
Math 3081 (Probability and Statistics)

Lecture #17 of 27 ∼ August 3rd, 2021

Interval Estimation (Part 2)

Binomial Confidence Intervals

Applications of Confidence Intervals

This material represents §3.2.3 from the course notes, and
problems 13-20 from WeBWorK 5.



Antecedently, I

Last lecture, we introduced the notion of a confidence interval:

Definition

If X is a random variable and 0 < α < 1, a 100(1− α)%
confidence interval for X is an interval (a, b) with a < X < b such
that P(a < X < b) = 1− α.

When θ is an unknown parameter, we interpret a confidence
interval for θ as giving us a reasonable error range on the
estimation θ̂ for θ that we have computed.



Antecedently, II

We also constructed confidence intervals using the normal
distribution:

Proposition (Normal Confidence Intervals)

A 100(1− α)% confidence interval for the unknown mean µ of a
normal distribution with known standard deviation σ is given by

µ̂± c
σ√
n

= (µ̂− c
σ√
n
, µ̂+ c

σ√
n

) where n sample points x1, . . . , xn

are taken from the distribution, µ̂ = 1
n (x1 + · · ·+ xn) is the sample

mean, and c is the constant satisfying P(−c < N0,1 < c) = 1− α.

Here are various pairs (α,c) where P(−c < N0,1 < c) = 1− α:

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

c 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905



Binomial Confidence Intervals, I

Our goal today is to extend our discussion of confidence intervals
to situations that are well approximated by the normal distribution.

Specifically, we are interested in using the normal approximation to
the binomial distribution, which arises from repeated sampling of a
Bernoulli random variable.



Binomial Confidence Intervals, II

So, suppose that we have a Bernoulli random variable with
unknown success probability p that we sample n times, yielding
sample values x1, x2, . . . , xn with a total number of successes equal
to k = x1 + x2 + · · ·+ xn.

As we have shown, the sample success estimator p̂ = k/n is
unbiased and is the most efficient possible unbiased estimator
of the true success probability p.

Furthermore, the sample estimator np̂ (which counts the total
number of successes in the n samples) will be binomially
distributed with mean np and standard deviation

√
np(1− p).



Binomial Confidence Intervals, III

To compute an exact confidence interval, we would need to
determine the precise nature of the relationship between p̂ = k/n
and the parameter p itself, which is quite difficult to do directly.

However, when np and n(1− p) are both reasonably large, the
binomial distribution will be well approximated by the
corresponding normal distribution.

That means np̂ will have an approximately normal distribution
with mean np and standard deviation

√
np(1− p).

Equivalently, this says p̂ will have an approximately normal
distribution with mean p and standard deviation√

p(1− p)/n.



Binomial Confidence Intervals, IV

We can now invert our focus and switch from using p to study the
variation in p̂ to using p̂ to study the variation in p.

This is the same thing we did last time for the normal
distribution: we noted that µ̂ was normally distributed with
mean µ and standard deviation σ, and used this to deduce
that µ was normally distributed with mean µ̂ and standard
deviation σ.

We did this by observing that µ̂− µ was normally distributed
with mean 0 and standard deviation σ.



Binomial Confidence Intervals, V

We can try using the same idea in our case here:

Since p̂ has an approximately normal distribution with mean p
and standard deviation

√
p(1− p)/n, that means p̂ − p has

an approximately normal distribution with mean 0 and
standard deviation

√
p(1− p)/n.

So that means p is approximately normally distributed with
mean p̂ and standard deviation

√
p(1− p)/n.

However, there is one crucial problem: with the normal
distribution we were given the standard deviation of the
distribution explicitly. But here, the standard deviation still
depends on the (now) unknown parameter p.



Binomial Confidence Intervals, VI

It would seem that we are stuck going in circles: we cannot find
the standard deviation

√
p(1− p)/n without knowing the value of

p, but p is exactly the quantity we are trying to set up a
confidence interval for!

We would like to avoid having to study the complicated way
in which the exact distribution of p would depend on p̂.

Here is a way out of this conundrum: if we assume
(reasonably) that p̂ is fairly close to p, then the true standard
deviation

√
p(1− p)/n should be fairly close to the estimated

standard deviation
√

p̂(1− p̂)/n that uses the sample
proportion p̂.

So what we will do is use the estimate
√

p̂(1− p̂)/n for the
standard deviation of our normal distribution.

Once we use this estimate, we are back in the situation of
writing down a normal confidence interval.



Binomial Confidence Intervals, VII

For completeness, here is a brief justification of why this
replacement is acceptable:

As we noted, p̂ is roughly normally distributed with mean p
and standard deviation

√
p(1− p)/n, which is typically much

smaller than p.

Indeed, 99.8% of the time, |p̂ − p| < 3
√

p(1− p)/n.

By a basic calc-1 linearization, we can compute the estimate∣∣∣√p̂(1− p̂)/n −
√

p(1− p)/n
∣∣∣ ≈ |3− 6p̂| /(2n) + O(n−2).

This is quite small relative to the actual standard deviation,
which is on the order of

√
p̂/(2n) at worst.

Thus, when n is large, the relative error introduced by this
replacement will be very small. And of course, since we are
using the normal approximation to the binomial distribution,
we will require n to be large anyway.



Binomial Confidence Intervals, VII

To summarize that lengthy discussion, we have the following:

Proposition (Binomial Confidence Intervals)

Suppose a Bernoulli random variable is sampled n times yielding k
successes, for an overall sample success rate of p̂ = k/n. In
situations where the normal approximation to the binomial
distribution is accurate (heuristically, when k and n − k are both
larger than 5 or so), then a 100(1− α)% confidence interval for
the true success probability p is given by
p̂ ± c

√
p̂(1− p̂)/n = (p̂ − c

√
p̂(1− p̂)/n, µ̂+ c

√
p̂(1− p̂)/n),

where c is the constant satisfying P(−c < N0,1 < c) = 1− α.

We use the same table of (α, c) as we did before:

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

c 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905



Binomial Confidence Intervals, VIII

More compactly, our best estimate if we observe k successes in n
trials for the overall success rate is p̂ = k/n, and the margin of
error at the 100(1− α)% confidence level is equal to cσ where
σ =

√
p̂(1− p̂)/n is the sample’s standard deviation.



Examples, I

Example: A coin with unknown probability p of landing heads is
flipped 100 times, yielding 64 heads. Find the following:

1. A 50% confidence interval for p.

2. An 80% confidence interval for p.

3. A 90% confidence interval for p.

4. A 99.5% confidence interval for p.

5. The reasonableness that the coin is actually fair.

6. The reasonableness that the coin actually has heads
probability 2/3.

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

c 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905



Examples, II

Example: A coin with unknown probability p of landing heads is
flipped 100 times, yielding 64 heads. Find the following:

1− α 50% 80% 90% 95% 98% 99% 99.5% 99.9%

c 0.6745 1.2816 1.6449 1.9600 2.3263 2.5758 2.8070 3.2905

1. A 50% confidence interval for p.

Here, we have n = 100 and p̂ = 64/100 = 0.64, so that
σ =

√
p̂(1− p̂)/n = 0.048.

Thus, the 50% CI is p̂ ± 0.6745σ = (0.6076, 0.6724).

2. An 80% confidence interval for p.

This is p̂ ± 1.2816σ = (0.5785, 0.7015).

3. A 90% confidence interval for p.

This is p̂ ± 1.6449σ = (0.5610, 0.7190).

4. A 99.5% confidence interval for p.

This is p̂ ± 2.0870σ = (0.5053, 0.7747).
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Examples, III

Example: A coin with unknown probability p of landing heads is
flipped 100 times, yielding 64 heads. Find the following:

5. The reasonableness that the coin is actually fair.

The 99.5% confidence interval was (0.5053, 0.7747), and even
this does not contain p = 0.5.
This suggests it is very unlikely that the coin is actually fair.

6. The reasonableness that the coin actually has heads
probability 2/3.

The 50% CI was p̂ ± 0.6745σ = (0.6076, 0.6724), which does
contain p = 2/3. This suggests it is not unreasonable to think
that the coin actually has heads probability 2/3.
Although p = 2/3 is not the most likely estimate based on the
observed data (that would be p̂ = 0.64), it is not so far away
from the most likely estimate that we should find it strange if
the coin really did have heads probability 2/3.
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Examples, IV

In tomorrow’s lecture, we will develop the notion of hypothesis
testing, and in Thursday’s lecture, we will return to this example to
discuss how we can quantify the “believability” of these two
hypotheses (p = 1/2 and p = 2/3) that we just discussed.



Examples, V

Example: Last season, a professional basketball player attempted
1800 two-point shots in a season and made 753 of them. Find

1. An 80% confidence interval for his shooting average last
season.

2. A 99% confidence interval for his shooting average last season.

3. An 80% confidence interval for the total number of shots he
should expect to make this season if he attempts 1500 shots
and his true shooting average stays the same as last season.

4. A 99% confidence interval for the number of shots made this
season.



Examples, VI

Example: Last season, a professional basketball player attempted
1800 two-point shots in a season and made 753 of them. Find

1. An 80% confidence interval for his shooting average last
season.

Here, we have n = 1800 and p̂ = 753/1800 ≈ 41.83%, so that
σ =

√
p̂(1− p̂)/n ≈ 1.163%.

We obtain the 80% confidence interval
p̂ ± 1.2816σ = (40.34%, 43.32%).

2. A 99% confidence interval for his shooting average last season.

We obtain the 99% confidence interval
p̂ ± 2.5758σ = (38.83%, 44.83%).
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Examples, VI

Example: Last season, a professional basketball player attempted
1800 two-point shots in a season and made 753 of them. Find

3. An 80% confidence interval for the total number of shots he
should expect to make this season if he attempts 1500 shots
and his true shooting average stays the same as last season.

The distribution of the total number of made shots out of
1500 attempts will be binomial with mean 1500p and
standard deviation

√
1500p(1− p).

We apply the approximation
√

p(1− p) ≈
√

p̂(1− p̂) (which
we also used, and justified as reasonable, in our analysis of the
binomial distribution above).

Then, using the normal approximation to the binomial, the
number of made shots this season is distributed approximately
normally with mean 1500p and standard deviation
σ′ =

√
1500p̂(1− p̂) = 19.105.



Examples, VI
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Examples, VII

Example: Last season, a professional basketball player attempted
1800 two-point shots in a season and made 753 of them. Find

3. An 80% confidence interval for the total number of shots he
should expect to make this season if he attempts 1500 shots
and his true shooting average stays the same as last season.

We are thus constructing confidence intervals with mean
1500p and standard deviation σ′ =

√
1500p̂(1− p̂) = 19.105.

This yields the 80% CI 1500p̂ ± 1.2816σ′ = (603, 652).

Alternatively, we could simply scale our previous 80%
confidence interval by 1500. (Think about why.)

4. A 99% confidence interval for the number of shots made this
season.

We obtain the 99% CI 1500p̂ ± 2.5758σ′ = (578, 677).
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Examples, VIII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

1. An 80% and 95% confidence interval for the true probability
of rolling a 1.

2. An 80% and 95% confidence interval for the true probability
of rolling a 4.

3. An approximate 80% and 95% confidence interval for the
average value of one roll of the die.

4. Are all of these confidence intervals consistent with the die
actually being fair?



Examples, IX

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

1. An 80% and 95% confidence interval for the true probability
of rolling a 1.

Here, we have n = 2000 and p̂ = 354/2000 = 0.177, so that
σ =

√
p̂(1− p̂)/n ≈ 0.00853.

We obtain the 80% CI p̂ ± 1.2816σ = (0.1661, 0.1879).

We obtain the 95% CI p̂ ± 1.9600σ = (0.1603, 0.1937).
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Examples, X

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

2. An 80% and 95% confidence interval for the true probability
of rolling a 4.

Here, we have n = 2000 and p̂ = 312/2000 = 0.156, so that
σ =

√
p̂(1− p̂)/n ≈ 0.00811.

We obtain the 80% CI p̂ ± 1.2816σ = (0.1456, 0.1664).

We obtain the 95% CI p̂ ± 1.9600σ = (0.1401, 0.1719).
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Examples, XI

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

3. An approximate 80% and 95% confidence interval for the
average value of one roll of the die.

If the true distribution of one roll has mean µ and standard
deviation σ, then the average of 2000 rolls will have mean µ
and standard deviation σ′ = σ/

√
2000, and be approximately

normally distributed by the central limit theorem.

Although we do not know the actual value of σ, it is
reasonable to feel that it should be very close to the sample
standard deviation S = 1.7321, which (as we showed) is an
unbiased estimator of the true variance.
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Examples, XII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

3. An approximate 80% and 95% confidence interval for the
average value of one roll of the die.

The actual average of the die rolls is µ̂ = 3.4655, and its
standard deviation is then estimated to be
σ′ = S/

√
2000 = 1.7321/

√
2000 ≈ 0.03873.

This gives us the 80% CI µ̂± 1.2816σ′ = (3.4158, 3.5151) and
also the 95% CI µ̂± 1.9600σ′ = (3.3896, 3.5414).
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Examples, XIII

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

Number 1 2 3 4 5 6

Occurrences 354 347 318 312 333 336

3. An approximate 80% and 95% confidence interval for the
average value of one roll of the die.

As a sanity check, no matter what the actual distribution of
values is for the roll of one die, it is not so hard to see that
the standard deviation is always at most 2.5, since that is half
the maximum difference between two rolls of the die.
The actual average of the die rolls is µ̂ = 3.4655 and the
standard deviation is at most σ′′ = 2.5/

√
2000 ≈ 0.05590.

This yields the “worst-case scenario”
80% CI µ̂± 1.2816σ′′ = (3.3938, 3.5371) and
95% CI µ̂± 1.9600σ′′ = (3.3559, 3.5751).



Examples, XIV

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

4. Are all of these confidence intervals consistent with the die
actually being fair?

Rolling 1 had 80% CI (0.1661, 0.1879).

Rolling 4 had 80% CI (0.1456, 0.1664).

The average value had 80% CI (3.4158, 3.5151).

We can see that the expected true value (1/6 for the
probability of rolling 1 or 4, and 3.5 for the average value of
one roll) lies inside, or just barely outside, the 80% confidence
interval in each case.

This doesn’t provide strong evidence against the die being fair.

In the next chapter, we will discuss methods of testing the
goodness of fit of an expected distribution to an observed data
sample using the χ2 test.
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Examples, XIV

Example: To test for fairness, a six-sided die is rolled 2000 times,
yielding the results below. Find:

4. Are all of these confidence intervals consistent with the die
actually being fair?

Rolling 1 had 80% CI (0.1661, 0.1879).

Rolling 4 had 80% CI (0.1456, 0.1664).

The average value had 80% CI (3.4158, 3.5151).

We can see that the expected true value (1/6 for the
probability of rolling 1 or 4, and 3.5 for the average value of
one roll) lies inside, or just barely outside, the 80% confidence
interval in each case.

This doesn’t provide strong evidence against the die being fair.

In the next chapter, we will discuss methods of testing the
goodness of fit of an expected distribution to an observed data
sample using the χ2 test.



Polling, I

An extremely common use of confidence intervals is in polling
statistics, where a random sample of a population is used to
estimate the proportion that support a particular measure.

Typically, most polls report the margin of error associated
with a 95% confidence interval.

In popular parlance, it is usually referred to as simply “the
margin of error”, with no qualifier, but most reputable polls
also include the confidence level with their statistics.



Polling, II

Example: A newspaper poll reports “45% of voters support X, with
a margin of error of 6%”.

This typically means that the 95% confidence interval for the
percent support of X is (39%, 51%).

It is important not to misinterpret what the confidence
interval actually represents: it says that we are 95% confident
that the true level of support for X is somewhere between
39% and 51%.

It does not mean that we believe all the values in this range
are equally likely!

It also does not mean that the true value must be inside this
range!



Polling, III

Example: A newspaper poll reports “45% of voters support X, with
a margin of error of 6%”.

Although a portion of the 95% confidence interval (39%,
51%) does include outcomes where the support of X is above
50%, it is far more likely that the support for X is below 50%
than above 50%.

That is because we expect the true distribution to be
approximately normal, with mean 45% and standard deviation
6%/1.9600 = 3.0612% (or so).

Indeed, we can compute the actual expected probability that
the support is above 50%: it is
P(N45,3.0612 ≥ 50) = P(N0,1 ≥ 1.3708) = 0.0852. Moderately
low, but still positive!



Polling, IV

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

1. Find a 95% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

2. Find a 99.9% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

3. Estimate the probability that Proposition Q actually has at
least 50% support in the general population.



Polling, V

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

1. Find a 95% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

Here, we have n = 1000 and p̂ = 540/1000 = 54%, so that
σ =

√
p̂(1− p̂)/n ≈ 1.576%.

The margin of error for the 95% confidence interval is
1.9600σ ≈ 3.09%.

The confidence interval itself is
54%± 3.09% = (50.91%, 57.09%).



Polling, V

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

1. Find a 95% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

Here, we have n = 1000 and p̂ = 540/1000 = 54%, so that
σ =

√
p̂(1− p̂)/n ≈ 1.576%.

The margin of error for the 95% confidence interval is
1.9600σ ≈ 3.09%.

The confidence interval itself is
54%± 3.09% = (50.91%, 57.09%).



Polling, VI

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

2. Find a 99.9% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

From before, p̂ = 540/1000 = 54% and σ ≈ 1.576%.

The margin of error for the 99.9% confidence interval is
3.2905σ ≈ 5.19%.

The confidence interval itself is
54%± 5.19% = (48.81%, 59.19%).



Polling, VI

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

2. Find a 99.9% confidence interval, and its associated margin of
error, for the true percentage of the population that supports
Proposition Q.

From before, p̂ = 540/1000 = 54% and σ ≈ 1.576%.

The margin of error for the 99.9% confidence interval is
3.2905σ ≈ 5.19%.

The confidence interval itself is
54%± 5.19% = (48.81%, 59.19%).



Polling, VII

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

3. Estimate the probability that Proposition Q actually has at
least 50% support in the general population.

From before, p̂ = 540/1000 = 54% and σ ≈ 1.576%.

Since the difference p̂ − p is approximately normally
distributed with standard deviation σ, we can interpret this as
saying that p is approximately normally distributed with mean
p̂ and standard deviation σ.

Then P(p ≥ 50%) = P(N54%,1.576% ≥ 50%) = P(N0,1 ≥
−2.5381) = 0.9944. Quite likely!



Polling, VII

Example: A pollster wishes to measure the statewide support for
Proposition Q. He randomly samples 1000 likely voters and finds
540 of them support Proposition Q. Find

3. Estimate the probability that Proposition Q actually has at
least 50% support in the general population.

From before, p̂ = 540/1000 = 54% and σ ≈ 1.576%.

Since the difference p̂ − p is approximately normally
distributed with standard deviation σ, we can interpret this as
saying that p is approximately normally distributed with mean
p̂ and standard deviation σ.

Then P(p ≥ 50%) = P(N54%,1.576% ≥ 50%) = P(N0,1 ≥
−2.5381) = 0.9944. Quite likely!



Polling, VIII

Example: A pollster wishes to measure the support for the
statewide support of Proposition R.

1. If she expects the support level for the proposition to be
approximately 65%, what is the smallest number of people
needed for the 95% confidence interval’s margin of error to be
at most ±2%?

2. How would the answer change if the support level for the
proposition is unknown?



Polling, IX

Example: A pollster wishes to measure the support for the
statewide support of Proposition R.

1. If she expects the support level for the proposition to be
approximately 65%, what is the smallest number of people
needed for the 95% confidence interval’s margin of error to be
at most ±2%?

Here, the expected proportion is p̂ = 0.65, so
σ =

√
p̂(1− p̂)/n.

At the 95% confidence level, the margin of error is 1.9600σ.

Thus, we want 1.9600
√

p̂(1− p̂)/n = 2%, which yields

n =
p̂(1− p̂)

(0.02/1.9600)2
≈ 2184.9.

Thus, the minimum number of people needed for the poll will
be 2185 to achieve a 2% margin of error at the 95%
confidence level.



Polling, IX

Example: A pollster wishes to measure the support for the
statewide support of Proposition R.

1. If she expects the support level for the proposition to be
approximately 65%, what is the smallest number of people
needed for the 95% confidence interval’s margin of error to be
at most ±2%?

Here, the expected proportion is p̂ = 0.65, so
σ =

√
p̂(1− p̂)/n.

At the 95% confidence level, the margin of error is 1.9600σ.

Thus, we want 1.9600
√

p̂(1− p̂)/n = 2%, which yields

n =
p̂(1− p̂)

(0.02/1.9600)2
≈ 2184.9.

Thus, the minimum number of people needed for the poll will
be 2185 to achieve a 2% margin of error at the 95%
confidence level.



Polling, X

Example: A pollster wishes to measure the support for the
statewide support of Proposition R.

2. How would the answer change if the support level for the
proposition is unknown?

If the support level p̂ is unknown, the largest possible value of

n =
p̂(1− p̂)

(0.02/1.9600)2
will occur when the numerator p̂(1− p̂)

is maximized.

Either by calculus or completing the square, we can see that
this maximum occurs when p̂ = 1/2.

The corresponding value of n is then
(1/2) · (1/2)

(0.02/1.9600)2
≈ 2401.0.



Polling, X

Example: A pollster wishes to measure the support for the
statewide support of Proposition R.

2. How would the answer change if the support level for the
proposition is unknown?

If the support level p̂ is unknown, the largest possible value of

n =
p̂(1− p̂)

(0.02/1.9600)2
will occur when the numerator p̂(1− p̂)

is maximized.

Either by calculus or completing the square, we can see that
this maximum occurs when p̂ = 1/2.

The corresponding value of n is then
(1/2) · (1/2)

(0.02/1.9600)2
≈ 2401.0.



Polling, XI

Example: A political article states “Based on a recent poll,
candidate Y has an approval rating of 43.1%± 3.0% (95% CI,
n = 750), which means that it is impossible for their favorability
rating to be 50% or above”. Critique this statement.

Because the poll was conducted by sampling, there is always a
possibility (however remote) that the actual favorability rating
lies outside any given confidence interval.

Thus, it is always possible that the poll is giving a result that
is very far off from reality.
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Polling, XI

Example: A political article states “Based on a recent poll,
candidate Y has an approval rating of 43.1%± 3.0% (95% CI,
n = 750), which means that it is impossible for their favorability
rating to be 50% or above”. Critique this statement.

In this case, given that the sample size was n = 750 and that
it is a 95% confidence interval with a success probability
p̂ = 0.431, the actual distribution of the true favorability
rating will be normal with mean 42.1% and standard deviation√

p̂(1− p̂)/n ≈ 1.80%. (Note that this is consistent with the
quoted information since the margin of error would then be
1.96σ ≈ 3.0%.)

Using properties of the normal distribution, we can then
compute P(N43.1,1.80 > 50) = P(N0,1 > 3.833) ≈ 0.06%. So,
although it is fairly unlikely that candidate Y’s favorability
rating is actually 50% or above, it is certainly still possible.



Polling, XII

Example: In a two-candidate runoff, a poll of 1000 respondents
indicates A has 48.2% support while B has 51.8% support.

1. Calculate the 95%-confidence margin of error for the poll.

2. Find the probability that A actually has at least 50% support
(i.e., will win the race).

3. A pundit makes the following statement: “Because the two
candidates are within the margin of error for the poll (a
statistical tie), the race is a toss-up.” Critique this statement.



Polling, XIII

Example: In a two-candidate runoff, a poll of 1000 respondents
indicates A has 48.2% support while B has 51.8% support.

1. Calculate the 95%-confidence margin of error for the poll.

The margin of error is 1.9600 ·
√

p̂(1− p̂)/n where p̂ is the
support probability.

For A, we obtain a margin of
1.9600 ·

√
0.482 · 0.518/1000 ≈ 3.10%.

For B, we obtain a margin of
1.9600 ·

√
0.518 · 0.482/1000 ≈ 3.10%.

It should make sense that the two candidates have the same
margin of error, since knowing A’s support percentage tells us
B’s, and vice versa.



Polling, XIV

Example: In a two-candidate runoff, a poll of 1000 respondents
indicates A has 48.2% support while B has 51.8% support.

2. Find the probability that A actually has at least 50% support
(i.e., will win the runoff).

Here, we have k = 482 and n − k = 518, so the normal
approximation to the binomial distribution will be good.

Then the support proportion for A will be approximately
normally distributed with mean p̂ = 0.482 and standard
deviation

√
0.482 · 0.518/1000 ≈ 0.0158.

Then P(A > 0.50) = P(N0.482,0.0158 > 0.50) = P(N0,1 >
1.139) ≈ 0.1273.

Thus, A has about a 12.7% chance of winning the runoff,
based on the results of this poll.



Polling, XV

Example: In a two-candidate runoff, a poll of 1000 respondents
indicates A has 48.2% support while B has 51.8% support.

3. A pundit makes the following statement: “Because the two
candidates are within the margin of error for the poll (a
statistical tie), the race is a toss-up.” Critique this statement.

Despite the fact that the candidates are “within the margin of
error”, as we just calculated, A only has about a 1-in-8 chance
of winning the election. So it is quite inaccurate to say that
both candidates are equally likely to win!



Polling, XVI

Example: A poll on a national political issue is taken, and the
results are broken down by various demographics:

Group % Support # Support # Polled

All 52.1% 13,840 26,565

Men 47.2% 6,335 13,421

Women 56.8% 7,407 13,041

Age 18-29 67.9% 3,430 5,051

Age 30-44 51.8% 3,718 7,178

Age 45-64 48.3% 5,349 11,075

Age 65+ 41.2% 1,343 3,261

Find the margin of error for the support in each group at the 95%
confidence level.



Polling, XVII

We can calculate the 95%-CI margins using our earlier formula
1.9600 ·

√
p̂(1− p̂)/n:

Group % Support # Support # Polled % Margin

All 52.1% 13,840 26,565 0.60%

Men 47.2% 6,335 13,421 0.84%

Women 56.8% 7,407 13,041 0.85%

Age 18-29 67.9% 3,430 5,051 1.29%

Age 30-44 51.8% 3,718 7,178 1.16%

Age 45-64 48.3% 5,348 11,077 0.93%

Age 65+ 41.2% 1,344 3,259 1.69%

Note that the smaller groups have a larger margin of error (as one
would expect, of course, since less information is collected from
smaller groups).



Polling, XVIII

Notice also in this last example that the support percentages vary
quite substantially among different groups.

This is a fairly common phenomenon: most demographic
groups do not have identical levels of support for most issues.

But now imagine you are trying to conduct a poll that will
accurately represent the overall support among everyone: if,
for example, your poll has 60% men and 40% women, the
results will show a bias toward a lower support percentage
than the true result.

Avoiding such bias is a difficult issue, since it requires pollsters
to conduct polls that are representative of the general
population in very many ways (gender, race, ethnicity, age,
income, education, national origin, etc.), which is a difficult
problem in general.



Confidence Intervals Everywhere, I

We have reached the end of our official discussion of confidence
intervals, and will start discussing hypothesis testing in earnest
next lecture.

For reasons of efficiency (in the colloquial sense, not the
statistical sense), we have only dealt with confidence interval
construction using the normal distribution.

After we discuss the t distribution in the next chapter, we will
also describe how to construct confidence intervals for
normally-distributed variables whose standard deviation is not
known, which is the most typical practical scenario.



Confidence Intervals Elsewhere, II

We will mention now, though, that it is entirely possible to
construct confidence intervals for the other estimators we have
analyzed so far.

As a few particular examples, we could study the rescaled
maximum estimator for the German tank problem, the
average value estimator for the parameter of the Poisson
distribution, and the reciprocal average value estimator for the
parameter of the exponential distribution.

However, each of these requires a similar level of effort in
order to “invert” the analysis (as was needed with the normal
and binomial distributions) to produce statements about the
variation in the value of the true parameter in terms of the
sample statistic.

As such, we will leave a deeper discussion of general
confidence intervals to another course.



Summary

We introduced how to construct confidence intervals for
binomially-distributed variables.

We discussed applications of binomial confidence intervals to
polling.

Next lecture: Hypothesis testing, z-tests


