ −3) = 0.00135.



Errors in Hypothesis Testing, X

Example: Old curriculum scores are normally distributed with mean
200 and standard deviation 20. New curriculum scores are normally
distributed with mean µ and standard deviation 20. The
hypotheses are H0 : µ = 200 and Ha : µ > 200 with a sample of
400 students. H0 will be rejected if the sample mean µ̂ > 202.

5. Find the probability of making a type II error if the true mean
is actually 204.

Now µ̂ is normally distributed with mean 204 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N204,1 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.

6. Find the probability of making a type II error if the true mean
is actually 205.

Now µ̂ is normally distributed with mean 205 and standard
deviation 1, so the probability of failing to reject the null
hypothesis is P(N205,1 ≤ 202) = P(N0,1 ≤ −3) = 0.00135.



Errors in Hypothesis Testing, XI

We can see that as the true mean gets further away from the mean
predicted by the null hypothesis, the probability of making a type II
error drops.

The idea here is quite intuitive: the bigger the distance
between the true mean and the predicted mean, the better
our hypothesis test will be better at picking up the difference
between them.

If we use the same rejection rule, but instead vary the sample size,
the probability of making either type of error will change.



Errors in Hypothesis Testing, XII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

1. Find the probability of a type I error if n = 100.

2. Find the probability of a type II error if n = 100.

3. Find the probability of a type I error if n = 400.

4. Find the probability of a type II error if n = 400.

5. Find the probability of a type I error if n = 1600.

6. Find the probability of a type II error if n = 1600.



Errors in Hypothesis Testing, XIII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

1. Find the probability of a type I error if n = 100.

To find the probability of a type I error, we assume the null
hypothesis is correct, so that µ = 200.

Then the sample mean µ̂ is normally distributed with mean
200 and standard deviation σ = 20/

√
100 = 2

Thus, the probability of a type I error is
P(N200,2 > 202) = P(N0,1 > 1) = 0.1587.



Errors in Hypothesis Testing, XIII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

1. Find the probability of a type I error if n = 100.

To find the probability of a type I error, we assume the null
hypothesis is correct, so that µ = 200.

Then the sample mean µ̂ is normally distributed with mean
200 and standard deviation σ = 20/

√
100 = 2

Thus, the probability of a type I error is
P(N200,2 > 202) = P(N0,1 > 1) = 0.1587.



Errors in Hypothesis Testing, XIV

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

2. Find the probability of a type II error if n = 100.

For a type II error, we assume the given value µ = 203 is
correct.

Then the sample mean µ̂ is normally distributed with mean
203 and standard deviation σ = 20/

√
100 = 2.

That means the probability of a type II error is
P(N203,2 ≤ 202) = P(N0,1 ≤ −0.5) = 0.3085.



Errors in Hypothesis Testing, XIV

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

2. Find the probability of a type II error if n = 100.

For a type II error, we assume the given value µ = 203 is
correct.

Then the sample mean µ̂ is normally distributed with mean
203 and standard deviation σ = 20/

√
100 = 2.

That means the probability of a type II error is
P(N203,2 ≤ 202) = P(N0,1 ≤ −0.5) = 0.3085.



Errors in Hypothesis Testing, XV

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

3. Find the probability of a type I error if n = 400.

The sample mean µ̂ is normally distributed with mean 200
and standard deviation σ = 20/

√
400 = 1.

Thus, the probability of a type I error is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275.



Errors in Hypothesis Testing, XV

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

3. Find the probability of a type I error if n = 400.

The sample mean µ̂ is normally distributed with mean 200
and standard deviation σ = 20/

√
400 = 1.

Thus, the probability of a type I error is
P(N200,1 > 202) = P(N0,1 > 2) = 0.02275.



Errors in Hypothesis Testing, XVI

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

3. Find the probability of a type II error if n = 400.

The sample mean µ̂ is normally distributed with mean 203
and standard deviation σ = 20/

√
400 = 1.

Thus, the probability of a type II error is
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.



Errors in Hypothesis Testing, XVI

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

3. Find the probability of a type II error if n = 400.

The sample mean µ̂ is normally distributed with mean 203
and standard deviation σ = 20/

√
400 = 1.

Thus, the probability of a type II error is
P(N203,1 ≤ 202) = P(N0,1 ≤ −1) = 0.1587.



Errors in Hypothesis Testing, XVII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

5. Find the probability of a type I error if n = 1600.

The sample mean µ̂ is normally distributed with mean 200
and standard deviation σ = 20/

√
1600 = 0.5.

Thus, the probability of a type I error is
P(N200,0.5 > 202) = P(N0,1 > 4) = 0.0000316 = 3.16 · 10−5.



Errors in Hypothesis Testing, XVII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

5. Find the probability of a type I error if n = 1600.

The sample mean µ̂ is normally distributed with mean 200
and standard deviation σ = 20/

√
1600 = 0.5.

Thus, the probability of a type I error is
P(N200,0.5 > 202) = P(N0,1 > 4) = 0.0000316 = 3.16 · 10−5.



Errors in Hypothesis Testing, XVIII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

6. Find the probability of a type II error if n = 1600.

The sample mean µ̂ is normally distributed with mean 203
and standard deviation σ = 20/

√
1600 = 0.5.

Thus, the probability of a type II error is
P(N203,0.5 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.



Errors in Hypothesis Testing, XVIII

Example: The school wants to gather more data on the new
curriculum. Assume as before the scores with the old curriculum
are normally distributed with mean 200 and standard deviation 20,
and the new curriculum scores also have standard deviation 20.
We again test H0 : µ = 200 against Ha : µ > 200 and reject H0 if
µ̂ > 202. Suppose the true mean is µ = 203.

6. Find the probability of a type II error if n = 1600.

The sample mean µ̂ is normally distributed with mean 203
and standard deviation σ = 20/

√
1600 = 0.5.

Thus, the probability of a type II error is
P(N203,0.5 ≤ 202) = P(N0,1 ≤ −2) = 0.02275.



Summary

We discussed more examples of z tests for unknown proportion.

We discussed two-sample z tests for unknown proportion.

We introduced type I and type II errors, and calculated
probabilities in some examples.

Next lecture: More about errors in hypothesis testing


