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Maximum Likelihood Estimates

One More Modeling Example

Parameter Estimation

Maximum Likelihood Estimates

Estimators

This material represents §3.1.1-3.1.2 from the course notes, and
problems 1-3 from WeBWorK 5.



More Models, I

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

1. Describe the distribution of the random variable X measuring
the total number of typos in one week.

2. What is the probability there are exactly 5 typos this week?

3. What is the probability there are no typos in today’s lecture?

4. Describe the distribution of the random variable Y measuring
the total amount of time before the next typo is made.

5. After one typo, what is the probability that at least 4 full
lectures pass before another typo is made?

6. Estimate the probability of obtaining more than 180 typos if
the course runs for 52 weeks.



More Models, II

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

1. Describe the distribution of the random variable X measuring
the total number of typos in one week.

From the description, typos are a relatively rare event, and it
is reasonable to assume that they are independent.

So, the distribution of typos will be Poisson, and the
parameter will be the average number of typos per week,
which is λ = 3.

2. What is the probability there are exactly 5 typos this week?

This is P(Pλ = 5) =
35e−3

5!
≈ 0.1008.
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More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

3. What is the probability there are no typos in today’s lecture?

The average number of typos in one lecture is 3/4, so the
number of typos in today’s lecture will be Poisson-distributed
with parameter λ = 3/4.

Then the probability of no typos is e−3/4 ≈ 0.4724.Since their
arr sevral typoes in thiss footnorte, the actua; probability is 0.

4. Describe the distribution of the random variable Y measuring
the total time, in weeks, before the next typo is made.

The waiting time will be exponential because the probability
of obtaining a typo is independent of the amount of time
since the last typo.

The average time between typos is 3/4 of a week, so λ = 3/4.
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More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

5. After one typo, what is the probability that at least 4 full
lectures pass before another typo is made?

Since the waiting time is exponential, this is
P(Eλ ≥ 4) = e−4·3/4 = e−3 ≈ 0.0498.

6. Estimate the probability of obtaining more than 180 typos if
the course runs for 52 weeks.

The exact distribution is Poisson with λ = 52 · 3 = 156, but it
is very cumbersome to evaluate the exact probability this way.
Instead, by the central limit theorem, we can observe that the
distribution is approximately normal with mean
µ = 52λ = 156 and standard deviation

√
52λ ≈ 12.4900.

Including a continuity correction, the approximate probability
is P(N156,12.4900 ≥ 179.5) = P(N0,1 ≥ 1.8815) = 0.0300.
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Overview of §3, I

We now move into the third chapter of the course, on parameter
and interval estimation.

So far, we have discussed probability and random variables
and focused on useful distributions such as the normal,
exponential, and Poisson distributions.

In most cases, we have always started by being given a
distribution and then proceeding to use it to answer various
questions (e.g., finding probabilities, computing expected
values, describing the behavior of sample averages, etc.).

Our goal in this chapter is, in a fairly direct sense, to invert
this analysis: instead, we start with data obtained by sampling
a distribution with certain unknown parameters, and our goal
is to extract information about the most reasonable values for
these parameters given the observed data.



Overview of §3, II

We will start by discussing “pointwise” estimation methods,
which will allow us to find good predictions for the value of an
unknown parameter.

Next, we discuss various properties that we would like our
estimators to have, and briefly explain how in some cases it is
possible to establish that a particular parameter is actually
optimal with respect to certain reasonable conditions.

We finish by broadening our focus to “interval” estimation
methods, which allow us to give a measurement of the
expected precision of our estimate (thereby quantifying “how
good” we think the estimate is).



Parameter Estimation, I

To motivate our formal development of estimation methods, we
first outline a few scenarios in which we would like to use
parameter estimation.

For consistency, we will call our unknown parameter θ throughout
our discussion.



Parameter Estimation, II

Example: Suppose we have an unfair coin with an unknown
probability θ of coming up heads. We would like to estimate θ.

Suppose we flip the coin 10 times, and the results are TTTTT
THTTH.

What is the most reasonable estimate for θ given these
results?

In this case, it seems reasonable to say that since 8 of the flips
are tails and 2 of the flips are heads, the most reasonable
estimate for θ would be 2/10 = 0.2.

It seems far more likely that we would obtain the results
above with a coin that has a 1/5 chance of landing heads
(since then the expected number of heads in 10 flips is 2,
exactly what we observed) than, say, if the coin had a 1/2
chance of landing heads (since then the expected number of
heads would be 5, far more than we observed).
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Parameter Estimation, III

Example: We expect the number of calls received by an emergency
help line per hour at night should have a Poisson distribution with
parameter λ = θ. We want to estimate θ.

Suppose we count the number of calls in five consecutive
hours, and the totals are 4 calls, 2 calls, 0 calls, 3 calls, and 4
calls.

What is the most reasonable estimate for θ given these
results?

To ponder: what seems like a plausible range of possible
values for θ? How would you try to decide which value is
“most reasonable”?



Parameter Estimation, IV

Example: Suppose that we are waiting for a package delivery from
an unreliable service. We model the wait time by an exponential
distribution with some parameter λ = θ. We want to estimate θ.

Suppose we order 4 packages, and the delivery times are 1.25
days, 0.02 days, 0.18 days, and 0.63 days.

What is the most reasonable estimate for θ given these
results?

To ponder: what seems like a plausible range of possible
values for θ? How would you try to decide which value is
“most reasonable”?



Parameter Estimation, V

Here is an outline of one possible way to identify a plausible value
of θ in the first two examples:

First, we compute the probability of obtaining the sampling
data we received in terms of θ.

Then we search among the possible values of θ for the one
that makes our observed outcomes most likely to have
occurred.

If θ is far away from this estimate, it will be unlikely for us to
have observed the data sample we got.

However, if θ is close to this estimate, it is much more
plausible for us to see the data we did.

We can take a similar approach for the third example, provided we
use the probability density function in place of the actual
probabilities of obtaining the observed values (since they will
always be zero).



Likelihood, I

To formalize the procedure we just described, we first define the
likelihood of obtaining the observed data as a function of the
parameter θ:

Definition

Suppose the values x1, x2, . . . , xn are observed by sampling a
discrete or continuous random variable X with probability density
function fX (x ; θ) that depends upon an unknown parameter θ.
Then the likelihood function L(θ) =

∏
i fX (xi ; θ) represents the

probability associated to the observed values xi .



Likelihood, II

In the situation where X is a discrete random variable, then
under the assumption that all of the samples are independent,
the product fX (x1; θ) · fX (x2; θ) · · · · · fX (xn; θ) represents the
probability of obtaining the outcomes x1, x2, . . . , xn from
sampling X a total of n times in a row.

In the situation where X is a continuous random variable, the
product represents the probability density of obtaining that
sequence of outcomes.

In either scenario, we think of the likelihood function L(θ) as
measuring the overall probability that we would obtain the
observed data by sampling the distribution with parameter θ.



Likelihood, III

Example: If an unfair coin with an unknown probability θ of
coming up heads is flipped 10 times, and the results are TTTTT
THTTH, find the associated likelihood function L(θ).

The values of the probability density function on the 10 flips,
respectively, are 1− θ, 1− θ, 1− θ, 1− θ, 1− θ
and 1− θ, θ, 1− θ, 1− θ, θ.

Thus, the likelihood function is
L(θ) = (1− θ)6 · θ · (1− θ)2 · θ = θ2(1− θ)8.

Note here that the likelihood function only depends on the
numbers of heads and tails flipped: it would be the same for
any other sequence with 8 tails and 2 heads.
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Likelihood, IV

Example: If a Poisson distribution with parameter λ = θ is
sampled five times and the results are 4, 2, 0, 3, 4, find the
associated likelihood function L(θ).

The value of the pdf on each result are, respectively,[
θ4e−θ

4!

]
,

[
θ2e−θ

2!

]
,

[
θ0e−θ

0!

]
,

[
θ3e−θ

3!

]
,

[
θ4e−θ

4!

]
.

Thus, multiplying these together yields

L(θ) =

[
θ4e−θ

4!

]
·
[
θ2e−θ

2!

]
·
[
θ0e−θ

0!

]
·
[
θ3e−θ

3!

]
·
[
θ4e−θ

4!

]
=

θ13e−5θ

6912
.
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Likelihood, V

Example: If an exponential distribution with parameter λ = θ is
sampled four times and the results are 1.25, 0.02, 0.18, 0.63, find
the associated likelihood function L(θ).

The value of the pdf on each result are, respectively,
[θe−1.25θ], [θe−0.02θ], [θe−0.18θ], [θe−0.63θ].

Thus, multiplying these together yields
L(θ) = [θe−1.25θ] · [θe−0.02θ] · [θe−0.02θ] · [θe−0.63θ] = θ4e−2.08θ.



Likelihood, V

Example: If an exponential distribution with parameter λ = θ is
sampled four times and the results are 1.25, 0.02, 0.18, 0.63, find
the associated likelihood function L(θ).
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Maximum Likelihood, I

Our approach now is to compute the value of the unknown
parameter that maximizes the likelihood of obtaining the observed
data; this is known as the method of maximum likelihood. More
explicitly:

Method (Maximum Likelihood)

Suppose the values x1, x2, . . . , xn are observed by sampling a
random variable X with probability density function fX (x ; θ) that
depends upon an unknown parameter θ.
Then a maximum likelihood estimate (MLE) for θ, often written as
θ̂ or θe , is a value of θ that maximizes the likelihood function
L(θ) =

∏
i fX (xi ; θ).



Maximum Likelihood, II

A few comments:

In principle, there could be more than one value of θ
maximizing the function L(θ). In practice, there is usually a
unique maximum, which we refer to as the maximum
likelihood estimate of θ.

If fX (xi ; θ) is a differentiable function of θ (which is usually
the case) then L(θ) will also be a differentiable function of θ.

Then, by the usual principle from calculus, any maximum
likelihood estimate will be a global maximum of L hence be a
root of the derivative L′(θ).

Since L(θ) is a product, to compute the roots of its derivative
it is much easier instead to use logarithmic differentation,
which amounts to computing the roots of the derivative of its
logarithm ln L(θ) =

∑
i ln[fX (xi ; θ)], which is called the

log-likelihood.



Maximum Likelihood, III

Example: An unfair coin with an unknown probability θ of coming
up heads is flipped 10 times, and the results are TTTTT THTTH.
Find the maximum likelihood estimate for θ.

Earlier, we computed the likelihood function
L(θ) = (1− θ)6 · θ · (1− θ)2 · θ = θ2(1− θ)8.

The log-likelihood is ln L(θ) = 2 ln(θ) + 8 ln(1− θ) with
derivative d

dθ [ln L(θ)] = 2
θ −

8
1−θ .

Setting the derivative equal to zero yields 2
θ −

8
1−θ = 0 so that

2(1− θ) = 8θ, whence θ = 1/5.

This yields an estimate θ̂ = 1/5. Note that this agrees with
our intuitive argument earlier that the most reasonable value
of θ is the actual proportion of heads obtained in the sample.
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Maximum Likelihood, IV

Example: An unfair coin with an unknown probability θ of coming
up heads is flipped 10 times, and the results are TTTTT THTTH.
Find the maximum likelihood estimate for θ.

We could have differentiated L(θ) directly:
L′(θ) = 2θ(1− θ)8 − 8θ2(1− θ)7 = θ(1− θ)7(2− 10θ).

Setting L′(θ) = 0 and solving then yields θ = 0, 1, 1/5.

Notice that although θ = 0 and θ = 1 are roots of L′(θ) = 0,
and hence are critical numbers for L(θ), they are in fact local
minima, whereas θ = 1/5 is a local maximum.

We implicitly ignored the two values θ = 0 and θ = 1 when
analyzing the log-likelihood because these make d

dθ ln L(θ)
undefined rather than zero.

In principle, we should always check that the candidate value
actually does yield the maximum likelihood, but we will omit
such verifications when there is only one possible candidate.
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undefined rather than zero.
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such verifications when there is only one possible candidate.



Maximum Likelihood, V

Example: An exponential distribution with parameter θ is sampled
five times and the results are 1.25, 0.02, 0.18, 0.63. Find the
maximum likelihood estimate for θ.

We computed the likelihood function
L(θ) = [θe−1.25θ] · [θe−0.02θ] · [θe−0.18θ] · [θe−0.63θ] = θ4e−2.08θ.

The log-likelihood is ln L(θ) = 4 ln θ − 2.08θ.

Then
d

dθ
[ln L(θ)] =

4

θ
− 2.08.

This is equal to zero for θ = 4/2.08 ≈ 1.9231, so this value is
our maximum likelihood estimate.

Notice that the expected value of the exponential distribution
is 1/θ. If we set this equal to the observed expected value
2.08/4, we obtain the maximum likelihood estimate for θ.



Maximum Likelihood, V

Example: An exponential distribution with parameter θ is sampled
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is 1/θ. If we set this equal to the observed expected value
2.08/4, we obtain the maximum likelihood estimate for θ.



Maximum Likelihood, VI

Example: A Poisson distribution with parameter λ = θ
representing the number of calls to an emergency help line is
sampled five times and the results are 4, 2, 0, 3, 4. Find the
maximum likelihood estimate for θ.

We computed the likelihood function L(θ) =
θ13e−5θ

6912
.

The log-likelihood is ln L(θ) = 13 ln(θ)− 5θ − ln(6912).

Then
d

dθ
[ln L(θ)] =

13

θ
− 5.

This is equal to zero for θ = 13/5, so this value is our
maximum likelihood estimate.

Notice that this value θ = 13/5 represents the average
number of calls to the help line per hour in the data sample.
(Think for yourself why this is a sensible parameter estimate.)
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Maximum Likelihood, VII

Example: A normal distribution with mean 0 and standard
deviation θ is sampled four times and the results are 2.08, 0.34,
−2.65, and 2.28. Find the maximum likelihood estimate for θ.

The probability density function for this normal distribution is

fX (x ; θ) =
1

θ
√

2π
e−x

2/(2θ2).

To find the log-likelihood it is easier to take the logarithm of
fX (x ; θ) and then sum afterwards.

We see ln fX (x ; θ) = − ln(
√

2π)− ln(θ)− x2

2θ2
.

Now we sum to obtain the log-likelihood: ln L(θ)

= −4 ln(
√

2π)− 4 ln(θ)− 2.082

2θ2
− 0.342

2θ2
− (−2.65)2

2θ2
− 2.282

2θ2

= −4 ln(
√

2π)− 4 ln(θ)− 16.6629

2θ2
.
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Maximum Likelihood, VIII

Example: A normal distribution with mean 0 and standard
deviation θ is sampled four times and the results are 2.08, 0.34,
−2.65, and 2.28. Find the maximum likelihood estimate for θ.

Log-likelihood: ln L(θ) = −4 ln(
√

2π)− 4 ln(θ)− 16.6629

2θ2
.

Now take the derivative: this gives
d

dθ
[ln L(θ)] = −4

θ
+

16.6629

θ3
.

Setting this equal to zero and solving yields

θ = ±
√

16.6629

4
≈ ±2.0410.

Since the standard deviation is always nonnegative, the
maximum likelihood estimate is θ̂ ≈ 2.0410.



Maximum Likelihood, VIII

Example: A normal distribution with mean 0 and standard
deviation θ is sampled four times and the results are 2.08, 0.34,
−2.65, and 2.28. Find the maximum likelihood estimate for θ.

Log-likelihood: ln L(θ) = −4 ln(
√

2π)− 4 ln(θ)− 16.6629

2θ2
.

Now take the derivative: this gives
d

dθ
[ln L(θ)] = −4

θ
+

16.6629

θ3
.

Setting this equal to zero and solving yields

θ = ±
√

16.6629

4
≈ ±2.0410.

Since the standard deviation is always nonnegative, the
maximum likelihood estimate is θ̂ ≈ 2.0410.



Maximum Likelihood, IX

Example: A normal distribution with mean θ and standard
deviation θ is sampled four times and the results are 14, −3, 12,
and 8. Find the maximum likelihood estimate for θ.

The probability density function for this normal distribution is

fX (x ; θ) =
1

θ
√

2π
e−(x−θ)

2/(2θ2).

Thus, ln fX (x ; θ) = − ln(
√

2π)− ln(θ)− (x − θ)2

2θ2
.

We then sum the appropriate values to obtain the

log-likelihood: ln L(θ) = −4 ln(
√

2π)− 4 ln(θ)− (14− θ)2

2θ2
−

(−3− θ)2

2θ2
− (12− θ)2

2θ2
− (8− θ)2

2θ2
=

−4 ln(
√

2π)− 4 ln(θ)− 413− 62θ + 4θ2

2θ2
.



Maximum Likelihood, IX

Example: A normal distribution with mean θ and standard
deviation θ is sampled four times and the results are 14, −3, 12,
and 8. Find the maximum likelihood estimate for θ.

The probability density function for this normal distribution is

fX (x ; θ) =
1

θ
√

2π
e−(x−θ)

2/(2θ2).

Thus, ln fX (x ; θ) = − ln(
√

2π)− ln(θ)− (x − θ)2

2θ2
.

We then sum the appropriate values to obtain the

log-likelihood: ln L(θ) = −4 ln(
√

2π)− 4 ln(θ)− (14− θ)2

2θ2
−

(−3− θ)2

2θ2
− (12− θ)2

2θ2
− (8− θ)2

2θ2
=

−4 ln(
√

2π)− 4 ln(θ)− 413− 62θ + 4θ2

2θ2
.



Maximum Likelihood, X

Example: A normal distribution with mean θ and standard
deviation θ is sampled four times and the results are 14, −3, 12,
and 8. Find the maximum likelihood estimate for θ.

We have ln L(θ) = 4 ln(
√

2π)− 4 ln(θ)− 413− 62θ + 4θ2

2θ2
.

Thus,
d

dθ
[ln L(θ)] = −4

θ
+

413

θ3
− 31

θ2
. Setting this equal to

zero and clearing denominators yields −4θ2 − 31θ + 413 = 0
which has roots θ = −59

4 , 7.

Since the standard deviation is always nonnegative, the
maximum likelihood estimate is θ = 7.



Maximum Likelihood, X

In some cases, after taking the derivative of the log-likelihood we
may be left with an equation that cannot be solved analytically for
θ (unlike the examples we just did, where we could always solve
explicitly for θ).

In such cases, we must resort to numerical approximation
procedures, such as Newton’s method, to find the desired root.



Maximum Likelihood, XI

Example: The continuous random variable with probability density

function fX (x ; θ) =
2(θ − x)

θ2
for 0 ≤ x ≤ θ is sampled five times,

and the results are 1.31, 0.83, 1.19, 0.20, and 0.06. Find the
maximum likelihood estimate for θ.

We have ln fX (x ; θ) = ln 2 + ln(θ − x)− 2 ln(θ), so now we
sum the appropriate values to obtain the log-likelihood:
ln L(θ) = 4 ln 2 + ln(θ − 1.31) + ln(θ − 0.83) + ln(θ − 1.19) +
ln(θ − 0.2) + ln(θ − 0.06)− 10 ln(θ).

The derivative is then d
dθ [ln L(θ)] =

1

θ − 1.31
+

1

θ − 0.83
+

1

θ − 1.19
+

1

θ − 0.20
+

1

θ − 0.06
− 10

θ
.

Setting the derivative equal to zero and clearing denominators
yields a polynomial equation of degree 5 in θ, whose roots
cannot be easily evaluated.



Maximum Likelihood, XI

Example: The continuous random variable with probability density

function fX (x ; θ) =
2(θ − x)

θ2
for 0 ≤ x ≤ θ is sampled five times,

and the results are 1.31, 0.83, 1.19, 0.20, and 0.06. Find the
maximum likelihood estimate for θ.

We have ln fX (x ; θ) = ln 2 + ln(θ − x)− 2 ln(θ), so now we
sum the appropriate values to obtain the log-likelihood:
ln L(θ) = 4 ln 2 + ln(θ − 1.31) + ln(θ − 0.83) + ln(θ − 1.19) +
ln(θ − 0.2) + ln(θ − 0.06)− 10 ln(θ).

The derivative is then d
dθ [ln L(θ)] =

1

θ − 1.31
+

1

θ − 0.83
+

1

θ − 1.19
+

1

θ − 0.20
+

1

θ − 0.06
− 10

θ
.

Setting the derivative equal to zero and clearing denominators
yields a polynomial equation of degree 5 in θ, whose roots
cannot be easily evaluated.



Maximum Likelihood, XII

Example: The continuous random variable with probability density

function fX (x ; θ) =
2(θ − x)

θ2
for 0 ≤ x ≤ θ is sampled five times,

and the results are 1.31, 0.83, 1.19, 0.20, and 0.06. Find the
maximum likelihood estimate for θ.

Using Newton’s method or another numerical approximation
technique, we can find approximations to the solutions of

1

θ − 1.31
+

1

θ − 0.83
+

1

θ − 1.19
+

1

θ − 0.20
+

1

θ − 0.06
− 10

θ
= 0

as θ ≈ 0.0677, 0.2308, 0.9113, 1.2460, and 2.3307.

Since one of the observed values was 1.31, and the density
function is only nonzero when 0 ≤ x ≤ θ, we must have
θ ≥ 1.31. Therefore, the maximum likelihood estimate can
only be the largest root, so θ̂ ≈ 2.3307.



Maximum Likelihood, XII

Example: The continuous random variable with probability density

function fX (x ; θ) =
2(θ − x)

θ2
for 0 ≤ x ≤ θ is sampled five times,

and the results are 1.31, 0.83, 1.19, 0.20, and 0.06. Find the
maximum likelihood estimate for θ.

Using Newton’s method or another numerical approximation
technique, we can find approximations to the solutions of

1

θ − 1.31
+

1

θ − 0.83
+

1

θ − 1.19
+

1

θ − 0.20
+

1

θ − 0.06
− 10

θ
= 0

as θ ≈ 0.0677, 0.2308, 0.9113, 1.2460, and 2.3307.

Since one of the observed values was 1.31, and the density
function is only nonzero when 0 ≤ x ≤ θ, we must have
θ ≥ 1.31. Therefore, the maximum likelihood estimate can
only be the largest root, so θ̂ ≈ 2.3307.



Maximum Likelihood, XIII

It is also possible to perform maximum likelihood estimates for
more than one unknown parameter simultaneously.

The idea is the same as in the single-parameter case: we write
down the likelihood function and then attempt to maximize it.

For a differentiable function of several variables, any local
maximum must occur at a point where all partial derivatives
of the function are zero.

As before, since the likelihood function is a product, we
usually work instead with the log-likelihood function.

What this means is that we may find a multi-parameter
maximum likelihood estimate by setting all of the partial
derivatives of the log-likelihood function equal to zero, and
then solving the resulting system of equations for the
unknown parameters.



Maximum Likelihood, XIV

Example: A normal distribution with unknown mean µ and
standard deviation θ is sampled three times and the results are 1,
5, and −3. Find the maximum likelihood estimate for (µ, θ).

The probability density function for this normal distribution is

fX (x ; θ, µ) =
1

θ
√

2π
e−(x−µ)

2/(2θ2).

Thus, the log-likelihood function is

ln L(θ, µ) = −3 ln(
√

2π)− 3 ln(θ)− (1− µ)2

2θ2
− (5− µ)2

2θ2
−

(−3− µ)2

2θ2
= −3 ln(

√
2π)− 3 ln(θ)− 35− 6µ+ 3µ2

2θ2
.



Maximum Likelihood, XIV

Example: A normal distribution with unknown mean µ and
standard deviation θ is sampled three times and the results are 1,
5, and −3. Find the maximum likelihood estimate for (µ, θ).

The probability density function for this normal distribution is

fX (x ; θ, µ) =
1

θ
√

2π
e−(x−µ)

2/(2θ2).

Thus, the log-likelihood function is

ln L(θ, µ) = −3 ln(
√

2π)− 3 ln(θ)− (1− µ)2

2θ2
− (5− µ)2

2θ2
−

(−3− µ)2

2θ2
= −3 ln(

√
2π)− 3 ln(θ)− 35− 6µ+ 3µ2

2θ2
.



Maximum Likelihood, XIV

Example: A normal distribution with unknown mean µ and
standard deviation θ is sampled three times and the results are 1,
5, and −3. Find the maximum likelihood estimate for (µ, θ).

We have ln L(θ, µ) = −4 ln(
√

2π)− 4 ln(θ)− 35−6µ+3µ2

2θ2
.

Thus, the two partial derivatives are
∂
∂µ [ln L(θ, µ)] = 6−6µ

2θ2
and

∂
∂θ [ln L(θ, µ)] = −4

θ + 35−6µ+3µ2

θ3
.

Setting the partial derivatives equal to zero and solving yields,
respectively, 6− 6µ = 0 so that µ = 1, and

θ2 = 35−6µ+3µ2

4 = 8 so that θ = ±
√

8.

Since the standard deviation is positive, we obtain the
maximum likelihood estimates µ = 1 and θ =

√
8.



Maximum Likelihood, XIV

Example: A normal distribution with unknown mean µ and
standard deviation θ is sampled three times and the results are 1,
5, and −3. Find the maximum likelihood estimate for (µ, θ).

We have ln L(θ, µ) = −4 ln(
√

2π)− 4 ln(θ)− 35−6µ+3µ2

2θ2
.

Thus, the two partial derivatives are
∂
∂µ [ln L(θ, µ)] = 6−6µ

2θ2
and

∂
∂θ [ln L(θ, µ)] = −4

θ + 35−6µ+3µ2

θ3
.

Setting the partial derivatives equal to zero and solving yields,
respectively, 6− 6µ = 0 so that µ = 1, and

θ2 = 35−6µ+3µ2

4 = 8 so that θ = ±
√

8.

Since the standard deviation is positive, we obtain the
maximum likelihood estimates µ = 1 and θ =

√
8.



Maximum Likelihood, XV

With more complicated functions of several parameters, the
resulting system of equations can be very difficult to solve, even
with numerical methods.

For this reason, certain other methods are used in lieu of
maximum likelihood estimates.

One such method is known as the method of moments.

This method involves computing the so-called moments
E (X k) for integers k = 1, 2, . . . , n where n is the total
number of unknown parameters, and then setting them equal
to the corresponding moments of the sample data.

The resulting system of equations is often much easier to solve
than the system arising from a maximum likelihood estimate.



Maximum Likelihood, XVI

In many cases, the estimates yielded by the method of
moments are a good approximation to those arising from
maximum likelihood estimates (and for many common
distributions, they are often the same), and can be used as a
starting point for approximation methods.

In the one-parameter case, the method of moments is the
same as requiring that the estimate’s expected value agrees
with the sample’s expected value.

In the two-parameter case, since var(X ) = E (X 2)− E (X )2, it
is the same as requiring that the estimate’s expected value and
variance agree with the sample’s expected value and variance.



Estimators, I

Instead of performing a maximum likelihood estimate for each set
of sample data, we can instead try to write down a general formula
for the estimate in terms of the data values we observe.

Such a function is an estimator for our parameter of interest θ.

We typically denote an estimator using a hat: θ̂.

The estimator θ̂ will be a function of the sample data values
x1, x2, . . . , xn.

We draw a distinction between an estimate and an estimator:
an estimate is a numerical value for a specific collection of
sample data, while an estimator is a function that provides an
estimate for any input collection of sample data.



Estimators, II

Example: A Poisson distribution with parameter θ is sampled n
times yielding outcomes x1, x2, . . . , xn. Find the maximum
likelihood estimator θ̂(x1, . . . , xn) for θ in terms of x1, x2, . . . , xn.

Since fX (x ; θ) =
θxe−θ

x!
, taking the logarithm gives

ln fX (x ; θ) = x ln θ − θ − ln(x!).

Then the log-likelihood function is obtained by summing this
function over the values x1, x2, . . . , xn.

Explicitly,
ln L(θ) = (x1 + x2 + · · ·+ xn) ln(θ)− nθ − ln(x1!x2! · · · xn!).

Thus,
d

dθ
[ln L(θ)] =

x1 + x2 + · · ·+ xn
θ

− n, which is equal to

zero for θ̂ =
x1 + x2 + · · ·+ xn

n
.



Estimators, II

Example: A Poisson distribution with parameter θ is sampled n
times yielding outcomes x1, x2, . . . , xn. Find the maximum
likelihood estimator θ̂(x1, . . . , xn) for θ in terms of x1, x2, . . . , xn.

Since fX (x ; θ) =
θxe−θ

x!
, taking the logarithm gives

ln fX (x ; θ) = x ln θ − θ − ln(x!).

Then the log-likelihood function is obtained by summing this
function over the values x1, x2, . . . , xn.

Explicitly,
ln L(θ) = (x1 + x2 + · · ·+ xn) ln(θ)− nθ − ln(x1!x2! · · · xn!).

Thus,
d

dθ
[ln L(θ)] =

x1 + x2 + · · ·+ xn
θ

− n, which is equal to

zero for θ̂ =
x1 + x2 + · · ·+ xn

n
.



Estimators, III

Example: A normal distribution with unknown mean µ and
standard deviation σ is sampled sampled n times yielding outcomes
x1, x2, . . . , xn. Find the maximum likelihood estimators
µ̂(x1, . . . , xn) and σ̂(x1, . . . , xn).

Since fX (x ;µ, σ) =
1

σ
√

2π
e−(x−µ)

2/(2σ2), the log-likelihood

function is

ln L(µ, σ) = n ln(
√

2π)−n ln(σ)− (x1 − µ)2 + · · ·+ (xn − µ)2

2σ2
.

The partial derivatives are
∂

∂µ
[ln L(µ, σ)] =

(x1 − µ) + · · ·+ (xn − µ)

σ2
and

∂

∂σ
[ln L(µ, σ)] = −n

σ
+

(x1 − µ)2 + · · ·+ (xn − µ)2

θ3
.



Estimators, III

Example: A normal distribution with unknown mean µ and
standard deviation σ is sampled sampled n times yielding outcomes
x1, x2, . . . , xn. Find the maximum likelihood estimators
µ̂(x1, . . . , xn) and σ̂(x1, . . . , xn).

Since fX (x ;µ, σ) =
1

σ
√

2π
e−(x−µ)

2/(2σ2), the log-likelihood

function is

ln L(µ, σ) = n ln(
√

2π)−n ln(σ)− (x1 − µ)2 + · · ·+ (xn − µ)2

2σ2
.

The partial derivatives are
∂

∂µ
[ln L(µ, σ)] =

(x1 − µ) + · · ·+ (xn − µ)

σ2
and

∂

∂σ
[ln L(µ, σ)] = −n

σ
+

(x1 − µ)2 + · · ·+ (xn − µ)2

θ3
.



Estimators, IV

Example: A normal distribution with unknown mean µ and
standard deviation σ is sampled n times yielding outcomes
x1, x2, . . . , xn. Find the maximum likelihood estimators
µ̂(x1, . . . , xn) and σ̂(x1, . . . , xn).

We have ∂
∂µ [ln L(µ, σ)] = (x1−µ)+···+(xn−µ)

σ2 and

∂
∂σ [ln L(µ, σ)] = − n

σ + (x1−µ)2+···+(xn−µ)2
θ3

.

Setting the partial derivatives equal to zero and solving yields,
respectively, µ = x1+···+xn

n and

σ2 = (x1−µ)2+···+(xn−µ)2
n = 1

n (x21 + · · ·+ x2n )−
(
x1+···+xn

n

)2
.

The resulting values of µ̂ and σ̂ are simply the mean and
standard deviation of the outcome set {x1, x2, . . . , xn}.



Estimators, IV

Example: A normal distribution with unknown mean µ and
standard deviation σ is sampled n times yielding outcomes
x1, x2, . . . , xn. Find the maximum likelihood estimators
µ̂(x1, . . . , xn) and σ̂(x1, . . . , xn).

We have ∂
∂µ [ln L(µ, σ)] = (x1−µ)+···+(xn−µ)

σ2 and

∂
∂σ [ln L(µ, σ)] = − n

σ + (x1−µ)2+···+(xn−µ)2
θ3

.

Setting the partial derivatives equal to zero and solving yields,
respectively, µ = x1+···+xn

n and

σ2 = (x1−µ)2+···+(xn−µ)2
n = 1

n (x21 + · · ·+ x2n )−
(
x1+···+xn

n

)2
.

The resulting values of µ̂ and σ̂ are simply the mean and
standard deviation of the outcome set {x1, x2, . . . , xn}.



Estimators, V

Example: A uniform distribution on [0, θ] is sampled n times
yielding outcomes x1, x2, . . . , xn. Find the maximum likelihood
estimator θ̂ for θ.

The probability density function for this distribution is

fX (x ; θ) =

{
1/θ for 0 ≤ x ≤ θ
0 for other x

.

Therefore, the likelihood function is

L(θ) =

{
1/θn if x1, x2, . . . xn ≤ θ
0 otherwise

.

Since 1/θn decreases with increasing θ, we can see that the
maximum value will occur for the smallest possible θ for
which the first condition is satisfied, which is the maximum of
x1, x2, . . . , xn.

Thus, the MLE here is θ̂ = max(x1, x2, . . . , xn).



Estimators, V

Example: A uniform distribution on [0, θ] is sampled n times
yielding outcomes x1, x2, . . . , xn. Find the maximum likelihood
estimator θ̂ for θ.

The probability density function for this distribution is

fX (x ; θ) =

{
1/θ for 0 ≤ x ≤ θ
0 for other x

.

Therefore, the likelihood function is

L(θ) =

{
1/θn if x1, x2, . . . xn ≤ θ
0 otherwise

.

Since 1/θn decreases with increasing θ, we can see that the
maximum value will occur for the smallest possible θ for
which the first condition is satisfied, which is the maximum of
x1, x2, . . . , xn.

Thus, the MLE here is θ̂ = max(x1, x2, . . . , xn).



Estimators, VI

The discrete analogue of this last problem is known as the German
tank problem.

During World War II, British intelligence was able to capture
numerous components from German tanks, each of which was
stamped with its manufacturing number.

The labels were thus effectively drawn at random from [0, θ]
where θ was the total number of German tanks.

For obvious reasons, it was of substantial military interest to
estimate as precisely as possible the total number θ of enemy
tanks; the (quite surprising) result of this calculation shows
the largest part number observed is actually a good estimate.

As a historical matter, the projections obtained by the
statisticians analyzing this problem were far more accurate
than those obtained by other methods!



Estimators, VII

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

1. Find the probability density function pX (x ; θ).

2. If n incomes x1, x2, . . . , xn are randomly sampled from the
population, find the maximum likelihood estimator θ̂ for θ.

3. If k = $18 000 and the sampled incomes are $52 000, $19 000,
$23 000, $55 000, find θ̂ and the expected income.



Estimators, VIII

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

1. Find the probability density function pX (x ; θ).

The given information is equivalent to
P(X < x) = 1− (k/x)θ for x ≥ k .

Since the probability on the left is precisely the one used for
the definition of the cumulative distribution function, we can
find the pdf by differentiating with respect to x .

This yields pX (x ; θ) = ∂
∂x [1− (k/x)θ]

= θkθ(1/x)θ+1.



Estimators, VIII

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

1. Find the probability density function pX (x ; θ).

The given information is equivalent to
P(X < x) = 1− (k/x)θ for x ≥ k .

Since the probability on the left is precisely the one used for
the definition of the cumulative distribution function, we can
find the pdf by differentiating with respect to x .

This yields pX (x ; θ) = ∂
∂x [1− (k/x)θ]

= θkθ(1/x)θ+1.



Estimators, IX

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

2. If n incomes x1, x2, . . . , xn are randomly sampled from the
population, find the maximum likelihood estimator θ̂ for θ.

Since ln fX (x ; θ) = ln θ+ θ ln k − (θ+ 1) ln x , the log-likelihood
function is ln L(θ) = n ln θ + nθ ln k − (θ + 1) ln(x1x2 · · · xn).

Thus, ∂
∂θ [ln L(θ)] = n/θ + n ln k − ln(x1x2 · · · xn).

Setting this equal to zero and solving for θ yields the
maximum likelihood estimator θ̂ = 1/[ 1n ln(x1x2 · · · xn)− ln k].



Estimators, IX

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

2. If n incomes x1, x2, . . . , xn are randomly sampled from the
population, find the maximum likelihood estimator θ̂ for θ.

Since ln fX (x ; θ) = ln θ+ θ ln k − (θ+ 1) ln x , the log-likelihood
function is ln L(θ) = n ln θ + nθ ln k − (θ + 1) ln(x1x2 · · · xn).

Thus, ∂
∂θ [ln L(θ)] = n/θ + n ln k − ln(x1x2 · · · xn).

Setting this equal to zero and solving for θ yields the
maximum likelihood estimator θ̂ = 1/[ 1n ln(x1x2 · · · xn)− ln k].



Estimators, X

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

3. If k = $18 000 and the sampled incomes are $52 000, $19 000,
$23 000, $55 000, find θ̂ and the expected income.

We have θ̂ = 1/[ 1n ln(x1x2 · · · xn)− ln k].

Plugging in the given values yields the estimate θ̂ = 1.6148.

The expected income we can compute by integrating: we have

E (X ) =

∫ ∞
k

xθkθ(1/x)θ+1 dx = θkθ
∫ ∞
k

x−θ dx =
kθ

θ − 1
.

Taking k = $18 000 and θ = 1.6148 yields an expected
income of $47 277, to the nearest dollar.



Estimators, X

Example: Pareto’s law states that if X denotes an individual’s
income, then P(X ≥ x) = (k/x)θ for x ≥ k , where k is the
minimum income for the population and θ ≥ 1 is a parameter.
Assume k is known.

3. If k = $18 000 and the sampled incomes are $52 000, $19 000,
$23 000, $55 000, find θ̂ and the expected income.

We have θ̂ = 1/[ 1n ln(x1x2 · · · xn)− ln k].

Plugging in the given values yields the estimate θ̂ = 1.6148.

The expected income we can compute by integrating: we have

E (X ) =

∫ ∞
k

xθkθ(1/x)θ+1 dx = θkθ
∫ ∞
k

x−θ dx =
kθ

θ − 1
.

Taking k = $18 000 and θ = 1.6148 yields an expected
income of $47 277, to the nearest dollar.



Estimators, XI

We will remark that the Pareto distribution discussed in the last
example has been used to model a number of different types of
quantities that display a general feature of having a large number
of small items and a smaller number of large ones:

Wealth of individuals in a population (the particular case from
the example).

Sizes of settlements in a region with low population density

Sizes of sand particles

Dollar amounts of losses in insurance claims

The total amount of playtime of games in a game library



Summary

We outlined the basic motivation of parameter estimation.

We discussed maximum likelihood estimates.

We discussed estimators and found explicit formulas for some
maximum likelihood estimators.

Next lecture: Biased and unbiased estimators, efficiency of
estimators


