
Math 3081 (Probability and Statistics)

Lecture #19 of 27 ∼ August 5th, 2021

More z Tests

One-Sample z Tests

z Tests for Unknown Proportion

This material represents §4.1.2-4.1.3 from the course notes, and
problems 8-11 from WeBWorK 6.



Hypothesis Testing Procedure, I

Recall our general framework for performing hypothesis tests:

1. Identify the null and alternative hypotheses for the given
problem, and select a significance level α.

2. Identify the most appropriate test statistic and its distribution
according to the null hypothesis (usually, this is an average or
occasionally a sum of the given data values) including all
relevant parameters.

3. Calculate the p-value: the probability that a value of the test
statistic would have a value at least as extreme as the value
observed.

4. Determine whether the p-value is less than the significance
level α (reject the null hypothesis) or greater than or equal to
the significance level α (fail to reject the null hypothesis).



Hypothesis Testing Procedure, II

Here is the more detailed procedure for a one-sample z-test:

First, we must identify the appropriate null and alternative
hypotheses and select a significance level α.

We will use the test statistic µ̂, the sample mean, since this is
the minimum-variance unbiased estimator for the true
population mean µ.

Then the null hypothesis will be of the form H0 : µ = c , for
some specific value of c .

Under the assumption that H0 is true, the test statistic is
normally distributed with mean µ (the true mean postulated
by the null hypothesis) and standard deviation σ (which we
must be given).



Hypothesis Testing Procedure, III

Once we have written down the test statistic, we can compute the
p-value:

If the hypotheses are H0 : µ = c and Ha : µ > c , then the
p-value is P(Nµ,σ ≥ z).

If the hypotheses are H0 : µ = c and Ha : µ < c , then the
p-value is P(Nµ,σ ≤ z).

If the hypotheses are H0 : µ = c and Ha : µ 6= c , it is

P(|Nµ,σ − µ| ≥ |z − µ|) =

{
2P(Nµ,σ ≥ z) if z ≥ µ
2P(Nµ,σ ≤ z) if z < µ

.

In each case, we are simply calculating the probability that the
normally-distributed random variable Nµ,σ will take a value
further from the hypothesized mean µ (in the direction of the
alternative hypothesis, as applicable) than the observed test
statistic z .



Hypothesis Testing Procedure, IV

Finally, once we compute the p-value, we compare it to the
significance level α.

If p < α, we reject the null hypothesis. Our interpretation is
that the test statistic is so far away from the prediction that it
could not reasonably have happened by chance (for
“reasonable” as defined by the significance level α).

If p ≥ α, we fail to reject the null hypothesis. Our
interpretation is that the test statistic is close enough from the
prediction that it could reasonably have happened by chance
(again, for “reasonable” as defined by the significance level α).



One-Sample z Tests, I

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

1. Whether the average in Class B is greater than 81 points.

2. Whether the average in Class A is greater than 81 points.



One-Sample z Tests, VI

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

1. Whether the average in Class B is greater than 81 points.

Like before, we want H0 : µB = 81. The question is which
alternative hypothesis we want.

Here, because the actual average is 81.76 points (greater than
81), we take the alternative hypothesis Ha : µB > 81.

The test statistic will be normally distributed with mean 81
(per H0) and standard deviation 5/

√
100 = 0.5.

Thus, the p-value is P(N81,0.5 ≥ 81.76) = 0.0643.

This is statistically significant at the 10% significance level (so
we reject the null there) but not at the 3% significance level
(so we fail to reject the null in this case).



One-Sample z Tests, VI

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

1. Whether the average in Class B is greater than 81 points.

Like before, we want H0 : µB = 81. The question is which
alternative hypothesis we want.

Here, because the actual average is 81.76 points (greater than
81), we take the alternative hypothesis Ha : µB > 81.

The test statistic will be normally distributed with mean 81
(per H0) and standard deviation 5/

√
100 = 0.5.

Thus, the p-value is P(N81,0.5 ≥ 81.76) = 0.0643.

This is statistically significant at the 10% significance level (so
we reject the null there) but not at the 3% significance level
(so we fail to reject the null in this case).



One-Sample z Tests, II

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

2. Whether the average in Class A is greater than 81 points.

We want to test the hypothesis that µA ≥ 81. However, we
cannot take this as our null hypothesis: it needs to specify a
value for µA, so the only sensible choice is H0 : µA = 81.

For the alternative hypothesis, we clearly want it to be
one-sided; the only question is which direction.

We will try both possibilities Ha : µA > 81 and Ha : µA < 81
to try to understand which one of them we actually want.



One-Sample z Tests, II

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

2. Whether the average in Class A is greater than 81 points.

We want to test the hypothesis that µA ≥ 81. However, we
cannot take this as our null hypothesis: it needs to specify a
value for µA, so the only sensible choice is H0 : µA = 81.

For the alternative hypothesis, we clearly want it to be
one-sided; the only question is which direction.

We will try both possibilities Ha : µA > 81 and Ha : µA < 81
to try to understand which one of them we actually want.



One-Sample z Tests, III

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.16 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

2. Whether the average in Class A is greater than 81 points.

For H0 : µA = 81, Ha : µA > 81, our test statistic is again
the average score in class A.

The test statistic will be normally distributed with mean 81
(per H0) and standard deviation 5/

√
64 = 0.625.

Thus, the p-value is P(N81,0.625 ≥ 80.05) = 0.9357.

This is (extremely!) not statistically significant at the 10%
and 3% significance levels, so we fail to reject the null
hypothesis in this case.



One-Sample z Tests, IV

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

2. Whether the average in Class A is greater than 81 points.

For H0 : µA = 81, Ha : µA < 81, everything is the same as
what we just did, except now the tail of the distribution is the
“other side”.

The p-value is now P(N81,0.625 ≤ 80.05) = 0.0643.

This is statistically significant at the 10% significance levels
(so we reject the null hypothesis in this case) but not at the
3% significance level (so we fail to reject the null hypothesis
there).



One-Sample z Tests, V

Example: A sample from Class A has 64 students and average
score 80.05 points. A sample from Class B has 100 students and
average 81.76 points. Assume the standard deviation is known to
be 5 points. Test at the 10% and 3% significance levels

2. Whether the average in Class A is greater than 81 points.

For H0 : µA = 81, Ha : µA > 81, we got a p-value of 0.9357.
We interpret this result as providing essentially zero evidence
to disprove the statement that the true mean of A is 81 or
below.

For H0 : µA = 81, Ha : µA < 81, we got a p-value of 0.0643.
We interpret this result as providing relatively strong evidence
against the statement that the true mean of A is 81 or above.

The second statement has more content, since we are
explicitly rejecting the null hypothesis there.



Interlude: Which Side Is The Right Side?, I

In this last example, the question of which one-sided alternative
hypothesis we wanted to test depended on the actual result of
doing the tests.

Either alternative hypothesis Ha : µA > 81 and Ha : µA < 81,
depending on whether we reject or fail to reject their
corresponding null hypotheses, could potentially be the one
that carries more useful information.

Although it might seem obvious that when we fail to reject
the null hypothesis with p = 0.9357 for Ha : µA > 81 that it
is really saying that the true average should be less than 81,
that is not how we can interpret the result of the test.

All we can say from failing to reject the null hypothesis is that
we have weak or no evidence suggesting that the true average
is not 81.



Interlude: Which Side Is The Right Side?, II

In general, we interpret “rejecting the null hypothesis” as a much
stronger statement than “failing to reject the null hypothesis”.

This is because rejecting the null hypothesis takes substantial
evidence, since the p-value must be less than the significance
level α (usually a stringent requirement).

On the other hand, failing to reject the null hypothesis does
not take substantial evidence.

Thus, the version of the alternative hypothesis in which we reject
the null hypothesis (if there is one) is usually the one we will want
to discuss.

For our one-sample z tests, that will be the one-sided version
that is on “the same side” as our sample statistic, relative to
the hypothesized value.



Interlude: Which Side Is The Right Side?, III

This business of which alternative to use is a bit subtle, so I want
to reiterate: one should never, ever, ever try to fit a
hypothesis to the data in order to get a good result. But that is
not what is being done here.

In this specific situation, both of the one-sided alternative
hypothesis tests contain the same information, and doing one
test is equivalent to doing the other (since the p-values for the
two one-sided alternatives will always sum to 1).

In order to report the results in the most useful way possible,
we would want to quote the alternative hypothesis with the
smaller p-value, since that is the side that tells us the most
information.

I will mention that different people have different conventions, so if
you prefer to select your alternative hypothesis in some other way,
that is fine: that’s why we always write down the hypotheses!



Two-Sample z Tests, I

In some situations, we want to compare two quantities to decide
whether one of them is larger than the other.

In situations where both quantities are normally distributed
and independent, we can make this decision by analyzing the
difference between the two quantities, which will also be
normally distributed.

We can then apply the same decision procedures described
before to test the appropriate null hypothesis about the value
of the difference of the quantities.

Because there are now two samples involved and we are
studying the properties of a normally distributed test statistic
z , this method is referred to as a two-sample z-test.



Two-Sample z Tests, II

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

2. whether the average score in class A is lower than the score in
class B.

This is a two-sample z test because we are comparing the
averages of two normally-distributed quantities.

We first identify the null and alternative hypotheses, then
calculate the test statistic (the difference in the average
scores) and its hypothesized distribution.

Then we find the p-value and compare it to the significance
level.



Two-Sample z Tests, II

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

2. whether the average score in class A is lower than the score in
class B.

This is a two-sample z test because we are comparing the
averages of two normally-distributed quantities.

We first identify the null and alternative hypotheses, then
calculate the test statistic (the difference in the average
scores) and its hypothesized distribution.

Then we find the p-value and compare it to the significance
level.



Two-Sample z Tests, III

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

Let µA and µB be the respective class averages.
Since our testing procedure requires testing the distribution of
a specific quantity, we write our hypotheses as
H0 : µA − µB = 0 and Ha : µA − µB 6= 0.
Our test statistic is z = 80.25− 81.16 = −0.91 points, the
difference in the two class averages.
Under the null hypothesis, µA − µB is normal with mean 0
points and standard deviation√
σ2A + σ2B =

√
0.6252 + 0.52 = 0.8004 points.

(Remember we found σA and σB earlier.)



Two-Sample z Tests, III

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

Let µA and µB be the respective class averages.
Since our testing procedure requires testing the distribution of
a specific quantity, we write our hypotheses as
H0 : µA − µB = 0 and Ha : µA − µB 6= 0.
Our test statistic is z = 80.25− 81.16 = −0.91 points, the
difference in the two class averages.
Under the null hypothesis, µA − µB is normal with mean 0
points and standard deviation√
σ2A + σ2B =

√
0.6252 + 0.52 = 0.8004 points.

(Remember we found σA and σB earlier.)



Two-Sample z Tests, IV

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

Our test statistic is normal with mean 0 and standard
deviation 0.8004, and the observed value is −0.91.

Thus, because our alternative hypothesis is Ha : µA − µB 6= 0
(which is two-sided), the p-value is P(|N0,0.8004| ≥ 0.91) =
2 · P(N0,0.8004 ≤ −0.91) = 2 · P(N0,1 ≤ −1.1369) = 0.2556.

Since the p-value is relatively large, it is not significant at
either the 10% or 3% significance level, and we accordingly
fail to reject the null hypothesis in both cases.



Two-Sample z Tests, IV

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

1. whether the two class averages are equal.

Our test statistic is normal with mean 0 and standard
deviation 0.8004, and the observed value is −0.91.

Thus, because our alternative hypothesis is Ha : µA − µB 6= 0
(which is two-sided), the p-value is P(|N0,0.8004| ≥ 0.91) =
2 · P(N0,0.8004 ≤ −0.91) = 2 · P(N0,1 ≤ −1.1369) = 0.2556.

Since the p-value is relatively large, it is not significant at
either the 10% or 3% significance level, and we accordingly
fail to reject the null hypothesis in both cases.



Two-Sample z Tests, V

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

2. whether the average score in class A is lower than the score in
class B.

In this case the null hypothesis is the same, but because the
sampled average score in class A is actually lower than the
sampled average in class B, we want the alternative
hypothesis to agree.

Thus, we take H0 : µA − µB = 0 and Ha : µA − µB < 0.



Two-Sample z Tests, V

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

2. whether the average score in class A is lower than the score in
class B.

In this case the null hypothesis is the same, but because the
sampled average score in class A is actually lower than the
sampled average in class B, we want the alternative
hypothesis to agree.

Thus, we take H0 : µA − µB = 0 and Ha : µA − µB < 0.



Two-Sample z Tests, VI

Example: A sample from Class A has 64 students (avg score 80.25
pts) and a sample from Class B has 100 students (avg score 81.16
pts). The standard deviation for any given student’s score is 5
points. Test at the 10% and 3% significance levels

2. whether the average score in class A is lower than the score in
class B.

As before, the test statistic is normal with mean 0 and
standard deviation 0.8004, and the observed value is −0.91.

Per the alternative hypothesis, the p-value is now
P(N0,0.8004 < −0.91) = P(N0,1 ≤ −1.1369) = 0.1278.

Since the p-value is still larger than the significance levels, we
still fail to reject the null hypothesis in both cases.



z Tests and Confidence Intervals, I

We will also mention that the results of a z test can also be
interpreted in terms of confidence intervals.

For a two-sided alternative hypothesis, if we give a
100(1− α)% confidence interval around the mean of a
distribution under the conditions of the null hypothesis, then
we will reject the null hypothesis with significance level α
precisely when the sample statistic lies outside the confidence
interval.

The 100(1− α)% confidence interval is precisely giving the
range of values around the null hypothesis sample statistic
that we would believe are likely to have occurred by chance, in
the sense that if we repeated the experiment many times,
then we would expect a proportion 1−α of the results to land
inside the confidence interval.



z Tests and Confidence Intervals, II

See the diagram:



z Tests and Confidence Intervals, III

Intuitively, the 100(1− α)% confidence interval is giving the
range of values around the null hypothesis sample statistic
that we would believe are likely to have occurred by chance, in
the sense that if we repeated the experiment many times,
then we would expect a proportion 1−α of the results to land
inside the confidence interval.

If we interpret this probability as an area, what this means is
that we would expect to see a test statistic “far away” from
the null hypothesis value only with probability α: if we do
obtain such an extreme value as our test statistic, we should
take this as strong evidence (at the significance level α) that
the true test statistic does not align with the prediction from
the null hypothesis.



z Tests and Confidence Intervals, IV

One minor caveat....

Instead of quoting a confidence interval around the
null-hypothesis prediction, we usually quote a confidence
interval around the test statistic instead, and then check
whether the null-hypothesis prediction lies within the
confidence interval around the test statistic.

We can also make a similar interpretation for a one-sided
alternative hypothesis, but because of the lack of symmetry in the
rejection region, we instead need to use a 100(1− 2α)%
confidence interval to get the correct area.



z Tests and Confidence Intervals, V

Here is the picture for a one-sided alternative hypothesis:

The shaded region has area α, and there is a second region also of
area α on the other side of the confidence interval, so the total
area inside the confidence interval is 1− 2α, meaning it is a
100(1− 2α)% confidence interval.



z Tests and Confidence Intervals, VI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

1. Find 90% and 97% CIs for the true average of Class A.

2. Find 90% and 97% CIs for the true average of Class B.

3. Find 90% and 97% CIs for the difference between the
averages of the two classes.

Then test at the 10% and 3% significance levels

4. that the average of Class A is 80 points.

5. that the average of Class A is 79 points.

6. that the average of Class B is 80 points.

7. that the average of Class B is 82 points.

8. that the average scores in the classes are equal.

9. that the average score in Class A is 1 point greater than the
average in Class B.



z Tests and Confidence Intervals, VI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

1. Find 90% and 97% CIs for the true average of Class A.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the mean of Class
A has µ̂A = 80.25 and σA = 5/

√
64 = 0.625.

Thus, the 90% confidence interval for the mean is
80.25± 1.6449 · 0.625 = (79.22, 81.28),

Also, the 97% confidence interval is
80.25± 2.1701 · 0.625 = (78.89, 81.61).



z Tests and Confidence Intervals, VI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

1. Find 90% and 97% CIs for the true average of Class A.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the mean of Class
A has µ̂A = 80.25 and σA = 5/

√
64 = 0.625.

Thus, the 90% confidence interval for the mean is
80.25± 1.6449 · 0.625 = (79.22, 81.28),

Also, the 97% confidence interval is
80.25± 2.1701 · 0.625 = (78.89, 81.61).



z Tests and Confidence Intervals, VII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

2. Find 90% and 97% CIs for the true average of Class B.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the mean of Class
A has µ̂B = 81.16 and σB = 5/

√
100 = 0.5.

Thus, the 90% confidence interval for the mean is
81.16± 1.6449 · 0.5 = (80.34, 81.98), and the 97% confidence
interval is 81.16± 2.1701 · 0.5 = (80.07, 82.25).



z Tests and Confidence Intervals, VII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

2. Find 90% and 97% CIs for the true average of Class B.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the mean of Class
A has µ̂B = 81.16 and σB = 5/

√
100 = 0.5.

Thus, the 90% confidence interval for the mean is
81.16± 1.6449 · 0.5 = (80.34, 81.98), and the 97% confidence
interval is 81.16± 2.1701 · 0.5 = (80.07, 82.25).



z Tests and Confidence Intervals, VIII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

3. Find 90% and 97% CIs for the difference between the
averages of the two classes.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the difference in the
means has µ̂A−B = −0.91 and
σA−B =

√
0.6252 + 0.52 = 0.8004.

Thus, the 90% confidence interval for the difference in the
means is −0.91± 1.6449 · 0.8004 = (−2.23, 0.41), and the
97% confidence interval is
−0.91± 2.1701 · 0.8004 = (−2.65, 0.83).



z Tests and Confidence Intervals, VIII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points:

3. Find 90% and 97% CIs for the difference between the
averages of the two classes.

[Note that the number of standard deviations for a 90% CI is
c = 1.6449 and for a 97% CI it is c = 2.1701.]

As we calculated before, the estimator for the difference in the
means has µ̂A−B = −0.91 and
σA−B =

√
0.6252 + 0.52 = 0.8004.

Thus, the 90% confidence interval for the difference in the
means is −0.91± 1.6449 · 0.8004 = (−2.23, 0.41), and the
97% confidence interval is
−0.91± 2.1701 · 0.8004 = (−2.65, 0.83).



z Tests and Confidence Intervals, IX

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

4. that the average of Class A is 80 points.

The 90% CI was (79.22, 81.28), while the 97% CI was
(78.89, 81.61).

Since 80 lies inside both confidence intervals, the result is not
significant at either the 10% or 3% significance levels: we fail
to reject the null hypothesis that the true mean is 80 points.



z Tests and Confidence Intervals, IX

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

4. that the average of Class A is 80 points.

The 90% CI was (79.22, 81.28), while the 97% CI was
(78.89, 81.61).

Since 80 lies inside both confidence intervals, the result is not
significant at either the 10% or 3% significance levels: we fail
to reject the null hypothesis that the true mean is 80 points.



z Tests and Confidence Intervals, X

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

5. that the average of Class A is 79 points.

The 90% CI was (79.22, 81.28), while the 97% CI was
(78.89, 81.61).

Since 79 lies outside the first interval, the result is significant
at the 10% level (we reject the null hypothesis that the true
mean is 79 points).

However, since 79 lies inside the second interval, the result is
not significant at the 3% level (we fail to reject the null
hypothesis with this more stringent significance level).



z Tests and Confidence Intervals, X

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

5. that the average of Class A is 79 points.

The 90% CI was (79.22, 81.28), while the 97% CI was
(78.89, 81.61).

Since 79 lies outside the first interval, the result is significant
at the 10% level (we reject the null hypothesis that the true
mean is 79 points).

However, since 79 lies inside the second interval, the result is
not significant at the 3% level (we fail to reject the null
hypothesis with this more stringent significance level).



z Tests and Confidence Intervals, XI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

6. that the average of Class B is 80 points.

The 90% CI was (80.34, 81.98), while the 97% CI was
(80.07, 82.25).

Since 80 lies outside the first interval, the result is significant
at the 10% level (we reject the null hypothesis that the true
mean is 80 points).

However, since 80 lies inside the second interval, the result is
not significant at the 3% level (we fail to reject the null
hypothesis with this more stringent significance level).



z Tests and Confidence Intervals, XI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

6. that the average of Class B is 80 points.

The 90% CI was (80.34, 81.98), while the 97% CI was
(80.07, 82.25).

Since 80 lies outside the first interval, the result is significant
at the 10% level (we reject the null hypothesis that the true
mean is 80 points).

However, since 80 lies inside the second interval, the result is
not significant at the 3% level (we fail to reject the null
hypothesis with this more stringent significance level).



z Tests and Confidence Intervals, XI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

7. that the average of Class B is 82 points.

The 90% CI was (80.34, 81.98), while the 97% CI was
(80.07, 82.25).

Since 82 lies outside the first interval (barely!), the result is
significant at the 10% level (we reject the null hypothesis that
the average is 82)

But it lies inside the second interval, so the result is not
significant at the 3% level (we fail to reject the null
hypothesis).



z Tests and Confidence Intervals, XI

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

7. that the average of Class B is 82 points.

The 90% CI was (80.34, 81.98), while the 97% CI was
(80.07, 82.25).

Since 82 lies outside the first interval (barely!), the result is
significant at the 10% level (we reject the null hypothesis that
the average is 82)

But it lies inside the second interval, so the result is not
significant at the 3% level (we fail to reject the null
hypothesis).



z Tests and Confidence Intervals, XII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

8. that the average scores in the classes are equal.

The 90% CI was (−2.23, 0.41), while the 97% confidence
interval is (−2.65, 0.83).

Since 0 lies inside both intervals, the result is not significant
at either the 10% or 3% significance levels: we fail to reject
the null hypothesis that the means are equal.



z Tests and Confidence Intervals, XII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

8. that the average scores in the classes are equal.

The 90% CI was (−2.23, 0.41), while the 97% confidence
interval is (−2.65, 0.83).

Since 0 lies inside both intervals, the result is not significant
at either the 10% or 3% significance levels: we fail to reject
the null hypothesis that the means are equal.



z Tests and Confidence Intervals, XIII

Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

9. that the average score in Class A is 1 point greater than the
average in Class B.

The 90% CI was (−2.23, 0.41), while the 97% confidence
interval is (−2.65, 0.83).

Be careful! This is actually a one-sided hypothesis test, so we
can’t use these confidence intervals to determine the results.
(I know, I tricked you. But it’s very important to be careful
with this!)

We would need to find the 80% and 94% CIs to answer this
question.
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Example: Using the Class A (64 students, average 80.25) and
Class B (100 students, average 81.16) data, with individual score
standard deviation 5 points. Test at the 10% and 3% significance
levels

9. that the average score in Class A is 1 point greater than the
average in Class B.

The 90% CI was (−2.23, 0.41), while the 97% confidence
interval is (−2.65, 0.83).

Be careful! This is actually a one-sided hypothesis test, so we
can’t use these confidence intervals to determine the results.
(I know, I tricked you. But it’s very important to be careful
with this!)

We would need to find the 80% and 94% CIs to answer this
question.



z Tests for Unknown Proportion, I

We now discuss how to use z tests to handle situations with
approximately normally distributed test statistics.

Presently, we will discuss the scenario of approximating the
binomial distribution by the normal distribution.

We can then adapt our procedure for using a z test to handle
hypothesis testing with a binomially-distributed test statistic.



z Tests for Unknown Proportion, II

Thus, suppose we have a binomially distributed test statistic Bn,p

counting total successes in n trials with success probability p.

If np (the number of successes) and n(1− p) (the number of
failures) are both larger than 5, we are in the situation where
the normal approximation to the binomial is good: then
P(a ≤ Bn,p ≤ b) will be well approximated1 by
P(a− 0.5 < N

np,
√

np(1−p)
< b + 0.5), where N is normally

distributed with mean µ = np and standard deviation
σ =

√
np(1− p).

We can then test the null hypothesis H0 : p = c by
equivalently testing the equivalent hypothesis H0 : np = nc
using the normal approximation via a one-sample z test,
where our test statistic is the number of observed successes k .

1Note that we have included a continuity correction here. Some software
does not make this correction, which will lead to slightly different p-values.



z Tests for Unknown Proportion, III

Using the mean µ = np and standard deviation σ =
√
np(1− p),

we can compute the p-value.

If the hypotheses are H0 : p = c and Ha : p > c , the
associated p-value is
P(Bn,p ≥ k) ≈ P(N

np,
√

np(1−p)
> k − 0.5).

If the hypotheses are H0 : p = c and Ha : p < c , the
associated p-value is
P(Bn,p ≤ k) ≈ P(N

np,
√

np(1−p)
< k + 0.5).

Finally, if the hypotheses are H0 : p = c and Ha : p 6= c , the
associated p-value is P(|Bn,p − c | ≥ |k − c |) ≈2P(N

np,
√

np(1−p)
> k − 0.5) if k > c

2P(N
np,
√

np(1−p)
< k + 0.5) if k < c

.

We then compare the p-value to the significance level α.



z Tests for Unknown Proportion, IV

All of this still leaves open the question of what we can do in
situations where the binomial distribution is not well approximated
by the normal distribution.

In such cases, we can work directly with the binomial
distribution explicitly, or (in the event n is large but np or
n(1− p) is small) we could use a Poisson approximation.

Of course, in principle, we could always choose to work with
the exact distribution, but when n is large computing the
necessary probabilities becomes cumbersome, which is why we
usually use the normal approximation instead.



z Tests for Unknown Proportion, V

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypotheses

1. that the coin is fair.

2. that the coin is more likely to land heads than tails.

3. that the heads probability is 2/3.

4. that the heads probability is less than 3/4.



z Tests for Unknown Proportion, VI

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

1. that the coin is fair.

Our hypotheses are H0 : p = 1/2 and Ha : p 6= 1/2, since we
only want to know whether or not the coin is fair.

Here, we have np = n(1− p) = 50 so we can use the normal
approximation. Note that np = 50 and

√
np(1− p) = 5.

We compute the p-value as
P(|B100,0.5 − 50| ≥ |64− 50|) ≈ 2P(N50,5 > 63.5) = 0.00693.
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Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

1. that the coin is fair.

Our hypotheses are H0 : p = 1/2 and Ha : p 6= 1/2, since we
only want to know whether or not the coin is fair.

Here, we have np = n(1− p) = 50 so we can use the normal
approximation. Note that np = 50 and

√
np(1− p) = 5.

We compute the p-value as
P(|B100,0.5 − 50| ≥ |64− 50|) ≈ 2P(N50,5 > 63.5) = 0.00693.



z Tests for Unknown Proportion, VII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

1. that the coin is fair.

The p-value is 0.00693.

Thus, the result is statistically significant at the 11% and 4%
levels and we reject the null hypothesis in these cases.

But the result is not statistically significant at the 0.5% level,
so we fail to reject the null hypothesis there.

Overall, we interpret the result as giving fairly strong evidence
that the heads probability is not 1/2.



z Tests for Unknown Proportion, VIII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

2. that the coin is more likely to land heads than tails.

It is easy to see that we want a one-sided alternative
hypothesis; the only question is the appropriate direction.

The actual heads proportion is 64%. Since this is above 50%,
we want the alternative hypothesis Ha : p > 1/2.

Thus, we take the null hypothesis as H0 : p = 1/2 and the
alternative hypothesis as Ha : p > 1/2.



z Tests for Unknown Proportion, VIII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

2. that the coin is more likely to land heads than tails.

It is easy to see that we want a one-sided alternative
hypothesis; the only question is the appropriate direction.

The actual heads proportion is 64%. Since this is above 50%,
we want the alternative hypothesis Ha : p > 1/2.

Thus, we take the null hypothesis as H0 : p = 1/2 and the
alternative hypothesis as Ha : p > 1/2.



z Tests for Unknown Proportion, IX

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

2. that the coin is more likely to land heads than tails.

We have the same parameters as before, so np = 50 and√
np(1− p) = 5, and then the p-value is

P(B100,0.5 ≥ 64) ≈ P(N50,5 > 63.5) = 0.00347.

Thus, the result is statistically significant at the 11%, 4%, and
0.5% significance levels, and we reject the null hypothesis in
each case.

We interpret this as giving strong evidence that the heads
probability is greater than 1/2.



z Tests for Unknown Proportion, X

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is 2/3.

Our hypotheses are H0 : p = 2/3 and Ha : p 6= 2/3, since we
want to know whether or not the heads probability is 2/3 .

Our parameter values are now n = 100, p = 2/3 so that
np = 66.667 and

√
np(1− p) = 4.714.

Since n(1− p) = 33.333 the normal approximation is still
appropriate, so we compute the p-value as
P(|B100,2/3 − 66.667| ≥ 2.667) ≈ 2P(N66.667,4.714 < 64.5) =
0.6457.



z Tests for Unknown Proportion, X

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is 2/3.

Our hypotheses are H0 : p = 2/3 and Ha : p 6= 2/3, since we
want to know whether or not the heads probability is 2/3 .

Our parameter values are now n = 100, p = 2/3 so that
np = 66.667 and

√
np(1− p) = 4.714.

Since n(1− p) = 33.333 the normal approximation is still
appropriate, so we compute the p-value as
P(|B100,2/3 − 66.667| ≥ 2.667) ≈ 2P(N66.667,4.714 < 64.5) =
0.6457.



z Tests for Unknown Proportion, XI

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is 2/3.

The p-value is 0.6457.

Thus, the result is not statistically significant at the 11%, 4%,
or 0.5% levels, and we accordingly fail to reject the null
hypothesis in each case.

We interpret this as giving minimal evidence against the
hypothesis that the heads probability is 2/3. (Quite sensible,
since the observed frequency of heads was 64%!)



z Tests for Unknown Proportion, XII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is less than 3/4.

It is easy to see that we want a one-sided alternative
hypothesis; the only question is the appropriate direction.

The actual heads proportion is 64%. Since this is below 75%,
we try the alternative hypothesis Ha : p < 3/4.

Thus, we have the null hypothesis as H0 : p = 3/4 and the
alternative hypothesis as Ha : p < 3/4.



z Tests for Unknown Proportion, XII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is less than 3/4.

It is easy to see that we want a one-sided alternative
hypothesis; the only question is the appropriate direction.

The actual heads proportion is 64%. Since this is below 75%,
we try the alternative hypothesis Ha : p < 3/4.

Thus, we have the null hypothesis as H0 : p = 3/4 and the
alternative hypothesis as Ha : p < 3/4.



z Tests for Unknown Proportion, XII

Example: A coin with unknown heads probability p is flipped
n = 100 times, yielding 64 heads. Test at the 11%, 4%, and 0.5%
significance levels the hypothesis

3. that the heads probability is less than 3/4.

The parameter values now are n = 100 and p = 3/4 so that
np = 75 and

√
np(1− p) = 4.330.

Since np = 75 and n(1− p) = 25 the normal approximation is
still appropriate.

We compute the p-value as
P(B100,3/4 ≤ 64) ≈ P(N75,4.330 < 64.5) = 0.0077.

The result is statistically significant at the 11% and 4% levels,
but not statistically significant at the 0.5% level.

Interpretation: we have fairly strong evidence for the
hypothesis that the true heads probability is less than 3/4.



z Tests for Unknown Proportion, XIII

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.



z Tests for Unknown Proportion, XIV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

Chapter 1 Review: the probability p of getting the ace of
spades in a 5-card hand will be 5/52 if the deck is fair.

Chapter 2 Review: Since the probability of getting the ace of
spades is 5/52, the expected number of times to get the ace
of spades should be 520 · 5/52 = 50.



z Tests for Unknown Proportion, XIV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

1. How many times would you expect him to have the ace of
spades?

Chapter 1 Review: the probability p of getting the ace of
spades in a 5-card hand will be 5/52 if the deck is fair.

Chapter 2 Review: Since the probability of getting the ace of
spades is 5/52, the expected number of times to get the ace
of spades should be 520 · 5/52 = 50.



z Tests for Unknown Proportion, XV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

Chapter 3 Review: The actual proportion should be p = 5/52.

Using the normal approximation to the binomial (appropriate
since np and n(1− p) are large), the true number of successes
should be approximately normal with mean np = 50 and
standard deviation

√
np(1− p) = 6.7225.

Thus, the 80% confidence interval is
50± 1.2816 · 6.7225 = (41.4, 58.6).

The 95% confidence interval is
50± 1.9600 · 6.7225 = (36.8, 63.2).



z Tests for Unknown Proportion, XV

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

2. Find 80% and 95% confidence intervals for the number of
times you would expect him to have the ace of spades.

Chapter 3 Review: The actual proportion should be p = 5/52.

Using the normal approximation to the binomial (appropriate
since np and n(1− p) are large), the true number of successes
should be approximately normal with mean np = 50 and
standard deviation

√
np(1− p) = 6.7225.

Thus, the 80% confidence interval is
50± 1.2816 · 6.7225 = (41.4, 58.6).

The 95% confidence interval is
50± 1.9600 · 6.7225 = (36.8, 63.2).



z Tests for Unknown Proportion, XVI

Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.

Chapter 4 Review: Our hypotheses are H0: p = 5/52 and Ha:
p > 5/52.

Our test statistic is the number of hands with an ace of
spades, which is binomially distributed with mean np = 50
and standard deviation

√
np(1− p) = 6.7225.

Our p-value is then
P(B520,5/52 ≥ 78) ≈ P(N50,6.7225 > 77.5) = 0.0000215.

This p-value is minuscule, so we reject the null hypothesis in
all cases: our opponent does appear to be cheating!
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Example: You think your poker opponent is cheating, so you tally
the proportion of times his 5-card hand contains the ace of spades.
In 520 hands, he has the ace of spades 78 times.

3. Test at the 10%, 1%, and 0.1% significance levels the
hypothesis that your opponent has the ace of spades more
often than he should.

Chapter 4 Review: Our hypotheses are H0: p = 5/52 and Ha:
p > 5/52.

Our test statistic is the number of hands with an ace of
spades, which is binomially distributed with mean np = 50
and standard deviation

√
np(1− p) = 6.7225.

Our p-value is then
P(B520,5/52 ≥ 78) ≈ P(N50,6.7225 > 77.5) = 0.0000215.

This p-value is minuscule, so we reject the null hypothesis in
all cases: our opponent does appear to be cheating!



Summary

We continued our discussion one-sample z tests with more
examples.

We introduced z tests for unknown proportion and gave some
examples.

Next lecture: Additional examples, errors in hypothesis testing


