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Properties of Estimators: Bias and Efficiency

Biased and Unbiased Estimators

Efficiency of Estimators

The Cramèr-Rao Bound

This material represents §3.1.2-3.1.3 from the course notes.



Recall

Last lecture, we discussed how to perform maximum likelihood
estimates to construct estimators for unknown parameters.

In general, we might hope that the estimators that we can
cook up using maximum likelihood estimation would be “the
best” possible estimators of our unknown parameters.

In general, there are many possible estimators for any given
parameter, and it is not always clear which one we should use.

Our present goal is to discuss various properties of estimators
that capture various aspects of this desire to find “the best”
possible estimator.



Motivation

Recall the German tank problem from last time: we sample the
uniform distribution on [0, θ] to obtain the values x1, x2, . . . , xn.

The maximum likelihood estimator is θ̂ = max(x1, x2, . . . , xn).

However... does it seem entirely reasonable that “best
estimate” θ̂ for the number of enemy tanks is simply the
largest number observed?

Perhaps not! After all, θ̂ is always the lowest feasible number
of tanks that is consistent with the observed data.

That means there is a reasonably good chance that the actual
number of tanks is larger than θ̂, since it is not especially
likely we would actually see the one with the largest number.

This suggests that the maximum likelihood estimate should, in
general, tend to underestimate the actual correct value of θ.
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Bias, I

Intuitively, we might prefer to search for an estimator that tends to
have the smallest systematic error.

The most basic possible requirement is to ask that the
estimator not have any “bias”, on average, away from the
expected value of the parameter.

To study this idea more precisely, we will shift our emphasis
and begin viewing estimators as random variables on the
space of possible input data.



Bias, II

When we view the estimator as a random variable, we can phrase
this requirement for a lack of bias in terms of expected value:

Definition

An estimator θ̂(x1, x2, . . . , xn) for a set of observations x1, . . . , xn
drawn by randomly sampling a random variable X with probability
density function fX (x ; θ) is unbiased if E (θ̂) = θ for all θ.

More verbosely, if we fix θ and then average over all possible
samples x1, . . . , xn of X for a fixed value of θ, then θ̂ is unbiased
when the expected value of the estimator θ̂ is equal to the true
value of the parameter θ.



Bias, III

Example: Show that the maximum likelihood estimate
µ̂ = 1

n (x1 + x2 + · · ·+ xn) for sampling the normal distribution with
mean µ and fixed standard deviation σ is unbiased.

Note that by properties of expected value, we have

E (µ̂) =
1

n
[E (x1) + E (x2) + · · ·+ E (xn)].

Furthermore, we have E (xi ) = µ because each xi is sampled
randomly from a distribution with mean µ.

Thus, we have E (µ̂) =
1

n
[nµ] = µ, and so µ is unbiased.
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Bias, IV

We can actually generalize the previous example quite
substantially, as follows:

Suppose X is any random variable with finite mean µ, and
x1, . . . , xn is an independent random sample of X .

Then the estimator µ̂ = a1x1 + a2x2 + · · ·+ anxn for any
choice of constants ai such that

∑
i ai = 1 will be unbiased.

This follows by the same argument we gave on the previous
slide (i.e., by using the additivity and linearity of expected
value).



Bias, V

Example: Show that the maximum likelihood estimate for the

variance σ̂2 =
1

n
(x2

1 + x2
2 + · · ·+ x2

n )−
[x1 + x2 + · · ·+ xn

n

]2
from

sampling the normal distribution with unknown mean µ and
standard deviation σ is biased.

This example is a bit complicated and requires using a
number of properties of expected value.

Recall that µ = E (xi ) and σ2 = E (x2
i )− E (xi )

2, so
E (x2

i ) = σ2 + µ2.

Then, because variance is additive for independent random
variables, we have
var(x1+x2+· · ·+xn) = var(x1)+var(x2)+· · ·+var(xn) = nσ2.

Since var(S) = E (S2)− E (S)2, applying this for
S = x1 + x2 + · · ·+ xn yields
E (S2) = var(S) + E (S)2 = nσ2 + n2µ2.
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Bias, VI

Example: Show that the maximum likelihood estimate for the

variance σ̂2 =
1

n
(x2

1 + x2
2 + · · ·+ x2

n )−
[x1 + x2 + · · ·+ xn

n

]2
from

sampling the normal distribution with unknown mean µ and
standard deviation σ is biased.

Note E (x2
i ) = σ2 + µ2, E [(x1 + · · ·+ xn)2] = nσ2 + n2µ2.

Then by properties of expected value, we have

E (σ̂2) =
1

n
E (x2

1 + x2
2 + · · ·+ x2

n )− 1

n2
E (x1 + x2 + · · ·+ xn)2

=
1

n
· n(σ2 + µ2)− 1

n2
(nσ2 + n2µ2) =

n − 1

n
σ2.

The expected value is not equal to σ2 because of the factor of
n − 1

n
, so this estimator is biased.



Bias, VII

In this last example, we can construct an unbiased estimator of σ2

by scaling σ̂2 by
n

n − 1
:

Definition

The estimator S2 =
(x1 − x)2 + (x2 − x)2 + · · ·+ (xn − x)2

n − 1
,

where x = x1+x2+···+xn
n is the sample average, is called the

sample variance. Its square root S is called the
sample standard deviation.

Despite the fact that E (S) 6= σ (although this itself is not
easy to show), S is quite commonly used as an estimator for σ
because the estimate of σ2 by S2 is unbiased.



Bias, VIII

The use of n − 1 in place of n in the denominator of the sample
variance is known as “Bessel’s correction”.

Roughly speaking, the correction is required because
measuring the variance of the sample relative to the sample
mean (rather than relative to the unknown true mean µ) will
always lower the estimated variance.

Thus, as we calculated, a correction is needed to unbias the
estimate.



Bias, IX

Here is some intuitive motivation for why the factor 1
n−1 appears:

Drawing credit: Ben Orlin, mathwithbaddrawings.com (2017).



Bias, X

Example: Show that the maximum likelihood estimator
θ̂ = max(x1, x2, . . . , xn) from sampling the uniform distribution on
[0, θ] is biased.

Here, we need to compute the expected value of θ̂, which
requires us to find the underlying probability distribution.

Observe that, for any 0 ≤ x ≤ θ, we have P(θ̂ ≤ x) = (x/θ)n

because θ̂ ≤ k occurs precisely when all of the values
x1, x2, . . . , xn lie in the interval [0, x ], which occurs with
probability (x/θ)n.

This means that the cumulative distribution function for θ̂ is
gθ̂(x) = (x/θ)n for 0 ≤ x ≤ θ, and so its probability
distribution function is the derivative g ′

θ̂
(x) = nxn−1/θn.
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Bias, XI

Example: Show that the maximum likelihood estimator
θ̂ = max(x1, x2, . . . , xn) from sampling the uniform distribution on
[0, θ] is biased.

We have the pdf pθ̂(x) = nxn−1/θn for 0 ≤ x ≤ θ.

Now we may compute

E (θ̂) =
∫ θ
0 xpθ̂(x) dx =

∫ θ
0 nxn/θn dx =

n

n + 1
θ.

Since this is not equal to θ, we see that θ̂ is biased, as claimed.

Like with the sample variance of the normal distribution from
earlier, we can rescale the maximum likelihood estimate to obtain

an unbiased estimator of θ, namely, θ̂ =
n + 1

n
max(x1, x2, . . . , xn).
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Bias, XII
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Efficiency, I

As we have already remarked, for any given parameter estimation
problem, there are many different possible choices for estimators.

One desirable quality for an estimator is that it be unbiased.
However, this requirement alone does not impose a
substantial condition, since (as we have seen) there can exist
several different unbiased estimators for a given parameter.

In the last two examples, we constructed two different
unbiased estimators for the parameter θ, given a random
sample x1, x2, . . . , xn from the uniform distribution on [0, θ]:

namely, θ̂1 =
n + 1

n
max(x1, x2, . . . , xn) and

θ̂2 =
2

n
(x1 + x2 + · · ·+ xn).



Efficiency, II

Likewise, it is also not hard to see that, given a random
sample x1, x2 from the normal distribution with mean θ and
standard deviation σ, the estimators θ̂1 = 1

2(x1 + x2) and

θ̂2 = 1
3(x1 + 2x2) are also both unbiased.

More generally, any estimator of the form ax1 + (1− a)x2 will
be an unbiased estimator of the mean.

We would now like to know if there is a meaningful way to say one
of these unbiased estimators is better than the other.



Efficiency, III

In the abstract, it seems reasonable to say that an estimator with a
smaller variance is better than one with a larger variance, since a
smaller variance would indicate that the value of the estimator
stays closer to the “true” parameter value more often.

We formalize this as follows:

Definition

If θ̂1 and θ̂2 are two unbiased estimators for the parameter θ, we
say that θ̂1 is more efficient than θ̂2 if var(θ̂1) < var(θ̂2).



Efficiency, IV

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

1. Find the variance of the estimator θ̂1 = 1
2(x + y).

2. Find the variance of the estimator θ̂2 = 1
3(x + 2y).

3. Show that θ̂1 and θ̂2 are both unbiased estimators of θ.

4. Which of θ̂1, θ̂2 is a more efficient estimator of θ?

5. More generally, for θ̂a = ax + (1− a)y , which value of a
produces the most efficient estimator?

To compute the variances and check for unbiasedness, we will
use properties of expected value and the additivity of variance
for independent variables.
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Efficiency, V

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

1. Find the variance of the estimator θ̂1 = 1
2(x + y).

Note that because x and y are independent, their variances
are additive, and var(x) = var(y) = σ2.

Then, we have

var(θ̂1) = var(12x + 1
2y)

= var(12x) + var(12y)

= 1
4var(x) + 1

4var(y)

= 1
4σ

2 + 1
4σ

2 = 1
2σ

2.

Thus, var(θ̂2) = (1/2)σ2.
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Efficiency, VI

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

2. Find the variance of the estimator θ̂2 = 1
3(x + 2y).

In the same way, we have

var(θ̂2) = var(13x + 2
3y)

= var(13x) + var(23y)

= 1
9var(x) + 4

9var(y)

= 1
9σ

2 + 4
9σ

2 = 5
9σ

2

Thus, var(θ̂2) = (5/9)σ2.



Efficiency, VI

Example: Suppose that a random sample x , y is taken from the
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Efficiency, VII

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

3. Show that θ̂1 and θ̂2 are both unbiased estimators of θ.

We have E (θ̂1) = E (12(x + y)) = 1
2E (x) + 1

2E (y) = θ.

Likewise, E (θ̂1) = E (23(x + 2y)) = 1
3E (x) + 2

3E (y) = θ.

Thus, both estimators are unbiased.

4. Which of θ̂1, θ̂2 is a more efficient estimator of θ?

Since var(θ̂1) = (1/2)σ2 while var(θ̂2) = (5/9)σ2, we see θ̂1
is more efficient since 1/2 < 5/9.
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is more efficient since 1/2 < 5/9.



Efficiency, VIII

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

5. More generally, for θ̂a = ax + (1− a)y , which value of a
produces the most efficient estimator?

In the same way as before, we can compute

var(θ̂a) = var(ax + (1− a)y)

= a2var(x) + (1− a)2var(y)

= [a2 + (1− a)2]σ2 = (2a2 − 2a + 1)σ2.

By calculus (the derivative is 4a− 2 which is zero for
a = 1/2) or by completing the square
(2a2 − 2a + 1 = 2(a− 1/2)2 + 1/2) we can see that the
minimum of the quadratic occurs when a = 1/2.

Thus, in fact, θ̂1 is the most efficient estimator of this form.



Efficiency, VIII

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

5. More generally, for θ̂a = ax + (1− a)y , which value of a
produces the most efficient estimator?

In the same way as before, we can compute

var(θ̂a) = var(ax + (1− a)y)

= a2var(x) + (1− a)2var(y)

= [a2 + (1− a)2]σ2 = (2a2 − 2a + 1)σ2.

By calculus (the derivative is 4a− 2 which is zero for
a = 1/2) or by completing the square
(2a2 − 2a + 1 = 2(a− 1/2)2 + 1/2) we can see that the
minimum of the quadratic occurs when a = 1/2.

Thus, in fact, θ̂1 is the most efficient estimator of this form.



Efficiency, IX

Example: Suppose that a random sample x , y is taken from the
normal distribution with mean θ and standard deviation σ.

5. More generally, for θ̂a = ax + (1− a)y , which value of a
produces the most efficient estimator? (Answer: a = 1/2.)

Intuitively, this last calculation should make sense, because if
we put more weight on one observation, its variation will tend
to dominate the calculation.

In the extreme situation of taking θ̂3 = x2 (which corresponds
to a = 0), for example, we see that the variance is simply σ2,
which is much larger than the variance arising from the
average.

This is quite reasonable, since the average 1
2(x1 + x2) uses a

bigger sample and thus captures more information than just
using a single observation.



Efficiency, X

Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].

1. Find the variance of the unbiased estimator

θ̂1 =
n + 1

n
max(x1, . . . , xn).

2. Find the variance of the unbiased estimator

θ̂2 =
2

n
(x1 + x2 + · · ·+ xn).

3. Which estimator is a more efficient estimator for θ?



Efficiency, XI

Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].

1. Find the variance of θ̂1 = n+1
n max(x1, . . . , xn).

To compute the variance of θ̂1, we use the pdf of
max(x1, . . . , xn), which is g(x) = nxn−1/θn for 0 ≤ x ≤ θ.

Then E [max(x1, . . . , xn)2] =
∫ θ
0 x2 · nxn−1/θn dx = n

n+2θ
2.

Also, E [max(x1, . . . , xn)] =
∫ θ
0 x · nxn−1/θn dx = n

n+1θ, so

var[max(x1, . . . , xn)] = n
n+2θ

2 −
[

n
n+1θ

]2
= n

(n+2)(n+1)2
θ2.

Therefore,

var(θ̂1) =
[n + 1

n

]2
var[max(x1, . . . , xn)] =

1

n(n + 2)
θ2.



Efficiency, XI

Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].
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∫ θ
0 x2 · nxn−1/θn dx = n

n+2θ
2.

Also, E [max(x1, . . . , xn)] =
∫ θ
0 x · nxn−1/θn dx = n

n+1θ, so

var[max(x1, . . . , xn)] = n
n+2θ

2 −
[

n
n+1θ

]2
= n

(n+2)(n+1)2
θ2.

Therefore,

var(θ̂1) =
[n + 1

n

]2
var[max(x1, . . . , xn)] =

1

n(n + 2)
θ2.



Efficiency, XII

Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].

2. Find the variance of θ̂2 =
2

n
(x1 + x2 + · · ·+ xn).

For θ̂2, since the xi are independent, their variances are
additive.

We have var(xi ) =

∫ θ

0
(x − θ/2)2 · 1

θ
dx =

θ2

12
.

Thus,

var(θ̂2) = var( 2nx1) + · · ·+ var( 2nxn) = n · 4

n2
· θ

2

12
=

1

3n
θ2.



Efficiency, XII

Example: A random sample x1, x2, . . . , xn is taken from the
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2

n
(x1 + x2 + · · ·+ xn).
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∫ θ

0
(x − θ/2)2 · 1

θ
dx =

θ2

12
.

Thus,

var(θ̂2) = var( 2nx1) + · · ·+ var( 2nxn) = n · 4

n2
· θ

2

12
=

1

3n
θ2.



Efficiency, XIII

Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].

3. Which estimator is a more efficient estimator for θ?

We just calculated var(θ̂1) =
1

n(n + 2)
θ2 and var(θ̂2) =

1

3n
θ2.

For n = 1 these variances are the same (this is unsurprising
because when n = 1 the estimators themselves are the same!).

For n > 1 we see that the variance of θ̂1 is smaller since
1

n + 2
<

1

3
, so θ̂1 is more efficient.
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Example: A random sample x1, x2, . . . , xn is taken from the
uniform distribution on [0, θ].

3. Which estimator is a more efficient estimator for θ?

We just calculated var(θ̂1) =
1

n(n + 2)
θ2 and var(θ̂2) =

1

3n
θ2.

For n = 1 these variances are the same (this is unsurprising
because when n = 1 the estimators themselves are the same!).

For n > 1 we see that the variance of θ̂1 is smaller since
1

n + 2
<

1

3
, so θ̂1 is more efficient.



Efficiency, XIV

Example: Suppose x and y are respectively drawn from two
independent normal distributions X and Y with the same unknown
mean E (X ) = E (Y ) = θ but different known variances
var(X ) = σ2 and var(Y ) = 2σ2.

1. Show that for any parameter 0 ≤ a ≤ 1 the estimator
θ̂a = ax + (1− a)y is an unbiased estimator of θ.

2. Find the value of a yielding the most efficient estimator of θ.



Efficiency, XV

Example: Suppose x and y are respectively drawn from two
independent normal distributions X and Y with the same unknown
mean E (X ) = E (Y ) = θ but different known variances
var(X ) = σ2 and var(Y ) = 2σ2.

1. Show that for any parameter 0 ≤ a ≤ 1 the estimator
θ̂a = ax + (1− a)y is an unbiased estimator of θ.

By the linearity of expected value, we have
E (θ̂a) = aE (x) + (1− a)E (y) = aθ + (1− a)θ = θ. Thus, θ̂a
is unbiased for each value of a.

Note that this is essentially the same calculation we have
made several times before, and has nothing to do with the
standard deviations of the distributions given.



Efficiency, XV

Example: Suppose x and y are respectively drawn from two
independent normal distributions X and Y with the same unknown
mean E (X ) = E (Y ) = θ but different known variances
var(X ) = σ2 and var(Y ) = 2σ2.

1. Show that for any parameter 0 ≤ a ≤ 1 the estimator
θ̂a = ax + (1− a)y is an unbiased estimator of θ.

By the linearity of expected value, we have
E (θ̂a) = aE (x) + (1− a)E (y) = aθ + (1− a)θ = θ. Thus, θ̂a
is unbiased for each value of a.

Note that this is essentially the same calculation we have
made several times before, and has nothing to do with the
standard deviations of the distributions given.



Efficiency, XVI

Example: Suppose x and y are respectively drawn from two
independent normal distributions X and Y with the same unknown
mean E (X ) = E (Y ) = θ but different known variances
var(X ) = σ2 and var(Y ) = 2σ2.

2. Find the value of a yielding the most efficient estimator of θ.

Since x and y are independent we have

var(θ̂a) = var[ax ] + var[(1− a)y ]

= a2var(x) + (1− a)2var(y)

= a2σ2 + (1− a)2 · 2σ2 = (3a2 − 4a + 2)σ2.

Via calculus (the derivative is 6a−4 which is zero for a = 2/3)
or completing the square (3a2 − 4a + 2 = 3(a− 2/3)2 + 2/3),
we see that the minimum variance occurs for a = 2/3.

Thus, a = 2/3 yields the most efficient estimator.



Efficiency, XVI

Example: Suppose x and y are respectively drawn from two
independent normal distributions X and Y with the same unknown
mean E (X ) = E (Y ) = θ but different known variances
var(X ) = σ2 and var(Y ) = 2σ2.

2. Find the value of a yielding the most efficient estimator of θ.

Since x and y are independent we have

var(θ̂a) = var[ax ] + var[(1− a)y ]

= a2var(x) + (1− a)2var(y)

= a2σ2 + (1− a)2 · 2σ2 = (3a2 − 4a + 2)σ2.

Via calculus (the derivative is 6a−4 which is zero for a = 2/3)
or completing the square (3a2 − 4a + 2 = 3(a− 2/3)2 + 2/3),
we see that the minimum variance occurs for a = 2/3.

Thus, a = 2/3 yields the most efficient estimator.



Cramèr-Rao, I [FOR FUN ONLY]

The variance of any estimator is always bounded below (since it is
by definition nonnegative). So it is quite reasonable to ask
whether, for a fixed estimation problem, there might be an optimal
unbiased estimator: namely, one of minimal variance.

This question turns out to be quite subtle, because we are not
guaranteed that such an estimator necessarily exists.

For example, it could be the case that the possible variances
of unbiased estimators form an open interval of the form
(a,∞) for some a ≥ 0.

Then there would be estimators whose variances approach the
value a arbitrarily closely, but there is none that actually
achieves the lower bound value a.



Cramèr-Rao, II [FOR FUN ONLY]

There is a lower bound on the possible values for the variance of
an unbiased estimator:

Theorem (Cramèr-Rao Inequality)

Suppose that pX (x ; θ) is a probability density function that is
differentiable in θ. Also suppose that the support of p, the set of
values of x where pX (x ; θ) 6= 0, does not depend on the parameter
θ. If x1, x2, . . . , xn is a random sample drawn from X ,
θ̂ = f (x1, . . . , fn) is an unbiased estimator of θ, and
` = ln[pX (x ; θ)] denotes the log-pdf of the distribution, then
var(θ̂) ≥ 1/I (θ) where I (θ) = n · E [(∂`/∂θ)2].

In the event that pX is twice-differentiable in θ, it can be shown
that I (θ) can also be calculated as I (θ) = −n · E [∂2`/∂θ2].



Cramèr-Rao, III [FOR FUN ONLY]

A few remarks:

The proof of the Cramèr-Rao inequality is rather technical
(although not conceptually difficult), so we will omit the
precise details.

In practice, it is not always so easy to evaluate the lower
bound in the Cramèr-Rao inequality.

Furthermore, there does not always exist an unbiased
estimator that actually achieves the Cramèr-Rao bound.

However, if we are able to find an unbiased estimator whose
variance does achieve the Cramèr-Rao bound, then the
inequality guarantees that this estimator is the most efficient
possible.



Cramèr-Rao, IV [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

1. Show that θ̂ is an unbiased estimator of θ.

2. Find the variance of θ̂.

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

We first need to compute the expected value and variance of
this estimator. Then we need to evaluate the lower bound in
the Cramèr-Rao inequality.

The claim is that the given estimator actually achieves this
lower bound.



Cramèr-Rao, IV [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

1. Show that θ̂ is an unbiased estimator of θ.

2. Find the variance of θ̂.

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

We first need to compute the expected value and variance of
this estimator. Then we need to evaluate the lower bound in
the Cramèr-Rao inequality.

The claim is that the given estimator actually achieves this
lower bound.



Cramèr-Rao, V [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

1. Show that θ̂ is an unbiased estimator of θ.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its expected value is nθ.

Then E (θ̂) = 1
n · nθ = θ, so θ̂ is unbiased.

2. Find the variance of θ̂.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its variance is nθ(1− θ).

Then the variance of θ̂ = 1
n (x1 + x2 + · · ·+ xn) is

var(θ̂) = 1
n2
· nθ(1− θ) = θ(1−θ)

n .



Cramèr-Rao, V [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

1. Show that θ̂ is an unbiased estimator of θ.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its expected value is nθ.

Then E (θ̂) = 1
n · nθ = θ, so θ̂ is unbiased.

2. Find the variance of θ̂.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its variance is nθ(1− θ).

Then the variance of θ̂ = 1
n (x1 + x2 + · · ·+ xn) is

var(θ̂) = 1
n2
· nθ(1− θ) = θ(1−θ)

n .



Cramèr-Rao, V [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

1. Show that θ̂ is an unbiased estimator of θ.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its expected value is nθ.

Then E (θ̂) = 1
n · nθ = θ, so θ̂ is unbiased.

2. Find the variance of θ̂.

Since x1 + x2 + · · ·+ xn is binomially distributed with
parameters n and θ, its variance is nθ(1− θ).

Then the variance of θ̂ = 1
n (x1 + x2 + · · ·+ xn) is

var(θ̂) = 1
n2
· nθ(1− θ) = θ(1−θ)

n .



Cramèr-Rao, VI [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

We compute the Cramèr-Rao bound: if ` = ln[pX (x ; θ)] is the
log-pdf of the distribution, then var(θ̂) ≥ 1/I (θ) where
I (θ) = n · E [(∂`/∂θ)2].

Here, the likelihood function can be written as
L(x ; θ) = θx(1− θ)1−x (it is θ if x = 1 and 1− θ if x = 0), so
that ` = x ln θ + (1− x) ln(1− θ).

Differentiating twice yields
∂2`

∂θ2
= − x

θ2
+

1− x

(1− θ)2
.



Cramèr-Rao, VI [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

We compute the Cramèr-Rao bound: if ` = ln[pX (x ; θ)] is the
log-pdf of the distribution, then var(θ̂) ≥ 1/I (θ) where
I (θ) = n · E [(∂`/∂θ)2].

Here, the likelihood function can be written as
L(x ; θ) = θx(1− θ)1−x (it is θ if x = 1 and 1− θ if x = 0), so
that ` = x ln θ + (1− x) ln(1− θ).

Differentiating twice yields
∂2`

∂θ2
= − x

θ2
+

1− x

(1− θ)2
.



Cramèr-Rao, VII [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

So, since E (x) = θ, the expected value is

E [
∂2`

∂θ2
] =

E (x)

θ2
+

E (1− x)

(1− θ)2

= − θ

θ2
+

1− θ
(1− θ)2

= − 1

θ(1− θ)
.



Cramèr-Rao, VIII [FOR FUN ONLY]

Example: Suppose that a coin with unknown probability θ of
landing heads is flipped n times, yielding results x1, x2, . . . , xn
(where we interpret heads as 1 and tails as 0). Let
θ̂ = 1

n (x1 + x2 + · · ·+ xn).

3. Show that θ̂ has the minimum variance of all possible
unbiased estimators of θ.

Using the calculation on the previous slide shows that the
Cramèr-Rao bound is var(θ̂) ≥ θ(1−θ)

n .

But we calculated before that for our unbiased estimator
θ̂ = 1

n (x1 + x2 + · · ·+ xn) we do in fact have var(θ̂) = θ(1−θ)
n .

Therefore, our estimator θ̂ achieves the Cramèr-Rao bound, so
it has the minimum variance of all possible unbiased
estimators of θ, as claimed.

So, in fact, the obvious estimator is actually the best possible!



Cramèr-Rao, IX [FOR FUN ONLY]

Example: Show that the maximum-likelihoood estimator
θ̂µ = 1

n (x1 + x2 + · · ·+ xn) is the most efficient possible unbiased
estimator of the mean of a normal distribution with unknown mean
θ = µ and known standard deviation σ.

We will show that this estimator achieves the Cramèr-Rao
bound.

For this, we first compute the log-pdf

` = ln(
√

2π)− 1
2 ln(σ)− (x − θ)2

2σ2
.

Differentiating yields
∂`

∂θ
= −x − θ

σ2
and then

∂2`

∂θ2
=

1

σ2
.

Since this is constant we simply see E [
∂2`

∂θ2
] =

1

σ2
.

Then, the Cramèr-Rao bound dictates that var(θ̂) ≥ σ2/n for
any estimator θ̂.



Cramèr-Rao, IX [FOR FUN ONLY]

Example: Show that the maximum-likelihoood estimator
θ̂µ = 1

n (x1 + x2 + · · ·+ xn) is the most efficient possible unbiased
estimator of the mean of a normal distribution with unknown mean
θ = µ and known standard deviation σ.

We will show that this estimator achieves the Cramèr-Rao
bound.

For this, we first compute the log-pdf

` = ln(
√

2π)− 1
2 ln(σ)− (x − θ)2

2σ2
.

Differentiating yields
∂`

∂θ
= −x − θ

σ2
and then

∂2`

∂θ2
=

1

σ2
.

Since this is constant we simply see E [
∂2`

∂θ2
] =

1

σ2
.

Then, the Cramèr-Rao bound dictates that var(θ̂) ≥ σ2/n for
any estimator θ̂.



Cramèr-Rao, X [FOR FUN ONLY]

Example: Show that the maximum-likelihoood estimator
θ̂µ = 1

n (x1 + x2 + · · ·+ xn) is the most efficient possible unbiased
estimator of the mean of a normal distribution with unknown mean
θ = µ and known standard deviation σ.

The Cramèr-Rao bound says var(θ̂) ≥ σ2/n.

For our estimator, since the xi are all independent and
normally distributed with mean θ and standard deviation σ, we
have var(θ̂µ) = 1

n2
[var(x1) + · · ·+ var(xn)] = 1

n2
· nσ2 = σ2/n.

Thus, the variance of our estimator θ̂µ achieves the
Cramèr-Rao bound, meaning that it is the most efficient
unbiased estimator possible.



Cramèr-Rao, XI [FOR FUN ONLY]

Example: Show that the maximum-likelihoood estimator

θ̂var =
1

n

[
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

]
is the most

efficient possible estimator of the variance θ = σ2 of a normal
distribution with known mean µ.

This one is rather lengthy, so we will just sketch the actual
calculations (the full details are in the notes).

As before, we show θ̂var achieves the Cramèr-Rao bound.

Using expected value properties, we can eventually show that
I (θ) = −E [∂2`/∂θ2] = n/(2θ2), and so the Cramèr-Rao
bound says var(θ̂) ≥ 2θ2/n.

For our estimator, by some calculations with the normal
distribution and variance properties, we can find
var(θ̂var) = 1

n2
· n · 2θ2 = 2θ2

n .

Thus, θ̂var achieves the Cramèr-Rao bound, as claimed.



Cramèr-Rao, XI [FOR FUN ONLY]

Example: Show that the maximum-likelihoood estimator

θ̂var =
1

n

[
(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

]
is the most

efficient possible estimator of the variance θ = σ2 of a normal
distribution with known mean µ.

This one is rather lengthy, so we will just sketch the actual
calculations (the full details are in the notes).

As before, we show θ̂var achieves the Cramèr-Rao bound.

Using expected value properties, we can eventually show that
I (θ) = −E [∂2`/∂θ2] = n/(2θ2), and so the Cramèr-Rao
bound says var(θ̂) ≥ 2θ2/n.

For our estimator, by some calculations with the normal
distribution and variance properties, we can find
var(θ̂var) = 1

n2
· n · 2θ2 = 2θ2

n .

Thus, θ̂var achieves the Cramèr-Rao bound, as claimed.



Cramèr-Rao, XII [FOR FUN ONLY]

Example: Compare the variance of the unbiased estimator

θ̂1 =
n + 1

n
max(x1, x2, . . . , xn) from sampling the uniform

distribution on [0, θ] to the Cramèr-Rao bound.

We already computed var(θ̂1) = 1
n(n+2)θ

2 earlier.

To compute the bound from Cramèr-Rao, we have
L(θ) = (1/θ)n hence ` = ln(L) = −n ln(θ).

Then ∂`/∂θ = −n/θ so ∂2`/∂θ2 = n/θ2.

Since this is constant, I (θ) = −n · E [∂2`/∂θ2] = n2/θ2.

Thus, the Cramèr-Rao bound is var(θ̂) ≥ θ2/n2.

But now notice that var(θ̂1) < θ2/n2: this means θ̂1 actually
has a smaller variance than the Cramèr-Rao minimum!



Cramèr-Rao, XII [FOR FUN ONLY]

Example: Compare the variance of the unbiased estimator

θ̂1 =
n + 1

n
max(x1, x2, . . . , xn) from sampling the uniform

distribution on [0, θ] to the Cramèr-Rao bound.

We already computed var(θ̂1) = 1
n(n+2)θ

2 earlier.

To compute the bound from Cramèr-Rao, we have
L(θ) = (1/θ)n hence ` = ln(L) = −n ln(θ).

Then ∂`/∂θ = −n/θ so ∂2`/∂θ2 = n/θ2.

Since this is constant, I (θ) = −n · E [∂2`/∂θ2] = n2/θ2.

Thus, the Cramèr-Rao bound is var(θ̂) ≥ θ2/n2.

But now notice that var(θ̂1) < θ2/n2: this means θ̂1 actually
has a smaller variance than the Cramèr-Rao minimum!



Cramèr-Rao, XIII [FOR FUN ONLY]

Example: Compare the variance of the unbiased estimator

θ̂1 =
n + 1

n
max(x1, x2, . . . , xn) from sampling the uniform

distribution on [0, θ] to the Cramèr-Rao bound.

We have var(θ̂1) = 1
n(n+2)θ

2, but the Cramèr-Rao bound says

we should have var(θ̂) ≥ θ2/n2.

This is not a contradiction, because in fact one of the
hypotheses of the Cramèr-Rao theorem is violated.

Specifically, one hypothesis says that the set of values of x
where pX (x ; θ) 6= 0 does not depend on the parameter θ.

Here, pX (x ; θ) 6= 0 for x ∈ [0, θ], and this range clearly does
depend on θ. So the theorem does not apply, and we do not
have a contradiction.



Cramèr-Rao, XIII [FOR FUN ONLY]

Example: Compare the variance of the unbiased estimator

θ̂1 =
n + 1

n
max(x1, x2, . . . , xn) from sampling the uniform

distribution on [0, θ] to the Cramèr-Rao bound.

We have var(θ̂1) = 1
n(n+2)θ

2, but the Cramèr-Rao bound says

we should have var(θ̂) ≥ θ2/n2.

This is not a contradiction, because in fact one of the
hypotheses of the Cramèr-Rao theorem is violated.

Specifically, one hypothesis says that the set of values of x
where pX (x ; θ) 6= 0 does not depend on the parameter θ.

Here, pX (x ; θ) 6= 0 for x ∈ [0, θ], and this range clearly does
depend on θ. So the theorem does not apply, and we do not
have a contradiction.



Cramèr-Rao, XIV [FOR FUN ONLY]

In more general situations, the Cramèr-Rao theorem can be very
hard to apply (since we have to compute the expected value of a
second derivative), and there is no guarantee that there actually
exists an estimator realizing the bound.

Think of it more as a broad result telling us about the best
possible “minimum variance” we might hope to find for our
estimation problem.

If we can find an unbiased estimator whose variance is close to
the Cramèr-Rao minimum, we should view this estimator as
“good”. If the variance is far away from the Cramèr-Rao
minimum, that suggests our estimator is probably not so good.



Summary

We discussed biased and unbiased estimators.

We discussed efficiency of estimators.

We stated the Cramèr-Rao bound and used it to show that some
of our unbiased estimators were the most efficient possible ones.

Next lecture: Interval estimation and confidence intervals


