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The Central Limit Theorem and Applications

The Central Limit Theorem

The Normal Approximation to the Binomial Distribution

Applications and Examples of the Central Limit Theorem

Poisson Distributions

This material represents §2.3.2-2.3.3 from the course notes, and
problems 5-11 from WeBWorK 4.



Recall, I

Last time, we introduced the normal distribution:

Definition

A random variable Nµ,σ is normally distributed with parameters µ
and σ if its probability density function is

pµ,σ(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2). The mean is µ and the standard

deviation is σ.

The standard normal distribution is N0,1, with µ = 0 and
σ = 1.

All normal distributions’ pdfs are geometrically similar and
have the famous “bell curve” shape.

We have the “68-95.5-99.7” rule: these are the percentages of
a normal distribution that will fall within 1, 2, and 3 standard
deviations of the mean respectively.



Recall, II

We also introduced the central limit theorem to explain why the
normal distribution often serves as a model:

Theorem (Central Limit Theorem)

Let X1, X2, ... , Xn be a sequence of independent,
identically-distributed discrete or continuous random variables each
with finite expected value µ and standard deviation σ > 0. Then
the distribution of the random variable

Yn =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
will approach the standard normal

distribution (of mean 0 and standard deviation 1) as n tends to ∞:
explicitly, for any real numbers a ≤ b we have
P(a ≤ Yn ≤ b)→

∫ b
a

1√
2π

e−x
2/2 dx as n→∞.



Central Limit Theorem, I

As mentioned last time, the central limit theorem is quite general.

The idea is as follows: suppose we independently sample a
random variable X a total of n times, to get values
X1,X2, . . . ,Xn.

Then E (X1 + · · ·+ Xn) = E (X1) + · · ·+ E (Xn) = nµ, and also
var(X1 + X2 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn) = nσ2, so
σ(X1 + · · ·+ Xn) =

√
nσ2 = σ

√
n.

Thus, for Yn =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
, by expected value

properties we see that E (Yn) = 0 and σ(Yn) = 1.

The central limit theorem then says: if we take a sample size n
tending to ∞, this normalized average Yn approaches the standard
normal distribution (expected value 0, standard deviation 1).



Central Limit Theorem, II

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1]:



Central Limit Theorem, III

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, IV

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, V

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, VI

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, VII

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, VIII

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, IX

As can be seen quite clearly from the graphs, the convergence of
the sum distribution (hence also the normalized average) to a
normal distribution is quite rapid.

The central limit theorem says that the distribution of

Yn =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
is approximately normal for

large n.

We can convert this back into a statement about the original
sum, or alternatively, into a statement about the average
1
n (X1 + X2 + · · ·+ Xn).

Specifically, the central limit theorem says that both the sum
and the average will be approximately normally distributed:
the sum will have mean nµ and standard deviation σ

√
n, while

the average will have mean µ and standard deviation σ/
√

n.



Normal Approximation to Binomial, I

As a first step, we apply this observation about sums when X is a
Bernoulli random variable with success probability p.

As noted on the previous slide, the central limit theorem
implies that for n sufficiently large, the sum X1 + X2 + · · ·+ Xn

will have a distribution that is approximately normal, with
mean nµ and standard deviation σ

√
n.

Since the Bernoulli random variable X has mean µ = p and
standard deviation σ =

√
p(1− p), that means

X1 + X2 + · · ·+ Xn has an approximately normal distribution
with mean np and standard deviation

√
np(1− p).

But this distribution is simply the binomial distribution with
parameters n and p!

So what that means is: when n is large, we can approximate
the binomial distribution with the normal distribution.
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As noted on the previous slide, the central limit theorem
implies that for n sufficiently large, the sum X1 + X2 + · · ·+ Xn

will have a distribution that is approximately normal, with
mean nµ and standard deviation σ

√
n.

Since the Bernoulli random variable X has mean µ = p and
standard deviation σ =

√
p(1− p), that means
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Normal Approximation to Binomial, II

We summarize the previous discussion as follows:

Approximation (Normal Approximation to Binomial Distribution)

If 0 < p < 1 and n is sufficiently large, then the binomial
distribution with n trials and success probability p is well
approximated by the normal distribution with the same mean np
and standard deviation

√
np(1− p).

Now, this is merely an approximation, so it is not really a
theorem of any kind.

It is primarily a heuristic estimate, and (historically speaking)
was actually the first application of the normal distribution.
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We summarize the previous discussion as follows:
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was actually the first application of the normal distribution.



Normal Approximation to Binomial, III

As a practical matter, there are various heuristics that have been
given to decide when the normal approximation to the binomial
distribution falls into the category of “very good”.

One “rule” states that the approximation will be good when
np and n(1− p) are both at least 5, and it increases in
accuracy when np and n(1− p) are larger.

Another “rule” is that the approximation will be good when n
is bigger than both 5p/(1− p) and 5(1− p)/p.



Normal Approximation to Binomial, IV

Here are some comparisons of binomial distributions (with various
parameters n and p) with their corresponding normal
approximations:



Normal Approximation to Binomial, V

Here are some comparisons of binomial distributions (with various
parameters n and p) with their corresponding normal
approximations:



Normal Approximation to Binomial, VI

Here are some comparisons of binomial distributions (with various
parameters n and p) with their corresponding normal
approximations:



Normal Approximation to Binomial, VII

Here are some comparisons of binomial distributions (with various
parameters n and p) with their corresponding normal
approximations:



Normal Approximation to Binomial, VIII

In order to do explicit calculations, we must also adjust for the fact
that the binomial distribution is discrete whereas the normal
distribution is continuous.

This type of adjustment is called a continuity correction: we
approximate the probability P(B = k) that the binomial
random variable equals k with the probability
P(k − 1

2 ≤ N ≤ k + 1
2) that the normal random variable lands

in the interval [k − 1
2 , k + 1

2 ].

For an interval, we estimate P(a ≤ B ≤ b) by
P(a− 1

2 ≤ N ≤ b + 1
2).

We make a similar continuity correction whenever we
approximate a discrete distribution by a continuous one,
because in all such cases we need to compare areas to areas.



Normal Approximation to Binomial, IX

We can give a quick example for why the continuity correction is
necessary.

Consider the case of n = 100, p = 1/2, and computing
P(B = 50).

If we did not make a continuity correction, we would estimate
this value by P(50 ≤ N ≤ 50), which is zero.

But the actual value P(B = 50) =
(100
50

)
/2100 ≈ 0.07959,

which is very far away from zero.

On the other hand, since N has mean np = 50 and standard
deviation

√
np(1− p) = 5, using the continuity correction

gives an estimate P(49.5 ≤ N50,5 ≤ 50.5) ≈ 0.07966, which is
very accurate.



Normal Approximation to Binomial, X

Example: A fair coin is flipped 400 times.

1. Find the exact probability that the coin will land heads exactly
200 times, and compare to the result of the normal
approximation (with continuity correction).

2. Repeat for the probability that the coin lands heads between
203 and 208 times inclusive.

The exact probabilities are binomially distributed, so we can
simply write down formulas in terms of binomial coefficients.
(Of course, we need a computer to calculate them.)

The approximations also require values from the normal
distribution, but these we could look up from the table.

Here, we have n = 400 and p = 1/2, so the normal
approximation to this binomial distribution has expected value
µ = np = 200 and standard deviation σ =

√
np(1− p) = 10.
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Normal Approximation to Binomial, XI

Example: A fair coin is flipped 400 times.

1. Find the exact probability that the coin will land heads exactly
200 times, and compare to the result of the normal
approximation (with continuity correction).

The number of heads is binomially distributed with n = 400
and p = 1/2, so the probability is

(400
200

)
/2400 ≈ 3.99%.

For the normal approximation, we have µ = np = 200 and
σ =

√
np(1− p) = 10.

Thus, we want P(199.5 ≤ N200,10 ≤ 200.5), which (if we use
a table) is also P(−0.05 ≤ N0,1 ≤ 0.05).

Using a table or computer, we can find
P(N0,1 ≤ −0.05) = 0.48006 and P(N0,05 ≤ 0.1) = 0.51994,
so the estimate is 0.51994− 0.48006 = 0.03988 ≈ 3.99%.
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Example: A fair coin is flipped 400 times.

1. Find the exact probability that the coin will land heads exactly
200 times, and compare to the result of the normal
approximation (with continuity correction).

The number of heads is binomially distributed with n = 400
and p = 1/2, so the probability is

(400
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For the normal approximation, we have µ = np = 200 and
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P(N0,1 ≤ −0.05) = 0.48006 and P(N0,05 ≤ 0.1) = 0.51994,
so the estimate is 0.51994− 0.48006 = 0.03988 ≈ 3.99%.



Normal Approximation to Binomial, XII

Example: A fair coin is flipped 400 times.

2. Find the exact probability that the coin will land heads
between 203 and 208 times, and compare to the result of the
normal approximation (with continuity correction).

The probability is 1
2400

[(400
203

)
+
(400
204

)
+ · · ·+

(400
208

)]
≈ 20.36%.

For the approximation, we need P(202.5 ≤ N200,10 ≤ 208.5),
which from our discussion of z-scores is also equal to
P(0.25 ≤ N0,1 ≤ 0.85).

Using a table or a computer, we can find
P(N0,1 ≤ 0.25) = 0.59871 and P(N0,1 ≤ 0.85) = 0.80234, so
the desired probability is
0.80234− 0.59871 = 0.20363 ≈ 20.36%.
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Example: A fair coin is flipped 400 times.

2. Find the exact probability that the coin will land heads
between 203 and 208 times, and compare to the result of the
normal approximation (with continuity correction).
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+
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For the approximation, we need P(202.5 ≤ N200,10 ≤ 208.5),
which from our discussion of z-scores is also equal to
P(0.25 ≤ N0,1 ≤ 0.85).

Using a table or a computer, we can find
P(N0,1 ≤ 0.25) = 0.59871 and P(N0,1 ≤ 0.85) = 0.80234, so
the desired probability is
0.80234− 0.59871 = 0.20363 ≈ 20.36%.



Normal Approximation to Binomial, XIII

Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

1. The probability that he faults between 10 and 20 times
(inclusive) during the match.

2. The probability that he faults at most 15 times during the
match.

3. The probability that he faults at least 25 times during the
match.

We use the normal approximation to the binomial distribution.
This is a reasonable approach, because with n = 150 and
p = 0.151 we have np = 22.65 and n(1− p) = 127.35, so the
approximation should be good.

The mean is µ = np = 22.65 and the standard deviation is
σ =

√
np(1− p) ≈ 4.3852.
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Normal Approximation to Binomial, XIV

Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

1. The probability that he faults between 10 and 20 times
(inclusive) during the match.

With µ = 22.65 and σ = 4.3852, we want to find the
probability P(9.5 < Nµ,σ < 20.5).

Using the z-score approach, this is equivalently asking for
P(−2.9987 < N0,1 < −0.4903).

Either via a table or with a computer, the probability estimate
is P(9.5 < Nµ,σ < 20.5) ≈ 0.3106.

Remark: The exact probability is ≈ 0.3188.
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Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

1. The probability that he faults between 10 and 20 times
(inclusive) during the match.

With µ = 22.65 and σ = 4.3852, we want to find the
probability P(9.5 < Nµ,σ < 20.5).

Using the z-score approach, this is equivalently asking for
P(−2.9987 < N0,1 < −0.4903).
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Normal Approximation to Binomial, XV

Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

2. The probability that he faults at most 15 times during the
match.

With µ = 22.65 and σ = 4.3852, we want to find the
probability P(Nµ,σ < 15.5).

Using the z-score approach, this is equivalently asking for
P(N0,1 < −1.6305).

Either via a table or with a computer, the probability estimate
is P(Nµ,σ < 15.5) ≈ 0.0515.

Remark: The exact probability is ≈ 0.0461.
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Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

2. The probability that he faults at most 15 times during the
match.

With µ = 22.65 and σ = 4.3852, we want to find the
probability P(Nµ,σ < 15.5).

Using the z-score approach, this is equivalently asking for
P(N0,1 < −1.6305).

Either via a table or with a computer, the probability estimate
is P(Nµ,σ < 15.5) ≈ 0.0515.

Remark: The exact probability is ≈ 0.0461.



Normal Approximation to Binomial, XVI

Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:

3. The probability that he faults at least 25 times during the
match.

With µ = 22.65 and σ = 4.3852, we want to find the
probability P(Nµ,σ > 24.5).

Using the z-score approach, this is equivalently asking for
P(N0,1 > 0.4219).

Either via a table or with a computer, the probability estimate
is P(Nµ,σ > 24.5) ≈ 0.3366.

Remark: The exact probability is ≈ 0.3287.



Normal Approximation to Binomial, XVI

Example: A tennis player serves 150 times during a match, and on
an average serve he will fault 15.1% of the time, independently of
any other serve. Estimate the following:
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Normal Stability, I

Another fundamental property of the normal distribution is that it
is stable, in the sense that the sum of any number of independent
normal distributions is also a normal distribution:

Proposition (Stability of Normal Distribution)

If X1,X2, . . . ,Xn are independent normally-distributed random
variables with means µ1, . . . , µn and standard deviations
σ1, . . . , σn, then the sum X1 + X2 + · · ·+ Xn is also normally
distributed with mean µ1 + · · ·+ µn and standard deviation√
σ21 + · · ·+ σ2n.



Normal Stability, II

Proof:

It is a moderately straightforward calculation using the joint
probability distribution to show that the distribution of the
sum of two normally-distributed variables is also normally
distributed. (Alternatively, this can be derived from the
central limit theorem.)

Thus, X1 + X2 is normally-distributed, hence so is
(X1 + X2) + X3, ... , and hence so is X1 + X2 + · · ·+ Xn.

For the mean, we have E (X1 + X2 + · · ·+ Xn) =
E (X1) + E (X2) + · · ·+ E (Xn) = µ1 + µ2 + · · ·+ µn.

For the standard deviation, because X1,X2, . . . ,Xn are
independent, we have var(X1 + X2 + · · ·+ Xn) =
var(X1) + var(X2) + · · ·+ var(Xn) = σ21 + σ22 + · · ·+ σ2n.

So, σ(X1 + X2 + · · ·+ Xn) =
√
σ21 + σ22 + · · ·+ σ2n.



How To Use The Central Limit Theorem

The normal approximation to the binomial distribution was one of
the first applications of the normal distribution and the central
limit theorem, but there are lots of other applications as well.

If we can write down the mean and standard deviation, then
we can use the central limit theorem to estimate probabilities
for arbitrary distributions obtained from repeated independent
sampling, not just the binomial distribution.

As we have also noted previously, the normal distribution is
also stable under translation and rescaling: if X is normally
distributed, then so is aX + b for any fixed constants a and b.

We can use these properties to analyze random variables that
are obtained by adding, subtracting, or averaging independent
(approximately) normal distributions, since the results will
then also be (approximately) normally distributed.



More Examples, I

Example: Estimate the probability that if 420 fair dice are rolled,
the total sum of all 420 rolls will be between 1460 and 1501
inclusive. (Note that if X is the random variable giving the result
of one die roll, then µX = 7/2 and σX =

√
35/12.)

Since we are summing the results of 420 independent
samplings of X , the central limit theorem tells us that the
overall distribution of the sum will be closely approximated by
a normal distribution with mean 420µX = 1470 and standard
deviation

√
420µX = 35.

The desired probability is then P(1459.5 ≤ N1470,35 ≤
1501.5) = P(−0.3 ≤ N0,1 ≤ 0.9) ≈ 0.4339.
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1501.5) = P(−0.3 ≤ N0,1 ≤ 0.9) ≈ 0.4339.



More Examples, II

Example: During a tournament, a professional poker player plays
2000 individual 5-card hands. Estimate the probability that they
get at least 50 three-of-a-kind hands. (The probability of such a
hand is 88/4165.)

The exact distribution of the number of three-of-a-kind hands
will be binomial, with n = 2000 and p = 88/4165.

We could write down a formula for the exact probability using
the binomial distribution: it is(2000

51

)
p51(1− p)1949 + · · ·+

(2000
2000

)
p2000(1− p)0.

This is hard to evaluate, but we can use the normal
approximation: the mean is µ = np ≈ 42.257 and the
standard deviation is σ =

√
np(1− p) ≈ 6.431.

Using the continuity correction, we see that the desired
estimate is P(Nµ,σ > 49.5) ≈ 0.1300.
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Example: During a tournament, a professional poker player plays
2000 individual 5-card hands. Estimate the probability that they
get at least 50 three-of-a-kind hands. (The probability of such a
hand is 88/4165.)

The exact distribution of the number of three-of-a-kind hands
will be binomial, with n = 2000 and p = 88/4165.

We could write down a formula for the exact probability using
the binomial distribution: it is(2000
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p2000(1− p)0.

This is hard to evaluate, but we can use the normal
approximation: the mean is µ = np ≈ 42.257 and the
standard deviation is σ =

√
np(1− p) ≈ 6.431.

Using the continuity correction, we see that the desired
estimate is P(Nµ,σ > 49.5) ≈ 0.1300.



More Examples, IV

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

1. The expected mean and standard deviation of the average
exam score in each class.

2. The probability that the average in class A is at least 81.

3. The probability that the average in class B is less than 79.

4. The distribution of the difference of the class averages.

5. The probability that class A outscores B on average by ≥ 1pt.

6. The probability that the class averages are within 0.2 points.

Note that each class’s score is normally distributed, since they
are averages of independent, normally-distributed randomly
variables.



More Examples, IV

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

1. The expected mean and standard deviation of the average
exam score in each class.

2. The probability that the average in class A is at least 81.

3. The probability that the average in class B is less than 79.

4. The distribution of the difference of the class averages.

5. The probability that class A outscores B on average by ≥ 1pt.

6. The probability that the class averages are within 0.2 points.

Note that each class’s score is normally distributed, since they
are averages of independent, normally-distributed randomly
variables.



More Examples, V

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

1. The expected mean and standard deviation of the average
exam score in each class.

As we have previously noted, if a normally-distributed random
variable with mean µ and standard deviation σ is sampled n
times, then the mean of the average will be normally
distributed with mean µ and standard deviation σ/

√
n.

Thus, the average score in class A is normally distributed with
mean 80 and standard deviation 6/

√
9 = 2.

The average score in class B is normally distributed with mean
80 and standard deviation 6/

√
16 = 1.5.
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Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

1. The expected mean and standard deviation of the average
exam score in each class.

As we have previously noted, if a normally-distributed random
variable with mean µ and standard deviation σ is sampled n
times, then the mean of the average will be normally
distributed with mean µ and standard deviation σ/

√
n.

Thus, the average score in class A is normally distributed with
mean 80 and standard deviation 6/

√
9 = 2.

The average score in class B is normally distributed with mean
80 and standard deviation 6/

√
16 = 1.5.



More Examples, VI

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

2. The probability that the average in class A is at least 81.

The average score in class A is normally distributed with mean
80 and standard deviation 6/

√
9 = 2.

Thus, we want P(N80,2 ≥ 81) = P(N0,1 ≥ 0.5) = 0.3085.

3. The probability that the average in class B is less than 79.

The average score in class B is normally distributed with mean
80 and standard deviation 6/

√
16 = 1.5.

Thus, we want
P(N80,1.5 < 79) = P(N0,1 < −0.3333) = 0.2525.



More Examples, VI

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

2. The probability that the average in class A is at least 81.

The average score in class A is normally distributed with mean
80 and standard deviation 6/

√
9 = 2.

Thus, we want P(N80,2 ≥ 81) = P(N0,1 ≥ 0.5) = 0.3085.

3. The probability that the average in class B is less than 79.

The average score in class B is normally distributed with mean
80 and standard deviation 6/

√
16 = 1.5.

Thus, we want
P(N80,1.5 < 79) = P(N0,1 < −0.3333) = 0.2525.
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Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

2. The probability that the average in class A is at least 81.

The average score in class A is normally distributed with mean
80 and standard deviation 6/

√
9 = 2.

Thus, we want P(N80,2 ≥ 81) = P(N0,1 ≥ 0.5) = 0.3085.

3. The probability that the average in class B is less than 79.

The average score in class B is normally distributed with mean
80 and standard deviation 6/

√
16 = 1.5.

Thus, we want
P(N80,1.5 < 79) = P(N0,1 < −0.3333) = 0.2525.



More Examples, VII

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

4. The distribution of the difference of the class averages.

The average score in class A is normally distributed with mean
80 and standard deviation 6/

√
9 = 2, while the average score

in class B is normally distributed with mean 80 and standard
deviation 6/

√
16 = 1.5.

The idea is to recognize that A−B = A + (−B) and that −B
is also normally distributed (now with mean −80 and standard
deviation 1.5).

Thus, by our results, the random variable A + (−B) will also
be normally distributed with mean 80 + (−80) = 0 and
standard deviation

√
22 + 1.52 = 2.5.
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The idea is to recognize that A−B = A + (−B) and that −B
is also normally distributed (now with mean −80 and standard
deviation 1.5).

Thus, by our results, the random variable A + (−B) will also
be normally distributed with mean 80 + (−80) = 0 and
standard deviation

√
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More Examples, VIII

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

5. The probability that class A outscores B on average by ≥ 1pt.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(N0,2.5 ≥ 1) = P(N0,1 ≥ 0.4) = 0.3446.

6. The probability that the class averages are within 0.2 points.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(−0.2 ≤ N0,2.5 ≤ 0.2) = P(−0.08 ≤ N0,1 ≤ 0.08) = 0.0638.



More Examples, VIII

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

5. The probability that class A outscores B on average by ≥ 1pt.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(N0,2.5 ≥ 1) = P(N0,1 ≥ 0.4) = 0.3446.

6. The probability that the class averages are within 0.2 points.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(−0.2 ≤ N0,2.5 ≤ 0.2) = P(−0.08 ≤ N0,1 ≤ 0.08) = 0.0638.



More Examples, VIII

Example: A statistics instructor has two classes: Class A has 9
students while Class B has 16. The student scores are normally
distributed with mean 80 and standard deviation 6. Find

5. The probability that class A outscores B on average by ≥ 1pt.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(N0,2.5 ≥ 1) = P(N0,1 ≥ 0.4) = 0.3446.

6. The probability that the class averages are within 0.2 points.

Since A− B is normally distributed with mean 0 and standard
deviation 2.5, the desired probability is
P(−0.2 ≤ N0,2.5 ≤ 0.2) = P(−0.08 ≤ N0,1 ≤ 0.08) = 0.0638.



More Examples, IX

The ideas in this last example form the basis for many approaches
in statistical testing, since these calculations give a way of
determining how likely it is that a difference in sampling averages
has occurred by chance, if the means of the distributions were
actually equal. (We will discuss this much more in chapter 4.)

We will also use similar ideas in the next chapter when we discuss
confidence intervals derived from normal distributions.



More Examples, X

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

1. Find the expected number of points scored.

2. Find the standard deviation in the number of points scored.

3. Estimate the probability that the team scores ≥ 110 points.

4. Estimate the probability that the team scores 95 points.

The total number of free throws, two-pointers, and
three-pointers will each be binomially distributed.

Since the values of np and n(1− p) are fairly large for each of
these three distributions, they will be well approximated by
the corresponding normal distributions with the same mean
and standard deviation. The total number of points will then
be a weighted sum of these approximately normal
distributions, hence will also be approximately normal.



More Examples, X

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

1. Find the expected number of points scored.

2. Find the standard deviation in the number of points scored.

3. Estimate the probability that the team scores ≥ 110 points.

4. Estimate the probability that the team scores 95 points.
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More Examples, XI

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

1. Find the expected number of points scored.

The number of free throws has n = 15 and p = 0.75, so the
expected number is 15 · 0.75 = 11.25.

The number of two-pointers has n = 60 and p = 0.50 hence
the expected number of two-pointers is 60 · 0.50 = 30. Since
two-pointers are worth 2 points each, the expected number of
points is 2 · 30 = 60.

In the same way, the number of three-pointers has n = 25 and
p = 0.35, so the expected number of points from
three-pointers is 3 · 25 · 0.35 = 26.25.

Thus, the expected total number of points is
11.25 + 60 + 26.25 = 97.5.



More Examples, XI

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

1. Find the expected number of points scored.

The number of free throws has n = 15 and p = 0.75, so the
expected number is 15 · 0.75 = 11.25.

The number of two-pointers has n = 60 and p = 0.50 hence
the expected number of two-pointers is 60 · 0.50 = 30. Since
two-pointers are worth 2 points each, the expected number of
points is 2 · 30 = 60.

In the same way, the number of three-pointers has n = 25 and
p = 0.35, so the expected number of points from
three-pointers is 3 · 25 · 0.35 = 26.25.

Thus, the expected total number of points is
11.25 + 60 + 26.25 = 97.5.



More Examples, XII

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

2. Find the standard deviation in the number of points scored.

For free throws (n = 15, p = 0.75), the standard deviation is√
15 · 0.75 · 0.25 ≈ 1.6771.

For two-pointers (n = 60, p = 0.50), the standard deviation is√
60 · 0.50 · 0.50 ≈ 3.8730, so the standard deviation in the

number of points is 2 times this, which is 7.7460.

For three-pointers (n = 25, p = 0.35), the standard deviation
in the number of points is 3

√
25 · 0.35 · 0.65 = 7.1545.

Thus, the standard deviation of the total is√
1.67712 + 7.74602 + 7.15452 ≈ 10.6771.



More Examples, XII

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

2. Find the standard deviation in the number of points scored.

For free throws (n = 15, p = 0.75), the standard deviation is√
15 · 0.75 · 0.25 ≈ 1.6771.

For two-pointers (n = 60, p = 0.50), the standard deviation is√
60 · 0.50 · 0.50 ≈ 3.8730, so the standard deviation in the

number of points is 2 times this, which is 7.7460.

For three-pointers (n = 25, p = 0.35), the standard deviation
in the number of points is 3

√
25 · 0.35 · 0.65 = 7.1545.

Thus, the standard deviation of the total is√
1.67712 + 7.74602 + 7.15452 ≈ 10.6771.



More Examples, XIII

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

3. Estimate the probability that the team scores ≥ 110 points.

We have just found that the mean number of points is 97.5
and the standard deviation is 10.6771.

Since the distribution is approximately normal, the probability
that the team will score at least 110 points is given by
P(N97.5,10.6771 ≥ 110) = P(N0,1 ≥ 1.1707) ≈ 0.1209, or
roughly 12.1%.



More Examples, XIII

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

3. Estimate the probability that the team scores ≥ 110 points.

We have just found that the mean number of points is 97.5
and the standard deviation is 10.6771.

Since the distribution is approximately normal, the probability
that the team will score at least 110 points is given by
P(N97.5,10.6771 ≥ 110) = P(N0,1 ≥ 1.1707) ≈ 0.1209, or
roughly 12.1%.



More Examples, XIV

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

4. Estimate the probability that the team scores 95 points.

To estimate this probability, we need to use a continuity
correction to handle the fact that the total number of points
is discrete rather than continuous. (In fact, we should also
have done this in the previous calculation! It changes the
probability estimate to 0.1305.)

Here, we can compute P(94.5 ≤ N97.5,10.6771 ≤ 95.5) =
P(−0.2810 ≤ N0,1 ≤ −0.1873) ≈ 0.0363, or roughly 3.63%.



More Examples, XIV

Example: In a typical game, a basketball team attempts 15 free
throws, 60 two-pointers, and 25 three-pointers, which
independently score 75%, 50%, and 35% of the time respectively.

4. Estimate the probability that the team scores 95 points.

To estimate this probability, we need to use a continuity
correction to handle the fact that the total number of points
is discrete rather than continuous. (In fact, we should also
have done this in the previous calculation! It changes the
probability estimate to 0.1305.)

Here, we can compute P(94.5 ≤ N97.5,10.6771 ≤ 95.5) =
P(−0.2810 ≤ N0,1 ≤ −0.1873) ≈ 0.0363, or roughly 3.63%.



Poisson Distributions, I

We now introduce our next model, the Poisson distribution:

Definition

The Poisson distribution with parameter λ > 0 is the discrete
random variable X that takes the nonnegative integer value n with

probability P(X = n) =
λne−λ

n!
.

Note that this is in fact a valid probability distribution

because
∞∑
n=0

λne−λ

n!
= e−λ ·

∞∑
n=0

λn

n!
= e−λeλ = 1, where we

used the Taylor series expansion ex =
∞∑
n=0

xn

n!
.



Poisson Distributions, II

Here are some plots of Poisson pdfs:



Poisson Distributions, III

Here are some plots of Poisson pdfs:



Poisson Distributions, IV

Here are some plots of Poisson pdfs:



Poisson Distributions, V

Here are some plots of Poisson pdfs:



Poisson Distributions, VII

Here are some plots of Poisson pdfs:



Poisson Distributions, VIII

As might be suggested by the plots, the peak always occurs near
x = λ:

Since P(X = n) =
λne−λ

n!
, we see

P(X = n + 1)

P(X = n)
=

λ

n + 1
.

Thus when n < λ− 1, P(X = n + 1) > P(X = n) while when
n > λ− 1, P(X = n + 1) < P(X = n).

This means the values p(X = 1), p(X = 2), . . . increase until
λ exceeds n − 1, and then decrease. That means the peak
occurs when n is the greatest integer less than or equal to λ
(and when λ is exactly an integer, the peak is shared between
λ− 1 and λ).



Poisson Distributions, IX

We can compute the expected value and variance:

If X has a Poisson distribution with parameter λ, then

E (X ) =
∑∞

n=0 n
λne−λ

n!
= λ

∑∞
n=1

λn−1e−λ

(n − 1)!
= λ,

Also, E (X 2) =
∑∞

n=0 n2λ
ne−λ

n!
=∑∞

n=1 λ
λn−1e−λ

(n − 1)!
+
∑∞

n=2 λ
2λ

n−2e−λ

(n − 2)!
= λ+ λ2, and so

var(X ) = E (X 2)− E (X )2 = (λ2 + λ)− λ2 = λ.

Thus, the expected value of a Poisson-distributed random
variable is λ, and its variance is also λ.



Poisson Distributions, X

Example: If the random variable X has a Poisson distribution with
λ = 4, find

1. P(X = 2).

2. P(X < 4).

3. P(X ≥ 3).

4. The expected value and standard deviation of X .

5. The probability that X = 2 given that X > 1.

Here are the first few values of P(X = n) =
λne−λ

n!
:

n 0 1 2 3 4 5 6 7

P(X = n) 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595
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Poisson Distributions, XI

Example: If the random variable X has a Poisson distribution with
λ = 4, find

1. P(X = 2).

n 0 1 2 3 4 5 6 7

P(X = n) 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595

Using the table, P(X = 2) ≈ 0.1465.

2. P(X < 4).

Using the table,
P(X < 4) = 0.0183 + 0.0733 + 0.1465 + 0.1954 ≈ 0.4335.

3. P(X > 3).

Using the table, P(X > 3) = 1− P(X ≤ 3) =
1− 0.0183− 0.0733− 0.1465− 0.1954 ≈ 0.5665.



Poisson Distributions, XII

Example: If the random variable X has a Poisson distribution with
λ = 4, find

4. The expected value and standard deviation of X .

The expected value is λ = 4 and the standard deviation is√
λ = 2.

5. The probability that X = 2 given that X > 1.

n 0 1 2 3 4 5 6 7

P(X = n) 0.0183 0.0733 0.1465 0.1954 0.1954 0.1563 0.1042 0.0595

This is P(X = 2|X > 1) = P(X = 2 ∩ X > 1)/P(X > 1) =
P(X = 2)/P(X > 1).

Since P(X = 2) = 0.1954 and
P(X > 1) = 1− P(X ≤ 1) = 1− 0.0183− 0.0733 = 0.9084,
the probability is 0.1465/0.9084 = 0.1613.



Poisson Distributions, XIII

The Poisson distribution arises in the analysis of systems having a
large number of independent events each of which occurs rarely.

Specifically, suppose that we want to count the number X of
times that a rare event occurs, under the hypothesis that
occurrences of the rare event are independent.

As we will discuss next time, the probability distribution of the
number of rare independent events occurring in a fixed
interval, under the assumption that the average number of
events per interval is λ, will be Poisson with parameter λ.



Poisson Distributions, XIV

Examples (of quantities with a Poisson model):

The number of soldiers killed by horse-kicks each year in the
Prussian cavalry. (One of the first historical applications.)

The number of calls received by a customer service center.

The number of mutations created on a DNA strand during
replication.

The number of customers arriving at a restaurant or shop.

The number of insurance claims during a given month.

The number of earthquakes during a given month.

The number of goals scored by a hockey or soccer team
during a game.

The number of decay events observed in a radioactive sample
with a long half-life.

The number of cases of a rare cancer in a given county.



Summary

We discussed the central limit theorem and the normal
approximation to the binomial distribution.

We did some additional examples illustrating how the central limit
theorem can be used to make estimates of probabilities.

We introduced the Poisson distribution.

Next lecture: Applications of the Poisson and exponential
distributions.


