
Math 3081 (Probability and Statistics)

Lecture #13 of 27 ∼ July 27th, 2021

Applications of Poisson and Exponential Distributions

Poisson Distributions and the Poisson Limit Theorem

Memoryless Processes and Exponential Distributions

Modeling With Normal, Poisson, and Exponential
Distributions

This material represents §2.3.3-2.3.4 from the course notes, and
problems 12-20 from WeBWorK 4. It is also the last of the
material this week for Midterm 2.



Erstwhile....

In the last two lectures, we discussed the normal distribution,
motivated its common appearance (namely, via the central limit
theorem), and discussed some of its applications to answering
various statistical questions.

The goal today is to discuss two other important random variable
models that arise frequently: the Poisson distribution and the
exponential distribution, and to explain the reasons for their utility
as models.



Recall

We already mentioned the Poisson distribution at the end of last
lecture:

Definition

The Poisson distribution with parameter λ > 0 is the discrete
random variable X that takes the nonnegative integer value n with

probability P(X = n) =
λne−λ

n!
.

Some other facts about the Poisson distribution:

The peak occurs when n is the greatest integer less than or
equal to λ (and when λ is exactly an integer, the peak is
shared between λ− 1 and λ).

The expected value is λ and the variance is also λ.



The Poisson Limit Theorem, I

The Poisson distribution arises in the analysis of systems having a
large number of independent events each of which occurs rarely.

More specifically, suppose we would like to model the
probability distribution of how often a rare event will occur in
a fixed time interval.

We hypothesize that on average the event will occur λ times
in the interval and we also assume that occurrences are
independent (meaning that the occurrence of one event does
not affect the probability that a second will occur).



The Poisson Limit Theorem, II

We can approximate this situation by dividing the time
interval into W possible “small windows” in which a rare
event (occurring with probability p = λ/W ) can either occur
or not occur: we wish to find the probability distribution for
the number of events that do occur.

With this description, the probability distribution of this
approximation will be the binomial distribution with W
independent events and event probability p = λ/W , meaning
that the probability of observing exactly n events is equal to(

W

n

)
pn(1− p)W−n =

(
W

n

)
(λ/W )n · (1− λ/W )W−n.

However, this is an only an approximation to the original
problem: to find the answer to the original question, we need
to take the limit as W →∞.



The Poisson Limit Theorem, III

Our main result is that taking the limit yields a Poisson
distribution:

Theorem (Poisson Limit Theorem)

Suppose λ > 0 is a fixed constant and p = λ/W . Then

limW→∞

(
W

n

)
pn(1− p)W−n =

λne−λ

n!
.

Therefore, the probability distribution of the number of rare
independent events occurring in a fixed interval, under the
assumption that the average number of events per interval is λ, is
Poisson with parameter λ.

This theorem is also often called the law of rare events since it
describes the distribution of rare events.



The Poisson Limit Theorem, IV

Proof:

We first rewrite the binomial probability:(W
n

)
pn(1− p)W−n = W (W−1)···(W−n+1)

n! · ( λ
W )n(1− λ

W )W−n

= W (W−1)···(W−n+1)
W ·W ·W ·····W · λnn! · (1− λ

W )W · (1− λ
W )−n.

The first term W (W−1)(W−2)···(W−n+1)
W ·W ·W ·····W = W

W ·
W−1
W · · · W−n+1

W
has limit 1 as W →∞.

The second term λn/n! is a constant, so its limit is itself.

The third term has limit e−λ by a standard application of
L’Hôpital’s rule.

The last term has limit 1, since (1− λ/W )→ 1.

Thus, the product has limit 1 · λ
n

n!
· e−λ · 1 =

λne−λ

n!
, as

claimed.



The Poisson Limit Theorem, V

The Poisson limit theorem serves as a sort of complement to the
central limit theorem for binomial distributions.

The central limit theorem says that as n→∞, the binomial
distribution tends to a normal distribution when np and
n(1− p) are moderately large.

The Poisson limit theorem can be reinterpreted as saying that
the binomial distribution tends to a Poisson distribution when
λ = np is small. (The equality λ = np follows because both
count the expected number of successes.)

The practical outcome of the Poisson limit theorem is that the
Poisson distribution can be used to model the occurrences of
independent rare events.



The Poisson Limit Theorem, VI

Examples (of quantities with a Poisson model):

The number of soldiers killed by horse-kicks each year in the
Prussian cavalry. (One of the first historical applications.)

The number of telephone calls received by a customer service
center.

The number of mutations created on a DNA strand during
replication.

The number of customers arriving at a restaurant or shop.

The number of insurance claims during a given month.

The number of earthquakes during a given month.

The number of goals scored by a hockey or soccer team
during a game.

The number of decay events observed in a radioactive sample
with a long half-life.



Poisson Models, I

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:

1. In the next hour, there are no calls.

2. In the next hour, there is exactly one call.

3. In the next two hours, there are no calls.

4. In the next two hours, there are at least 3 calls.

5. In the next 30 minutes, there is at least one call.

A Poisson model is reasonable for this problem, because calls
are fairly rare (based on the average of 1.2 per hour) and they
should be essentially independent of one another.
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Poisson Models, II

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:

1. In the next hour, there are no calls.

The given information says that the number of calls X in a
one-hour window will have a Poisson distribution with
parameter λ = 1.2.

Thus, the probability of having no calls is

P(X = 0) =
1.20e−1.2

0!
≈ 0.3012.

2. In the next hour, there is exactly one call.

The probability of exactly one call is

P(X = 1) =
1.21e−1.2

1!
≈ 0.3614.



Poisson Models, II

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:

1. In the next hour, there are no calls.

The given information says that the number of calls X in a
one-hour window will have a Poisson distribution with
parameter λ = 1.2.

Thus, the probability of having no calls is

P(X = 0) =
1.20e−1.2

0!
≈ 0.3012.

2. In the next hour, there is exactly one call.

The probability of exactly one call is

P(X = 1) =
1.21e−1.2

1!
≈ 0.3614.



Poisson Models, II

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:
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Poisson Models, III

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:

3. In the next two hours, there are no calls.

The number of calls Y in a two-hour window will also have a
Poisson distribution, by the exact same logic.

Since the average number of calls in 2 hours is 2 · 1.2 = 2.4,
the corresponding parameter is λ = 2.4.

Then P(Y = 0) = 2.40e−2.4

0! ≈ 0.0907.

Remark: This event is the intersection of [no calls in hour 1]
and [no calls in hour 2], which are independent and both have
probability 0.3012. Indeed, 0.30122 = 0.0907.

4. In the next two hours, there are at least 3 calls.

The probability of at least 3 calls is P(Y ≥ 3) = 1− P(Y ≤
2) = 1− 2.40e−2.4

0! − 2.41e−2.4

1! − 2.42e−2.4

2! ≈ 0.4303.
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Poisson Models, IV

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:

5. In the next 30 minutes, there is at least one call.

The distribution of the number of calls Z in a 30-minute
window will also have a Poisson distribution, but now with
parameter λ = 0.5 · 1.2 = 0.6.

The probability of having no calls is therefore

P(Z = 0) =
0.60e−0.6

0!
≈ 0.5488.

So the probability of having at least one call is
1− 0.5488 = 0.4512.



Poisson Models, IV

Example: At a call center, customer service calls come in at a rate
of 1.2 per hour. Find the probabilities of the following events:
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parameter λ = 0.5 · 1.2 = 0.6.

The probability of having no calls is therefore
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Poisson Models, V

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

1. The probability of 0 patients between 2am and 3am today.

2. The probability of 10+ patients between 2am and 3am today.

3. The probability that a total of exactly 35 patients arrive
between 2am and 3am this week.

4. The distribution of the total number of patients arriving
between 2am and 3am over the full 366-day year.

5. The approximate probability of 2000+ total patients this year.

6. The approximate probability that at least 15 times this year,
the hospital will see 10+ patients between 2am and 3am.

7. The approximate probability that at least twice this year, the
hospital will see 0 patients between 2am and 3am.



Poisson Models, VI

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

1. The probability of 0 patients between 2am and 3am today.

A Poisson model is appropriate here: the arrival of patients is
fairly rare based on the given average of 5.3 per hour, and it is
also reasonable to assume that the arrivals of patients at the
emergency room are essentially independent of one another.

The given information says that the number of patients for
one day will have a Poisson distribution with parameter
λ = 5.3.

Thus, the probability of having no patients today is
e−5.3 ≈ 0.00499, which is about 0.5%.
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Poisson Models, VII

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

2. The probability of 10+ patients between 2am and 3am today.

The number of patients has a Poisson distribution with
parameter λ = 5.3.

The easiest way to evaluate the tail sum of the Poisson
distribution is to compute the probability of the complement.

We see that P(X ≥ 10) = 1− P(X < 10), and
P(X < 10) = P(X = 0) + P(X = 1) + · · ·+ P(X = 9)

=
∑9

n=0
λne−λ

n! ≈ 0.9559.

Thus, the probability P(X ≥ 10) of having 10+ patients
today is 1− 0.9559 = 0.0441, about 4.41%.
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Poisson Models, VIII

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

3. The probability that a total of exactly 35 patients arrive
between 2am and 3am this week.

The average number of patients for one week is 7 · 5.3 = 37.1.

The distribution here will also be Poisson, with parameter
λ = 37.1.

The desired probability is then

P(P37.1 = 35) =
37.135e−37.1

35!
≈ 0.0633, about 6.33%.



Poisson Models, VIII

Example: Based on past history, a hospital determines that the
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P(P37.1 = 35) =
37.135e−37.1

35!
≈ 0.0633, about 6.33%.



Poisson Models, IX

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

4. The distribution of the total number of patients arriving
between 2am and 3am over the full 366-day year.

In principle, the total number of patients arriving over the full
year will also be Poisson-distributed (with parameter
λ = 366 · 5.3), under the same logic as before.

However, since we are taking such a large sample, we would
also expect, by the central limit theorem, that the distribution
should be approximately normal with mean µ = 366 · 5.3 and
standard deviation σ =

√
366 ·

√
5.3.

Indeed, these two models are consistent, since the predicted
means and standard deviations are the same.
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Poisson Models, X

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

5. The approximate probability of 2000+ total patients this year.

We can use either the Poisson model (λ = 366 · 5.3 = 1939.8)
or the normal model (µ = 366 · 5.3 = 1939.8,
σ =
√

366 ·
√

5.3 = 44.04).

The normal model is much easier to calculate with: using a
continuity correction since the number of patients is discrete
yields P(# ≥ 2000) = P(Nµ,σ > 1999.5) = P(N0,1 >
1.3555) = 0.0876, about 8.76%.

Using a computer to evaluate the Poisson sum yields
P(# ≥ 2000) = P(Pλ ≥ 2000) = 0.0881, about 8.81%.
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Poisson Models, XI

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

6. The approximate probability that at least 15 times this year,
the hospital will see 10+ patients between 2am and 3am.

We previously found that the probability of having 10+
patients on any given day is approximately 0.0441.

Thus, the number of times that the hospital has 10+ patients
during the year will be binomially distributed with n = 366
and p = 0.0441.

In this case, since np = 16.10 and 5p/(1− p) = 108.38, the
normal approximation to the binomial should be fairly good.

The mean is µ = np = 16.10 with standard deviation
σ =

√
np(1− p = 3.9279, so the approximation is

P(Nµ,σ > 14.5) = P(N0,1 > −0.4177) = 0.6619.
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Poisson Models, XI

Example: Based on past history, a hospital determines that the
average number of patients arriving at the emergency room
between 2am and 3am is 5.3 per day. Find the following:

7. The approximate probability that at least twice this year, the
hospital will see 0 patients between 2am and 3am.

We previously found that the probability of having 0 patients
on any given day is approximately 0.00499.

Thus, the number of times that the hospital has 0 patients
during the year will be binomially distributed with n = 366
and p = 0.00499.

In this case, since np = 1.8269, the normal distribution is not
a good approximation, but a Poisson distribution will be.

The parameter is λ = np = 1.8269, so the approximation is
P(Pλ ≥ 2) = 1− P(Pλ = 0)− P(Pλ = 1) = 0.5450.
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In this case, since np = 1.8269, the normal distribution is not
a good approximation, but a Poisson distribution will be.

The parameter is λ = np = 1.8269, so the approximation is
P(Pλ ≥ 2) = 1− P(Pλ = 0)− P(Pλ = 1) = 0.5450.



Exponential Models, I

We now discuss processes modeled by exponential distributions.
Recall the definition:

Definition

The exponential distribution with parameter λ > 0 is the
continuous random variable with probability density function
p(x) = λe−λx for x ≥ 0, and is 0 for negative x.

We found that the cdf is c(x) = 1− e−λx for x ≥ 0, and that
the expected value and standard deviation are both 1/λ.



Exponential Models, II

The exponential distribution is used to model “memoryless”
processes, as follows:

Definition

Suppose X is a continuous random variable measuring the waiting
time for an event. We say that X is memoryless if X has the
property that the subsequent waiting time is independent of the
amount of time already waited.

Some examples of waiting times include the time until the failure
of a piece of equipment, the time before the next customer arrives
at a shop, and the time until a radioactive isotope decays.



Exponential Models, III

We can rephrase the memoryless condition in terms of the density
function of the random variable:

If a represents the total time already waited, and b represents
the additional time before the event occurs, then the
memoryless condition says that
P(X > a + b|X > a) = P(X > b) for every a and b.

Equivalently, by the conditional probability formula, this
means P(X > a + b) = P(X > a) · P(X > b), since the event
X > a + b includes the event X > a.

But now, if X has an exponential distribution, then
P(X > a+b) = e−λ(a+b) = e−λae−λb = P(X > a)·P(X > b).

Thus, exponentially-distributed random variables are memoryless.



Exponential Models, IV

In fact, the exponential distributions are the only memoryless
continuous probability distributions:

Proposition (Memoryless Distributions)

If X is a memoryless continuous random variable, then in fact X
has an exponential distribution.



Exponential Models, V

Proof:

The condition P(X > a + b) = P(X > a) · P(X > b) implies
that P(X > 2) = P(X > 1)2, P(X > 3) = P(X > 1)3,
P(X > 4) = P(X > 1)4, and so forth.

By the same logic, we have P(X > 1/n) = P(X > 1)1/n for
every integer n, so combining this reasoning with the
argument above shows that P(X > a) = P(X > 1)a for every
rational number a > 0.

But since P(X > a) is a nondecreasing function of a, this
means in fact P(X > a) = P(X > 1)a for every real a > 0.

Now writing λ = − ln[P(X > 1)] yields P(X > a) = e−λa,
and so the cumulative distribution function agrees with that
of the exponential distribution with parameter λ.

This means X must be exponentially distributed with
parameter λ, as claimed.



Exponential Models, VI

We can also analyze memoryless discrete random variables.

In fact, by modifying the proof slightly, we can show without
too much effort that the only memoryless discrete random
variables are the geometric distributions, for which
P(Gp = n) = pn(1− p) for integers n = 0, 1, 2, . . . , where p is
a fixed parameter with 0 ≤ p < 1.

The geometric distributions are the discrete analogue of the
exponential distributions.

The geometric distribution given above arises as follows: if we
repeatedly flip an unfair coin with probability p of landing tails
until we obtain heads for the first time, then Gp counts the
total number of tails obtained.

Think for yourself why this is a memoryless waiting problem.



Exponential Models, VII

Example: The usage time before a certain refrigerator model needs
to be repaired is modeled as an exponential distribution. Customer
surveys indicate that 20% of the refrigerators must be repaired
within their first year of operation.

1. Find the parameter λ for the distribution.

2. Find the percentage of refrigerators that will last at least 5
years without needing to be repaired.

3. Find the probability that a refrigerator will fail within 4 years,
given that it did not fail in its first 3 years of operation.



Exponential Models, VIII

Example: The usage time before a certain refrigerator model needs
to be repaired is modeled as an exponential distribution. Customer
surveys indicate that 20% of the refrigerators must be repaired
within their first year of operation.

1. Find the parameter λ for the distribution.

If X is the waiting time for repair, the given information says
that P(X < 1) = 0.20.

If the parameter is λ then since P(X < 1) = 1− e−λ we see
1− e−λ = 0.20.

This yields λ = − ln(0.80) ≈ 0.2231.
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Exponential Models, IX

Example: The usage time before a certain refrigerator model needs
to be repaired is modeled as an exponential distribution with
λ = − ln(0.8) = 0.2231.

2. Find the percentage of refrigerators that will last at least 5
years without needing to be repaired.

The proportion of refrigerators that will last at least 5 years is
P(X ≥ 5) = e−5λ = (0.80)5 ≈ 0.3277, which is about 33%.

Alternatively, we could use the memoryless property to
calculate this probability.

The given information says that 80% of refrigerators last one
year without being repaired: thus, of these, 80% will last
another year, while 80% of those will last a third year, and so
forth.

The overall proportion that will last 5 years is then (0.80)5,
exactly as above.
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Exponential Models, X

Example: The usage time before a certain refrigerator model needs
to be repaired is modeled as an exponential distribution with
λ = − ln(0.8) = 0.2231.

3. Find the probability that a refrigerator will fail within 4 years,
given that it did not fail in its first 3 years of operation.

This probability is P(X ≤ 4|X > 3), which equals
P(X ≤ 4 ∩ X > 3)/P(X > 3) = P(3 < X ≤ 4)/P(X > 3).

We compute P(3 < X ≤ 4) = e−3λ − e−4λ = 0.1024 and
P(X > 3) = e−3λ = 0.512.

Thus, the desired probability is 0.1024/0.512 = 0.2.

Alternatively, using the memoryless property: if we “forget”
the functional first three years of operation, we are now asking
that the refrigerator functions for one more year, which occurs
20% of the time.
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Exponential Models, XI

Example: You call an unreliable ride-share service to take you to
the airport. You expect to wait 45 minutes on average, but feel
that the total amount of time you have waited so far has no
relationship to the amount of additional time you will have to wait.

1. Describe the distribution of the random variable measuring
your waiting time.

2. Find the probability that you will have to wait longer than
your expected average of 45 minutes.

3. Find the probability that the car actually does arrive within
the next 5 minutes.

4. If you use this service 40 times a year, describe the
distribution of the total number of times the car shows up
within 5 minutes.

5. Find the Poisson and normal estimates to the probability that
the car shows up within 5 minutes at least 6 times out of 40
uses. Which estimate is better?



Exponential Models, XII

Example: An unreliable taxi service is supposed to take you to the
airport. You expect to wait 45 minutes on average, but feel that
the total amount of time you have waited has no effect on the
amount of additional time you will have to wait.

1. Describe the distribution of the random variable measuring
your waiting time.

The given information is describing a memoryless waiting
time. Thus, by our results, the waiting time will be
exponentially distributed.

Since the expected value is 1/λ, we must have λ = 1/45.

2. Find the probability that you will have to wait longer than
your expected average of 45 minutes.

This is P(X > 45) = e−45·1/45 = e−1 = 0.3679.
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Exponential Models, XIII

Example: An unreliable taxi service is supposed to take you to the
airport. Your wait time is exponentially distributed with λ = 1/45.

3. Find the probability that the car actually does arrive within
the next 5 minutes.

This is P(X < 5) = 1− e−5·1/45 = 1− e−1/9 = 0.1052.

4. If you use this service 40 times a year, describe the
distribution of the total number of times the car shows up
within 5 minutes.

As we just calculated, the probability that the car shows up
within 5 minutes is 1− e−1/9 = 0.1052.

If the service is used 40 times, assuming that the individual
uses are independent, then the exact distribution will be
binomial with parameters n = 40 and p = 0.1052.
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Exponential Models, XIV

Example: An unreliable taxi service is supposed to take you to the
airport. Your wait time is exponentially distributed with λ = 1/45.

5. Find the Poisson and normal estimates to the probability that
the car shows up within 5 minutes at least 6 times out of 40
uses. Which estimate is better?

Since n = 40 and p = 0.1052

, for the Poisson estimate we
have λ = np = 4.2064. We then compute
P(Pλ ≥ 6) = 1− P(Pλ < 6) = 0.2479.

For the normal estimate we have µ = np = 4.2064 and
σ =

√
np(1− p) = 1.9404. We then compute

P(Nµ,σ > 5.5) = P(N0,1 > 0.6658) = 0.2528.

The actual value is 0.2406.

Since np = 4.2064 and n is moderately large, we are in the
range where we would expect the Poisson approximation to be
better (which it is, though not by a whole lot).
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Exponential and Poisson Randomness, I

There is a connection between the Poisson distribution and the
exponential distribution, arising from our interpretations of the
processes they model.

The Poisson distribution models the number of occurrences of
independently-occurring rare events in a particular interval of
time, while the exponential distribution models the waiting
time for a memoryless process.

Now suppose we have a Poisson-distributed phenomenon, and
we ask: how long do we have to wait between two
occurrences of the phenomenon?

Because the Poisson events are independent and rare, the
occurrence of one does not affect the waiting time for the
next one. Since this precisely describes a memoryless process,
the distribution of waiting times between Poisson events will
have an exponential distribution.



Exponential and Poisson Randomness, II

The fact that waiting times between Poisson events have an
exponential distribution leads to some unintuitive results.

For example, the exponential distribution decreases rapidly,
starting from 0.

This fact tells us that the distances between Poisson events
are more likely to be “small” rather than “big”: if the average
distance is D (so the exponential parameter is 1/D), the
probability of obtaining a distance less than the average is
1− e−1/D·D = 1− e−1 ≈ 0.6321.

Thus, despite the fact that the Poisson events will be
uniformly distributed inside the time interval (since they are,
after all, independent and occur randomly), it is nonetheless
likely that we will observe “clusters” of occurrences.

This merely reflects the general fact that randomly-occurring
events will still tend to appear in clusters.



Exponential and Poisson Randomness, III

As an illustration, each of these plots has 15 points. Which one(s)
were randomly generated and which ones were not?
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More Models, I

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

1. Describe the distribution of the random variable X measuring
the total number of typos in one week.

2. What is the probability there are exactly 5 typos this week?

3. What is the probability there are no typos in today’s lecture?

4. Describe the distribution of the random variable Y measuring
the total amount of time before the next typo is made.

5. After one typo, what is the probability that at least 4 full
lectures pass before another typo is made?

6. Estimate the probability of obtaining more than 180 typos if
the course runs for 52 weeks.



More Models, II

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

1. Describe the distribution of the random variable X measuring
the total number of typos in one week.

From the description, typos are a relatively rare event, and it
is reasonable to assume that they are independent.

So, the distribution of typos will be Poisson, and the
parameter will be the average number of typos per week,
which is λ = 3.

2. What is the probability there are exactly 5 typos this week?

This is P(Pλ = 5) =
35e−3

5!
≈ 0.1008.
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More Models, II
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More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

3. What is the probability there are no typos in today’s lecture?

The average number of typos in one lecture is 3/4, so the
number of typos in today’s lecture will be Poisson-distributed
with parameter λ = 3/4.

Then the probability of no typos is e−3/4 ≈ 0.4724.Since their
arr sevral typoes in thiss footnorte, the actua; probability is 0.

4. Describe the distribution of the random variable Y measuring
the total time, in weeks, before the next typo is made.

The waiting time will be exponential because the probability
of obtaining a typo is independent of the amount of time
since the last typo.

The average time between typos is 3/4 of a week, so λ = 3/4.



More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

3. What is the probability there are no typos in today’s lecture?

The average number of typos in one lecture is 3/4, so the
number of typos in today’s lecture will be Poisson-distributed
with parameter λ = 3/4.

Then the probability of no typos is e−3/4 ≈ 0.4724.1

4. Describe the distribution of the random variable Y measuring
the total time, in weeks, before the next typo is made.

The waiting time will be exponential because the probability
of obtaining a typo is independent of the amount of time
since the last typo.

The average time between typos is 3/4 of a week, so λ = 3/4.

1Since their arr sevral typoes in thiss footnorte, the actua; probability is 0.



More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

3. What is the probability there are no typos in today’s lecture?

The average number of typos in one lecture is 3/4, so the
number of typos in today’s lecture will be Poisson-distributed
with parameter λ = 3/4.

Then the probability of no typos is e−3/4 ≈ 0.4724.1

4. Describe the distribution of the random variable Y measuring
the total time, in weeks, before the next typo is made.

The waiting time will be exponential because the probability
of obtaining a typo is independent of the amount of time
since the last typo.

The average time between typos is 3/4 of a week, so λ = 3/4.
1Since their arr sevral typoes in thiss footnorte, the actua; probability is 0.



More Models, III

On average, a certain Math 3081 instructor makes 3 typos per
week (there are 4 lectures per week).

5. After one typo, what is the probability that at least 4 full
lectures pass before another typo is made?

Since the waiting time is exponential, this is
P(Eλ ≥ 4) = e−4·3/4 = e−3 ≈ 0.0498.

6. Estimate the probability of obtaining more than 180 typos if
the course runs for 52 weeks.

The exact distribution is Poisson with λ = 52 · 3 = 156, but it
is very cumbersome to evaluate the exact probability this way.
Instead, by the central limit theorem, we can observe that the
distribution is approximately normal with mean
µ = 52λ = 156 and standard deviation

√
52λ ≈ 12.4900.

Including a continuity correction, the approximate probability
is P(N156,12.4900 ≥ 179.5) = P(N0,1 ≥ 1.8815) = 0.0300.
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Summary

We proved the Poisson limit theorem and discussed examples of
phenomena that have Poisson models.

We discussed how exponential distributions model memoryless
processes.

We did some additional examples of modeling using normal,
Poisson, and exponential models.

Next lecture: Maximum likelihood estimates


