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Lecture #11 of 27 ∼ July 22nd, 2021

Continuous Random Variables (Part 3)

Independence, Covariance, and Correlation

Normal Distributions

Motivation for the Central Limit Theorem

This material represents §2.2.3-2.3.1 from the course notes, and
problems 16-20 from WeBWorK 3 + 1-4 from WeBWorK 4.



Recall, I

Definition

If X and Y are continuous random variables, and there is a
function pX ,Y (x , y), defined on ordered pairs of real numbers
(x , y) such that

∫∫
R pX ,Y (x , y) dy dx = P[(X ,Y ) ∈ R] for every

plane region R, then we call pX ,Y (x , y) the
joint probability density function of X and Y .

To compute the probability that the values of of X and Y
together land in a particular planar region R, we integrate the
probability density function on the domain R.

The most difficult part is usually setting up the integral: once
it is set up, the rest is just calculation.



Recall, II

As in the case of discrete random variables, we can also recover
the individual probability distributions pX (x) and pY (y) for either
variable from their joint distribution by integrating over the other
variable:

Proposition (Marginal Densities)

If pX ,Y (a, b) is the joint probability density function for the
continuous random variables X and Y , then for any a and b we
may compute the single-variable probability density functions for X
and Y as pX (x) =

∫∞
−∞ pX ,Y (x , y) dy and

pY (y) =
∫∞
−∞ pX ,Y (x , y) dx.



Independence, I

Next, we examine independence.

As in the discrete case, we consider two continuous random
variables X and Y to be independent when knowing the value
of one gives no additional information about the value of the
other: P(a < X < b|c < Y < d) = P(a < X < b).

By rearranging, this says
P(a < X < b, c < Y < d) = P(a < X < b) · P(c < Y < d),
which in terms of probabilities says∫ b
a

∫ d
c pX ,Y (x , y) dy dx =

∫ b
a pX (x) dx ·

∫ d
c pY (y) dy .

But since the right-hand side is also equal to the iterated
integral

∫ b
a

∫ d
c pX (x) · pY (y) dy dx , since both sides are equal

on every rectangle [a, b]× [c , d ], we must have
pX ,Y (x , y) = pX (x) · pY (y) for every x and y .

This is exactly the same condition as in the discrete case!



Independence, II

Formally, our definition is as follows:

Definition

The continuous random variables X and Y are independent if their
joint distribution pX ,Y (x , y) is the product of their individual
probability distributions pX (x) and pY (y): in other words, when
pX ,Y (x , y) = pX (x) · pY (y) for all real numbers x , y.

We can also extend this in the natural way to more variables:

Definition

The continuous random variables X1,X2, . . . ,Xn are
collectively independent if their joint distribution is the product of
their individual distributions: in other words, when
pX1,X2,...,Xn(x1, x2, . . . , xn) = pX1(x1) · pX2(x2) · · · · · pXn(xn) for all
real numbers x1, x2, . . . , xn.



Independence, II
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Independence, III

Example: Determine whether the continuous random variables X
and Y with joint probability density function defined by
pX ,Y (x , y) = 1

4xy for 0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 are independent.

We just need to compute the marginal distributions and then
check the independence condition.

We see pX (x) =
∫ 2
0

1
4xy dy = 1

2x and also

pY (y) =
∫ 2
0

1
4xy dx = 1

2y .

Then, indeed, pX ,Y (x , y) = 1
4xy = 1

2x · 12y = pX (x) · pY (y).

Since the joint distribution function is the product of the
individual distributions, X and Y are independent.
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Independence, IV

Example: Determine whether the continuous random variables X
and Y with joint probability density function defined by
pX ,Y (x , y) = 1

24(2x + y) for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2 are
independent.

We computed last time that the marginal density functions

were pX (x) =
1

12
(2x + 1) and pY (y) =

1

8
(y + 3).

We see pX (x) · pY (y) =
1

96
(2x + 1)(y + 3), which is not

pX ,Y (x , y).

Since the joint distribution function is not the product of the
individual distributions, X and Y are not independent.



Independence, IV
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Independence, V

In this last example, we did not actually need to have the marginal
distribution functions to see that the variables were not
independent.

Specifically, all we needed to notice was that the joint
distribution function p(x , y) = 1

24(2x + y) cannot be written
as the product of a single function of x and a single function
of y .

In fact, if we can write pX ,Y (x , y) = q(x) · r(y) for some functions
q(x) and r(y), the random variables X and Y will be independent.

This follows because the marginal distribution functions are
pX (x) =

∫∞
−∞ q(x)r(y) dy = q(x) ·

∫∞
−∞ r(y) dy and

pY (y) =
∫∞
−∞ q(x)r(y) dx = r(y) ·

∫∞
−∞ q(x) dx , so

pX (x) · pY (y) = q(x)r(y) ·
∫∞
−∞

∫∞
−∞ q(x)r(y) dy dx =

q(x)r(y). (The latter double integral is 1 because p is a pdf.)



Independence, VI

Example: If X and Y have the joint probability density function
pX ,Y (x , y) listed, determine whether X and Y are independent:

1. pX ,Y = 3x2y7 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

2. pX ,Y = 2y2 + x2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

3. pX ,Y = 2xy + x for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

4. pX ,Y = 6
7(x + y)2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

5. pX ,Y = 2e−x−2y for x , y ≥ 0.

We can write some of these as a product as a function of x with a
function of y , but not others:

1. 3x2y7 = (3x2) · (y7): independent.

2. 2y2 + x2 cannot be written this way: not independent.

3. 2xy + x = x · (2y + 1): independent.

4. 6
7(x + y)2 cannot be written this way: not independent.

5. 2e−x−2y = (e−x) · (2e−2y ): independent.
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Covariance, I

Our last topic is to discuss covariance and correlation. We define
covariance the same way as in the discrete case:

Definition

If X and Y are random variables whose expected values exist and
are µX and µY respectively, then the covariance of X and Y is
defined as
cov(X ,Y ) = E [(X − µX ) · (Y − µY )] = E (XY )− E (X )E (Y ).

In order to compute the covariance, we need to know how to
compute the expected value of arbitrary functions of X and Y .

One approach would be to try to write down the pdf of the
random variable XY . This can be done, but it is quite an
inefficient way to find E (XY ). (It’s just like that long
calculation two lectures ago to find the pdf of X 2.)



Covariance, II... Wait, This Isn’t Covariance!

Instead, we extend the principle for finding the expected value of
an arbitrary function of X to handle functions of X and Y :

Proposition (Expected Value of Functions of X and Y )

If X and Y are continuous random variables with joint distribution
function pX ,Y (x , y) and g(X ,Y ) is any piecewise-continuous
function, then E [g(X ,Y )] =

∫∞
−∞

∫∞
−∞ g(x , y) · pX ,Y (x , y) dy dx.

The proof of this proposition is a moderately technical calculation
from analysis, so we will omit the details. (The basic idea is simply
to show that the result holds for increasingly complex classes of
functions g , starting with constant functions.)



Covariance, III... Can We Do Covariance Soon?

As a corollary, we get the additivity property of expected value:

Corollary (Additivity of Expected Value)

If X and Y are continuous random variables, then
E (X + Y ) = E (X ) + E (Y ).

Proof: By the previous proposition applied three times, we have

E (X + Y ) =

∫ ∞
−∞

∫ ∞
−∞

(x + y) · pX ,Y (x , y) dy dx

=

∫ ∞
−∞

∫ ∞
−∞

x · pX ,Y (x , y) dy dx

+

∫ ∞
−∞

∫ ∞
−∞

y · pX ,Y (x , y) dy dx

= E (X ) + E (Y ).



Covariance, IV: Yes, Actually Covariance Now!

Example: If X and Y have joint distribution given by
pX ,Y (x , y) = x2 + 2y2 for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, find the
covariance of X and Y .

We compute
E (X ) =

∫ 1
0

∫ 1
0 x(x2 + 2y2) dy dx =

∫ 1
0 (x3 + 2

3x) dx = 7/12,

E (Y ) =
∫ 1
0

∫ 1
0 y(x2 + 2y2) dy dx =

∫ 1
0 (12x2 + 1

2) dx = 2/3,

E (XY ) =
∫ 1
0

∫ 1
0 xy(x2 + 2y2) dy dx =

∫ 1
0 (12x3 + 1

2x) dx = 3/8.

Thus, the covariance is cov(X ,Y ) = E (XY )− E (X )E (Y )
= (3/8)− (2/3)(7/12) = −1/72.
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Covariance, VI

All of the same properties of variance and covariance hold here:

Proposition (Properties of Variance and Covariance)

If X , Y , Z are continuous random variables whose expected values
exist, then we have the following:

1. cov(X ,X ) = var(X ).

2. cov(Y ,X ) = cov(X ,Y ).

3. cov(X + Y ,Z ) = cov(X ,Z ) + cov(Y ,Z ).

4. cov(aX + b,Y ) = a · cov(X ,Y ) for any real a, b.

5. var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y ).

Furthermore, if X and Y are independent, then
E (XY ) = E (X ) · E (Y ) and var(X + Y ) = var(X ) + var(Y ).

Proof: These all follow the same way as in the discrete case.



Correlation, I

Perhaps shockingly, we also take the same definition of correlation
as in the discrete case:

Definition

If X and Y are discrete random variables whose variances exist and
are nonzero, the (Pearson) correlation between X and Y is defined

as corr(X ,Y ) =
cov(X ,Y )

σ(X )σ(Y )
.

As before, the correlation describes the strength to which the
relationship between X and Y can be captured by a linear
model.



Correlation, II

Suppose that the continuous random variables X and Y have joint
distribution given by pX ,Y (x , y) = x + y for 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. Find

1. The covariance of X and Y .

2. The correlation of X and Y .

We just have to set up and evaluate the appropriate integrals
to compute E (X ), E (Y ), E (XY ) (for the covariance), and
then also E (X 2) and E (Y 2) (to compute σ(X ) and σ(Y ) for
the correlation).



Correlation, II

Suppose that the continuous random variables X and Y have joint
distribution given by pX ,Y (x , y) = x + y for 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. Find

1. The covariance of X and Y .

2. The correlation of X and Y .

We just have to set up and evaluate the appropriate integrals
to compute E (X ), E (Y ), E (XY ) (for the covariance), and
then also E (X 2) and E (Y 2) (to compute σ(X ) and σ(Y ) for
the correlation).



Correlation, III

Suppose that the continuous random variables X and Y have joint
distribution given by pX ,Y (x , y) = x + y for 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. Find

1. The covariance of X and Y .

We have
E (X ) =

∫ 1
0

∫ 1
0 x(x + y) dy dx =

∫ 1
0 (x2 + x/2) dx = 7/12,

E (X ) =
∫ 1
0

∫ 1
0 y(x + y) dy dx =

∫ 1
0 (x/2 + 1/3) dx = 7/12,

and
E (XY ) =

∫ 1
0

∫ 1
0 xy(x + y) dy dx =

∫ 1
0 (x2/2 + x/3) dx = 1/3.

Thus, the covariance is cov(X ,Y ) = E (XY )− E (X )E (Y ) =
1/3− (7/12)(7/12) = −1/144.



Correlation, IV

Suppose that the continuous random variables X and Y have joint
distribution given by pX ,Y (x , y) = x + y for 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. Find

2. The correlation of X and Y .

We computed cov(X ,Y ) = −1/144. For the correlation, we
also need σ(X ) and σ(Y ). First,

E (X ) =
∫ 1
0

∫ 1
0 x2(x + y) dy dx =

∫ 1
0 (x3 + x2/2) dx = 5/12,

so σ(X ) =
√

E (X 2)− E (X )2 =
√

11/12 ≈ 0.2764.

Also,
E (Y ) =

∫ 1
0

∫ 1
0 y2(x + y) dy dx =

∫ 1
0 (x/3 + 1/4) dx = 5/12,

so σ(Y ) =
√

E (Y 2)− E (Y )2 =
√

11/12 ≈ 0.2764.

Finally, corr(X ,Y ) =
cov(X ,Y )

σ(X )σ(Y )
= −1/11 ≈ −0.091.



Overview of §2.3: Modeling Applications

We now move into the third portion of this chapter, which
(broadly speaking) is about using discrete and continuous random
variables to model real-world phenomena.

We will discuss three important classes of probability
distributions: the Gaussian normal distributions, the Poisson
distributions, and the exponential distributions.

Each distribution arises in various practical applications
involving phenomena with particular simple properties.

The normal distribution is by far the most important of these
three (so we start with it), but all of them serve as important
models for various processes.

The theme is to describe, in each case, a mathematical
property of the distribution that serves as the reason for why
it is a good model in appropriate situations.



Normal Distributions, I

We start with the normal distribution:

Definition

A random variable Nµ,σ is normally distributed with parameters µ
and σ if its probability density function is

pµ,σ(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2).

A particularly useful case is µ = 0 and σ = 1:

Definition

The standard normal distribution is N0,1, with µ = 0 and σ = 1.



Normal Distributions, II

It is not trivial to verify that pµ,σ(x) =
1

σ
√

2π
e−(x−µ)

2/(2σ2)

actually is a probability density function.

This requires showing
∫∞
−∞

1
σ
√
2π

e−(x−µ)
2/2σ2

dx = 1.

This is not so easy to do, because the integrand does not have
an elementary antiderivative, so there is no nice formula for
the indefinite integral. (But there are various ways.)

Computing the expected value is a bit easier (it reduces to a
substitution), and the variance can also be evaluated using
some manipulations.

The end result is E (Nµ,σ) = µ and var(Nµ,σ) = σ2 so that
σ(Nµ,σ) = σ.

This justifies our use of the letters µ and σ for the parameters,
because they are just the mean and standard deviation.



Normal Distributions, III

We will warn that there are many different notations in use for
representing normal distributions.

In particular, it is very common instead to call the parameters
µ and σ2 (for the mean and variance, rather than the two we
used, the mean and standard deviation).

We use somewhat atypical notation Nµ,σ for the name of the
associated random variable to keep our notation separate.

It is more common in other sources to write N (µ, σ2) as
representing the normal distribution with mean µ and variance
σ2.



Normal Distributions, IV

The normal distribution is often called the “bell curve” due to the
shape of its pdf:



Normal Distributions, V

All normal distributions have the same shape: the mean parameter
shifts the location of the peak, while the standard deviation
parameter stretches the width.



Normal Distributions, VI

All normal distributions have the same shape: the mean parameter
shifts the location of the peak, while the standard deviation
parameter stretches the width.



Normal Distributions, VII

All normal distributions have the same shape: the mean parameter
shifts the location of the peak, while the standard deviation
parameter stretches the width.



Normal Distributions, VIII

Example: Suppose N11,2 is a normally-distributed random variable
with expected value 11 and standard deviation 2. Find:

1. P(N ≤ 11).

2. P(7 ≤ N ≤ 9).

3. P(N ≥ 13).

One approach is simply to write down the probability density
function and set up the integrals.

This yields P(N11,2 ≤ 11) =
∫ 11
−∞

1
2
√
2π

e−(x−11)
2/8 dx , with

P(7 ≤ N11,2 ≤ 9) =
∫ 9
7

1
2
√
2π

e−(x−11)
2/8 dx , and

P(N11,2 ≥ 13) =
∫∞
13

1
2
√
2π

e−(x−11)
2/8 dx .

Except... now what?



Normal Distributions, VIII
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Normal Distributions, IX

Here’s the problem: these integrals are essentially impossible to
evaluate exactly, because pµ,σ(x) = e−(x−µ)

2/(2σ2) does not have
an elementary antiderivative!

So in essentially all cases, we must use numerical integration
procedures to approximate these integrals.

On the TI-83 or TI-84, you can do these calculations using
the normalcdf function, located in the DISTR menu (2nd
key > VARS), which has numerous statistical distributions.

Essentially all computer algebra systems also have an
equivalent function built in: MATLAB calls it “normcdf”,
while Mathematica uses “NormalDistribution” and separate
operators for requesting the PDF and CDF.



Normal Distributions, X

Example: Suppose N11,2 is a normally-distributed random variable
with expected value 11 and standard deviation 2. Find:

1. P(N ≤ 11).

2. P(7 ≤ N ≤ 9).

3. P(N ≥ 13).

Using whatever form of technology is available, we can
evaluate these probabilities, which to four decimal places are
as follows:

1. P(N11,2 ≤ 11) = 0.5.

2. P(7 ≤ N11,2 ≤ 9) ≈ 0.1359.

3. P(N11,2 ≥ 13) ≈ 0.1587.



Normal Distributions, XI

We can visualize these calculations as areas (the one given below
represents P(N ≤ 11) = 0.5):

In this case, the area is 1/2 by symmetry.



Normal Distributions, XII

Another approach to solving problems involving the normal
distribution is use a table of computed values for the cumulative
distribution function of the standard normal distribution N0,1,
along with a substitution.

If we define za =
a− µ
σ

and zb =
b − µ
σ

, then it is a fairly

straightforward calculation to see that
P(a ≤ Nµ,σ ≤ b) = P(za ≤ N0,1 ≤ zb).

This “z-score” simply measures the number of standard
deviations away from the mean the associated value a is.

Because all normal distributions all have the same shape, the
area under the curve between two values x = a and x = b will
only depend on their position relative to the mean (measured
in standard deviations).



Normal Distributions, XIII

Thus, by normalizing to set the mean equal to 0 and the standard
deviation equal to 1, we can convert any of these questions to one
about the standard normal distribution.

Once we make this change of variables by computing the
z-scores, we can use a table of computed values for the
cumulative distribution function of the standard normal N0,1

(such as the table given on the next slide) to find the desired
probabilities.

To read the table, add together the row header and the
column header to get the value of z . The value in the cell
then gives the probability P(N0,1 ≤ z) to four decimal places.

Example: In the entry whose column is labeled +0.1 and the
row labeled −2.0 is given the value P(N0,1 ≤ −1.9).



Normal Distributions, XIV: Yes, I Made This By Hand

z : P(N0,1 ≤ z) +0.0 +0.1 +0.2 +0.3 +0.4

−3.0 0.0013 0.0019 0.0026 0.0035 0.0047

−2.5 0.0062 0.0082 0.0107 0.0139 0.0179

−2.0 0.0228 0.0287 0.0359 0.0446 0.0548

−1.5 0.0668 0.0808 0.0968 0.1151 0.1357

−1.0 0.1587 0.1841 0.2119 0.2420 0.2743

−0.5 0.3085 0.3446 0.3821 0.4207 0.4602

+0.0 0.5 0.5398 0.5793 0.6179 0.6554

+0.5 0.6915 0.7257 0.7580 0.7881 0.8159

+1.0 0.8413 0.8643 0.8849 0.9032 0.9192

+1.5 0.9332 0.9452 0.9554 0.9641 0.9713

+2.0 0.9772 0.9821 0.9861 0.9893 0.9918

+2.5 0.9938 0.9953 0.9965 0.9974 0.9981

+3.0 0.9987 0.9990 0.9993 0.9995 0.9997



Normal Distributions, XV

Historically, most statistical calculations required using a
precomputed table like the one on the previous slide.

Reflect, for a moment, on the amount of work it would have
taken to produce all of the data appearing in the previous
table in the 19th century.

We mention this “z-scores” approach not because it is still
important to be able to look these things up in a table (it
isn’t!), but because it is helpful in getting a feeling for how
the normal distribution behaves.

Later, when we are working with applications of the normal
distribution in statistics, we will frequently pass back and forth
between doing calculations with a normal distribution with
mean µ and standard deviation σ and the standard normal. It
is important to become comfortable with this procedure now.



Normal Distributions, XVI

Example (again): Suppose N11,2 is a normally-distributed random
variable with expected value 11 and standard deviation 2. Find:

1. P(N ≤ 11).

2. P(7 ≤ N ≤ 9).

3. P(N ≥ 13).

Instead of using a calculator, solve these by computing
z-scores and looking up the results in the table.

Remember that the entries in the table are values of the
standard normal cdf. So you will have to do subtraction to
find some of the probabilities above.

[Stage directions: flip back to the table. Don’t say this aloud.]



Normal Distributions, XVII

Example (again): Suppose N11,2 is a normally-distributed random
variable with expected value 11 and standard deviation 2. Find:

1. P(N ≤ 11).

2. P(7 ≤ N ≤ 9).

3. P(N ≥ 13).

We have µ = 11 and σ = 2, so
P(N11,2 ≤ 11) = P(N0,1 ≤ 0) = 0.5 .

Likewise, P(7 ≤ N11,2 ≤ 9) = P(−2 ≤ N0,1 ≤ −1) =

P(N0,1 ≤ −1)− P(N0,1 ≤ −2) = 0.1587− 0.0228 ≈ 0.1359 .

Finally, P(N11,2 ≥ 13) = P(N0,1 ≥ 1) = 1− P(N0,1 ≤ 1) =

1− 0.8413 = 0.1587 .



Normal Distributions, XVIII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the percentage of scores that will be
in each range:

1. Between 450 and 550.

2. Less than 600.

3. Greater than 700.

The scores follow the normal distribution N500,100.

Using the z-score method, we can compute
P(450 < N500,100 < 550) = P(−0.5 < N0,1 < 0.5) =
0.6915− 0.3085 ≈ 0.3830.

Next, we have P(N500,100 < 600) = P(N0,1 ≤ 1) ≈ 0.8413.

Lastly, P(N500,100 > 700) = P(N0,1 > 2) = 1− P(N0,1 ≤
2) ≈ 0.0228.



Normal Distributions, XVIII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the percentage of scores that will be
in each range:

1. Between 450 and 550.

2. Less than 600.

3. Greater than 700.

The scores follow the normal distribution N500,100.

Using the z-score method, we can compute
P(450 < N500,100 < 550) = P(−0.5 < N0,1 < 0.5) =
0.6915− 0.3085 ≈ 0.3830.

Next, we have P(N500,100 < 600) = P(N0,1 ≤ 1) ≈ 0.8413.

Lastly, P(N500,100 > 700) = P(N0,1 > 2) = 1− P(N0,1 ≤
2) ≈ 0.0228.



Normal Distributions, XIX

In some situations we want to invert our analysis by starting with a
probability and finding the corresponding value or range in the
distribution.

Analytically, this corresponds to evaluating the inverse
function of the normal cumulative density function (which is
usually called the inverse normal cdf for short), which can be
done efficiently using a calculator or computer.

Alternatively, we could look up the needed probabilities in a
table to find the associated z-scores.



Normal Distributions, XX (Dos Equis)

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

1. above 80% of the other scores.

2. above 90% of the other scores.

3. above 99% of the other scores.

4. above 99.9% of the other scores.

We can either use a computer to evaluate the inverse normal
cdf, or we can use a reverse-lookup in a table of z-scores. To
estimate a value that is between two scores, one can use a
linear interpolation, or use a more detailed table, or (the best)
simply use a table of the inverse normal cdf directly.



Normal Distributions, XX (Dos Equis)

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

1. above 80% of the other scores.

2. above 90% of the other scores.

3. above 99% of the other scores.

4. above 99.9% of the other scores.

We can either use a computer to evaluate the inverse normal
cdf, or we can use a reverse-lookup in a table of z-scores. To
estimate a value that is between two scores, one can use a
linear interpolation, or use a more detailed table, or (the best)
simply use a table of the inverse normal cdf directly.



Normal Distributions, XXI

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

1. above 80% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 584) ≈ 0.7995 and P(N500,100 ≤ 585) = 0.8023,
so the minimum integer score above 80% of the other scores
is 585.

Alternatively, using a table z-scores (equivalently, the inverse
normal cdf for the standard normal), we could find that the
value z with P(N0,1 ≤ z) = 0.80 is z ≈ 0.8416, and so the
desired score is 500 + 100z ≈ 584.16.



Normal Distributions, XXI

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

1. above 80% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 584) ≈ 0.7995 and P(N500,100 ≤ 585) = 0.8023,
so the minimum integer score above 80% of the other scores
is 585.

Alternatively, using a table z-scores (equivalently, the inverse
normal cdf for the standard normal), we could find that the
value z with P(N0,1 ≤ z) = 0.80 is z ≈ 0.8416, and so the
desired score is 500 + 100z ≈ 584.16.



Normal Distributions, XXII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

2. above 90% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 628) ≈ 0.7995 and P(N500,100 ≤ 629) = 0.9015,
so the minimum integer score above 90% of the other scores
is 629.

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.90 is z ≈ 1.2816, and
so the desired score is 500 + 100z ≈ 628.16.



Normal Distributions, XXII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

2. above 90% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 628) ≈ 0.7995 and P(N500,100 ≤ 629) = 0.9015,
so the minimum integer score above 90% of the other scores
is 629.

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.90 is z ≈ 1.2816, and
so the desired score is 500 + 100z ≈ 628.16.



Normal Distributions, XXIII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

3. above 99% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 732) ≈ 0.9898 and P(N500,100 ≤ 733) = 0.9901,
so the minimum integer score above 99% of the other scores
is 733.

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.99 is z ≈ 2.3263, and
so the desired score is 500 + 100z ≈ 732.63.



Normal Distributions, XXIII

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

3. above 99% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 732) ≈ 0.9898 and P(N500,100 ≤ 733) = 0.9901,
so the minimum integer score above 99% of the other scores
is 733.

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.99 is z ≈ 2.3263, and
so the desired score is 500 + 100z ≈ 732.63.



Normal Distributions, XXIV

Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

4. above 99.9% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 809) ≈ 0.9989992 and
P(N500,100 ≤ 810) = 0.9903240, so the minimum integer
score above 99.9% of the other scores is 810. (Though 809
sure is close!)

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.99 is z ≈ 3.0902, and
so the desired score is 500 + 100z ≈ 809.02.
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Example: A certain standardized test is designed so that its score
distribution will be normal with a mean of 500 and a standard
deviation of 100. Determine the lowest integer score that is

4. above 99.9% of the other scores.

Using a computer, we can find that
P(N500,100 ≤ 809) ≈ 0.9989992 and
P(N500,100 ≤ 810) = 0.9903240, so the minimum integer
score above 99.9% of the other scores is 810. (Though 809
sure is close!)

Alternatively, using a table of z-scores (equivalently, the
inverse normal cdf for the standard normal), we could find
that the value z with P(N0,1 ≤ z) = 0.99 is z ≈ 3.0902, and
so the desired score is 500 + 100z ≈ 809.02.



Normal Distributions, XXV

We mention a few miscellaneous things about the standard normal
distribution N0,1.

First, the distribution is symmetric about its mean.

As a consequence, this means
P(N0,1 ≤ z) = P(N0,1 ≥ −z) = 1− P(N0,1 ≤ −z).

Example: We have P(N0,1 ≤ 1.2) = 0.8849 while
P(N0,1 ≤ −1.2) = 0.1151.

Because of this identity, most tables of z-values only quote
results for one half of possible z (either z > 0 or z < 0), since
one may easily calculate the other half of the values as above.

Second, the points that are one standard deviation away from the
mean are inflection points of the pdf.



Normal Distributions, XXVI

Third, for doing rough estimates it is useful to remember the
approximate proportions of the normal distribution that are within
1, 2, or 3 standard deviations of the mean.

Observe that P(−z ≤ N0,1 ≤ z) = 1− 2 · P(N0,1 ≤ z) (there
are two “tails” outside the range −z ≤ N0,1 ≤ z).

So one may calculate P(−1 ≤ N0,1 ≤ 1) = 0.6827,
P(−2 ≤ N0,1 ≤ 2) = 0.9545, P(−3 ≤ N0,1 ≤ 3) = 0.9973.

This is often summarized as the “68-95.5-99.7” rule: these are
the percentages of a normal distribution that will fall within 1,
2, and 3 standard deviations of the mean respectively.



Normal Distributions, XXVII

In particular, compare the “68-95.5-99.7” rule to the
worst-case scenario predictions from Chebyshev’s inequality
(which says that the proportion falling within k standard
deviations of the mean must be at least 1− 1/k2): it would
give the “0-75-88.8” rule, which is far lower than what occurs
with the normal distribution.

This rule indicates that normally distributed quantities will
(the vast majority of the time) be within 3 or fewer standard
deviations of the mean.

In particular, normal models are not generally as appropriate
for situations where even 1-2 percent of the distribution
represents outliers that are more than 3 standard deviations
away from the mean. (Such situations are, of course, still
quite possible for arbitrary random variables, per Chebyshev.)



Normal Distributions, XXVIII

The normal distribution arises often as a model for real-world
quantities that arise as sums or averages of many small pieces.

Examples:

Heights of people (typically after sorting by gender)

Measurement errors in experiments

Scores on exams or standardized tests

Diffusion of a particle in a solution (or more generally the
position after a random walk)

Blood pressure readings

Variation in part sizes made by industrial fabrication

As a matter of practice, most of these quantities are only
approximately normally distributed.



Central Limit Theorem, I

The reason for the common appearance of the normal distribution
is the following fundamental result:

Theorem (Central Limit Theorem)

Let X1, X2, ... , Xn be a sequence of independent,
identically-distributed discrete or continuous random variables each
with finite expected value µ and standard deviation σ > 0. Then
the distribution of the random variable

Yn =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
will approach the standard normal

distribution (of mean 0 and standard deviation 1) as n tends to ∞:
explicitly, for any real numbers a ≤ b we have
P(a ≤ Yn ≤ b)→

∫ b
a

1√
2π

e−x
2/2 dx as n→∞.



Central Limit Theorem, II

The statement is quite detailed (it took up the entire slide!), so
let’s unpack it a bit:

First, if X1, . . . ,Xn are independent and
identically-distributed, we may think of the random variable
X1 + · · ·+ Xn as being the sum of the results of independently
sampling a random variable X a total of n times.

One example of this would be flipping a (fair or unfair) coin n
times and summing the total number of heads (X is the
Bernoulli random variable identifying success=1 or failure=0).

Another example would be rolling a die n times and summing
the outcomes (X is the result of the die roll).



Central Limit Theorem, III

So suppose we have a random variable X , and we sample it
(independently) n times, to get values X1,X2, . . . ,Xn.

We would like to say something about the sum
X1 + X2 + · · ·+ Xn.

From the linearity of expected value, we can see that
E (X1 + · · ·+ Xn) = E (X1) + · · ·+ E (Xn) = nµ.

Also, since X1, . . . ,Xn are independent, we also have
var(X1 + X2 + · · ·+ Xn) = var(X1) + · · ·+ var(Xn) = nσ2,
and so σ(X1 + · · ·+ Xn) =

√
nσ2 = σ

√
n.



Central Limit Theorem, IV

We just showed that the expected value of X1 + · · ·+ Xn is nµ and
that its standard deviation is σ

√
n.

Therefore, if Yn =
X1 + X2 + · · ·+ Xn − nµ

σ
√

n
, we can see (via

expected value properties) that E (Yn) = 0 and σ(Yn) = 1.

We can think of Yn as a “normalization” of the summed
distribution X1 + · · ·+ Xn by translating and rescaling it so
that its expected value is 0 and its standard deviation is 1.

The content of the central limit theorem is now that, if we take a
sample size n tending to ∞, this normalized average Yn

approaches the standard normal distribution.

This result is quite powerful, since it says this limiting
distribution is the same no matter what the original discrete
or continuous random variable X was! (As long as its mean
and standard deviation are defined....)
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Central Limit Theorem, V

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1]:



Central Limit Theorem, VI

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, VII

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, VIII

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, IX

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, X

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Central Limit Theorem, XI

We can illustrate the central limit theorem quite convincingly for X
the uniform distribution on [0, 1] (blue = sum of uniform variables,
red = normal distribution):



Summary

We discussed independence, covariance, and correlation for
continuous random variables.

We introduced the normal distribution.

We introduced the central limit theorem and gave some analysis of
its result.

Next lecture: The central limit theorem and applications


