
Math 3081 (Probability and Statistics)

Lecture #10 of 27 ∼ July 21st, 2021

Continuous Random Variables (Part 2)

More with Chebyshev’s and Markov’s Inequalities

Double Integrals

Joint Distributions

This material represents §2.2.2-2.2.3 from the course notes, and
problems 15-18 on WeBWorK 3 + problem 20 on WeBWorK 4.



Recall, I

Last time, we showed some properties of expected value:

Proposition (Expected Value of Functions of X )

If X is a continuous random variable with probability density
function p(x), and g(x) is any piecewise-continuous function, then
the expected value of g(X ) is E [g(X )] =

∫∞
−∞ g(x) p(x) dx.

Corollary (Linearity of Expected Value)

If X and Y are continuous random variables whose expected values
are defined, and a and b are any real numbers, then
E (aX + b) = a · E (X ) + b and E (X + Y ) = E (X ) + E (Y ).



Recall, II

We also defined variance and standard deviation:

Definition

If X is a continuous random variable whose expected value µ exists
and is finite, the variance var(X ) is defined as
var(X ) = E [(X − µ)2] = E (X 2)− E (X )2, and the
standard deviation is σ(X ) =

√
var(X ).

And we showed a few properties:

Proposition (Properties of Variance)

If X is a continuous random variable and a and b are any real
numbers, then var(aX + b) = a2 · var(X ) and
σ(aX + b) = |a|σ(X ).



Recall, III

We also mentioned Markov’s + Chebyshev’s inequalities:

Theorem (Markov’s Inequality)

If Y is a nonnegative random variable and a is any positive real
number, then P(Y ≥ a) ≤ E (Y )/a.

Theorem (Chebyshev’s Inequality)

If X is a random variable with expected value µ and standard
deviation σ, then P(|X − µ| ≥ kσ) ≤ 1/k2 for any positive real
number k.

Both of these inequalities hold for any random variable, discrete or
continuous. They are very general statements.



More Chebyshev and Markov, I

Example: In a statistics class, a student’s exam score is a random
variable with mean 80, but no other information about the exam
scores is known.

1. Find an upper bound for the proportion of students who
receive a 90 or above.

2. If the standard deviation is also known to be 6, find a lower
bound for the proportion of students who score between 70
and 90 (inclusive).

3. If the probability that the class average is within 1 point of the
mean is at least 84%, without using any information about the
distribution other than the mean and standard deviation, what
is the least number of students that could be in the class?

The only tools here are Markov’s + Chebyshev’s inequalities.
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More Chebyshev and Markov, II

Example: In a statistics class, a student’s exam score is a random
variable with mean 80, but no other information about the exam
scores is known.

1. Find an upper bound for the proportion of students who
receive a 90 or above.

Markov’s inequality: if Y is nonnegative and a > 0, then
P(Y ≥ a) ≤ E (Y )/a.

We can use the inequality here (at least, under the sensible
assumption that the exam scores are always nonnegative).

If Y is the exam score and a = 90, then we have
P(Y ≥ a) ≤ E (Y )/90 = 80/90.

Thus, at most 8/9 of the class could score 90 or above.

Try to convince yourself that this is the most we can say
without any other information.
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More Chebyshev and Markov, III

Example: In a statistics class, a student’s exam score is a random
variable with mean 80, but no other information about the exam
scores is known.

2. If the standard deviation is also known to be 6, find a lower
bound for the proportion of students who score between 70
and 90 (inclusive).

Chebyshev’s inequality: a proportion at least 1− 1/k2 of
students must score within k standard deviations of the mean.

We are given the standard deviation, so we can apply the
result here.

Since the given score range of 80± 10 points represents
k = 10/6 standard deviations away from the mean,
Chebyshev’s inequality says that the required proportion of
students is at least 1− 1/k2 = 0.64.

Thus, at least 64% of students must score between 70 and 90.



More Chebyshev and Markov, III

Example: In a statistics class, a student’s exam score is a random
variable with mean 80, but no other information about the exam
scores is known.

2. If the standard deviation is also known to be 6, find a lower
bound for the proportion of students who score between 70
and 90 (inclusive).

Chebyshev’s inequality: a proportion at least 1− 1/k2 of
students must score within k standard deviations of the mean.

We are given the standard deviation, so we can apply the
result here.

Since the given score range of 80± 10 points represents
k = 10/6 standard deviations away from the mean,
Chebyshev’s inequality says that the required proportion of
students is at least 1− 1/k2 = 0.64.

Thus, at least 64% of students must score between 70 and 90.



More Chebyshev and Markov, IV

Example: In a statistics class, a student’s exam score is a random
variable with mean 80 and standard deviation 6.

3. If the probability that the class average is within 1 point of
the mean is at least 84%, without using any other
information, what is the least number of students that could
be in the class?

We don’t know what the distribution of the average score
looks like, so the only tool is Chebyshev’s inequality.

If there are n students in the class, then the average score has
mean 80 and standard deviation 6/

√
n.

Chebyshev’s inequality says that the proportion of students
that score within k standard deviations of the mean is at least
1− 1/k2, which is equal to 84% for k = 5/2.

Thus, 1 point must represent 5/2 of a standard deviation
6/
√

n: this means 1 = (5/2) · (6/
√

n) so that n = 225.



More Chebyshev and Markov, IV

Example: In a statistics class, a student’s exam score is a random
variable with mean 80 and standard deviation 6.

3. If the probability that the class average is within 1 point of
the mean is at least 84%, without using any other
information, what is the least number of students that could
be in the class?

We don’t know what the distribution of the average score
looks like, so the only tool is Chebyshev’s inequality.

If there are n students in the class, then the average score has
mean 80 and standard deviation 6/

√
n.

Chebyshev’s inequality says that the proportion of students
that score within k standard deviations of the mean is at least
1− 1/k2, which is equal to 84% for k = 5/2.

Thus, 1 point must represent 5/2 of a standard deviation
6/
√

n: this means 1 = (5/2) · (6/
√

n) so that n = 225.



Joint Distributions, I

Next, we discuss the situation of having several continuous random
variables defined on the same sample space.

Just as with discrete random variables, if we have a collection
of continuous random variables X1,X2, . . . ,Xn, we can
summarize all of the possible information about the behavior
of these random variables simultaneously using a joint
probability density function.

In the discrete case, we can find the probability that the
random variables take particular combinations of values by
summing the associated values of the joint distribution
function.

In the continuous case, we will instead need to integrate to
find these probabilities.



Joint Distributions, II

Definition

If X and Y are continuous random variables, and there is a
function pX ,Y (x , y), defined on ordered pairs of real numbers
(x , y) such that

∫∫
R pX ,Y (x , y) dy dx = P[(X ,Y ) ∈ R] for every

plane region R, then we call pX ,Y (x , y) the
joint probability density function of X and Y .

The integral in the definition above is a double integral over
the region R.

The idea is analogous to a one-variable probability density
function: to compute the probability that the values of of X
and Y together land in a particular planar region R, we simply
integrate the probability density function on the domain R.



Double Integrals, I

We can interpret the double integral
∫∫

R p(x , y) dy dx as a volume:
specifically, it represents the volume underneath the surface
z = p(x , y) that lies above the planar region R:



Double Integrals, II

To evaluate probabilities using a joint density function, we will need
to use multivariable integration to evaluate

∫∫
R pX ,Y (x , y) dy dx .

Abstractly, this double integral is defined in terms of Riemann
sums. We will not work with this definition: instead, we will
evaluate R as what is called an iterated integral.

To motivate the idea, first suppose the region R is the
rectangle with a ≤ x ≤ b, c ≤ y ≤ d , usually written as
[a, b]× [c , d ] for short.

Imagine taking the solid volume and slicing it into thin pieces
perpendicular to the x-axis from x = a to x = b, then the
volume is given by the integral

∫ b
a A(x) dx , where A(x) is the

cross-sectional area at a given x-coordinate.



Double Integrals, III

Here is a picture of a typical cross-section at the x-coordinate x0:



Double Integrals, IV

Now look at each cross-section:

Notice that the area A(x0) is simply the area under the curve
z = p(x0, y) between y = c and y = d .

That area is
∫ d
c p(x0, y) dy , where here we are thinking of x0

as a constant independent of y .



Double Integrals, V

Putting this together shows that the volume under z = p(x , y)
above the region R = [a, b]× [c , d ] is given by the iterated integral∫ b

a

[∫ d

c
p(x , y) dy

]
dx .

In this integral, we integrate first (on the inside) with respect
to the variable y , and then second (on the outside) with
respect to the variable x .

We will usually write iterated integrals without the brackets:∫ b
a

∫ d
c p(x , y) dy dx .

Note that there are two limits of integration, and they are
paired with the two variables “inside out”: the inner limits
[c , d ] are paired with the inner differential dy , and the outer
limits [a, b] are paired with the outer differential dx .



Double Integrals, VI

Example: Find the volume under the surface z = x + y that lies
above the region 0 ≤ x ≤ 1, 0 ≤ y ≤ 2.

The volume is given by the iterated integral∫ 1

0

∫ 2

0
(x + y) dy dx .

To evaluate the inner integral

∫ 2

0
(x + y) dy , we view x as a

constant and take the antiderivative (with respect to y):∫ 2

0
(x + y) dy =

(
xy +

1

2
y2

) ∣∣∣2
y=0

= (2x + 2)− (0 + 0) = 2x + 2.

Now we can plug this in and evaluate the outer integral:∫ 1

0

∫ 2

0
(x + y) dy dx =

∫ 1

0
(2x + 2) dx = (x2 + 2x)

∣∣∣1
x=0

= 3.
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Double Integrals, VII

Example: Calculate

∫ 2

0

∫ 3

0
x2y dy dx .

We evaluate the integrals, starting with the inner integral.

To evaluate the inner integral, we take the antiderivative of
x2y with respect to y , and then evaluate from y = 0 to
y = 3. This gives us a function just of x , which we then
integrate from x = 0 to x = 2:∫ 2

0

∫ 3

0
x2y dy dx =

∫ 2

0

[∫ 3

0
x2y dy

]
dx =

∫ 2

0

[
1

2
x2y2

] ∣∣∣3
y=0

dx

=

∫ 2

0

9

2
x2 dx =

3

2
x3
∣∣∣2
x=0

= 12.



Double Integrals, VII
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] ∣∣∣3
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Double Integrals, VIII

We can also deal with the more general situation where the region
R is not a rectangle.

There are a number of more general approaches that work for
various situations (e.g., if the region is a disc, one could use
polar coordinates).

We only deal with the case
where R is bounded below by
the curve y = c(x) and above
by the curve y = d(x).

By thinking again in terms of cross-sections, the iterated

integral will have the form
∫ b
a

∫ d(x)
c(x) p(x , y) dy dx , where now

the inner limits of integration depend on the outer variable x .

When we evaluate the inner integral in y , we will be left with
a function of x , and then we can evaluate the outer integral.



Double Integrals, IX

Example: Calculate

∫ 2

0

∫ 2x

x2
xy2 dy dx .

We evaluate the integrals, starting with the inner integral, just
like before.

When we compute the inner integral, the limits will be in
terms of x (just plug them in like normal). The result is then
a function of x , at which point we evaluate the outer integral:∫ 2

0

∫ 2x

x2
xy2 dy dx =

∫ 2

0

1

3
xy3

∣∣∣∣2x
y=x2

dx =

∫ 2

0

[
8

3
x4 − 1

3
x7

]
dx

=

[
8

15
x5 − 1

24
x8

]∣∣∣∣2
x=0

=
32

5
.



Double Integrals, IX

Example: Calculate

∫ 2

0

∫ 2x

x2
xy2 dy dx .

We evaluate the integrals, starting with the inner integral, just
like before.

When we compute the inner integral, the limits will be in
terms of x (just plug them in like normal). The result is then
a function of x , at which point we evaluate the outer integral:∫ 2

0

∫ 2x

x2
xy2 dy dx =

∫ 2

0

1

3
xy3

∣∣∣∣2x
y=x2

dx =

∫ 2

0

[
8

3
x4 − 1

3
x7

]
dx

=

[
8

15
x5 − 1

24
x8

]∣∣∣∣2
x=0
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32

5
.



Double Integrals, X

In most situations we will need to set up the double integral of a
function p(x , y) on a region R using only a description of R.

The procedure is as follows: first, sketch the region.

Next, “slice up” the region using vertical cross-sections.

Identify the value x = a where the leftmost cross-section is,
and the value x = b where the rightmost cross-section is.

Inside any given cross-section, identify the curve y = c(x)
representing the bottom boundary, and the curve y = d(x)
representing the upper boundary.

The desired double integral is then
∫ b
a

∫ d(x)
c(x) p(x , y) dy dx .



Double Integrals, XI

Example: Set up the integral of p(x , y) = xy on the region with
x , y ≥ 0 and x + y ≤ 1.

First, we sketch the region, and then we slice it up vertically:

The leftmost slice occurs at
x = 0 and the rightmost slice
occurs at x = 1.

For each slice, the bottom
curve is y = 0 and the upper
curve is the line x + y = 1,
which (since we need y as a
function of x) is y = 1− x .

Therefore, the desired double

integral is

∫ 1

0

∫ 1−x

0
xy dy dx .
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Therefore, the desired double

integral is

∫ 1

0

∫ 1−x

0
xy dy dx .



Double Integrals, XI

Example: Set up the integral of p(x , y) = xy on the region with
x , y ≥ 0 and x + y ≤ 1.

First, we sketch the region, and then we slice it up vertically:

The leftmost slice occurs at
x = 0 and the rightmost slice
occurs at x = 1.

For each slice, the bottom
curve is y = 0 and the upper
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0
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What Were We Doing Again? Oh, Right, Probability....

Now that we have done the necessary basics for double integrals,
we can get back to talking about joint distributions.

The main takeaway is that if pX ,Y (x , y) is the joint
distribution for X and Y , then we can calculate probabilities
of joint events by evaluating the double integral of pX ,Y on
the appropriate region.

The only hard part is setting up the double integral. (And
then evaluating it.)



Joint Distribution Examples, I

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Verify that p is a joint probability density function.

2. Find P(0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1).

3. Find P(0 ≤ X ≤ 1).

We just need to set up the appropriate integrals.

We can restrict our attention to the rectangle where
0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 since that is the only place where
the density function is nonzero.



Joint Distribution Examples, I

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Verify that p is a joint probability density function.

2. Find P(0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1).

3. Find P(0 ≤ X ≤ 1).

We just need to set up the appropriate integrals.

We can restrict our attention to the rectangle where
0 ≤ x ≤ 2 and 0 ≤ y ≤ 2 since that is the only place where
the density function is nonzero.



Joint Distribution Examples, II

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Verify that p is a joint probability density function.

For this, we need to verify that the integral of p is equal to 1.

Since the region of interest is a rectangle, the integral is∫ 2

0

∫ 2

0

1

4
xy dy dx =

∫ 2

0

1

8
xy2
∣∣∣2
y=0

dx

=

∫ 2

0

1

2
x dx =

1

4
x2
∣∣∣2
x=0

= 1.



Joint Distribution Examples, II

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Verify that p is a joint probability density function.

For this, we need to verify that the integral of p is equal to 1.

Since the region of interest is a rectangle, the integral is∫ 2

0

∫ 2

0

1

4
xy dy dx =

∫ 2

0

1

8
xy2
∣∣∣2
y=0

dx

=

∫ 2

0

1

2
x dx =

1

4
x2
∣∣∣2
x=0

= 1.



Joint Distribution Examples, III

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

2. Find P(0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1).

The region of interest is now the portion where 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1.

The integral is∫ 1

0

∫ 1

0

1

4
xy dy dx =

∫ 1

0

[
1

8
xy2

] ∣∣∣1
y=0

dx

=

∫ 1

0

1

8
x dx =

[
1

16
x2

] ∣∣∣1
x=0

=
1

16
.



Joint Distribution Examples, III

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

2. Find P(0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1).

The region of interest is now the portion where 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1.

The integral is∫ 1

0

∫ 1

0

1

4
xy dy dx =

∫ 1

0

[
1

8
xy2

] ∣∣∣1
y=0

dx

=

∫ 1

0

1

8
x dx =

[
1

16
x2

] ∣∣∣1
x=0

=
1

16
.



Joint Distribution Examples, IV

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(0 ≤ X ≤ 1).

The region of interest is now the portion where 0 ≤ x ≤ 1 and
0 ≤ y ≤ 2.

The integral is∫ 1

0

∫ 2

0

1

4
xy dy dx =

∫ 1

0

[
1

8
xy2

] ∣∣∣2
y=0

dx

=

∫ 1

0

1

2
x dx =

[
1

4
x2

] ∣∣∣1
x=0

=
1

4
.



Joint Distribution Examples, IV

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = 1

4xy for 0 ≤ x ≤ 2
and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(0 ≤ X ≤ 1).

The region of interest is now the portion where 0 ≤ x ≤ 1 and
0 ≤ y ≤ 2.

The integral is∫ 1

0

∫ 2

0

1

4
xy dy dx =

∫ 1

0

[
1

8
xy2

] ∣∣∣2
y=0

dx

=

∫ 1

0

1

2
x dx =

[
1

4
x2

] ∣∣∣1
x=0

=
1

4
.



Joint Distribution Examples, V

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = c(2x + y) for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Find the value of c .

2. Find P(0 ≤ X ≤ 1 and 1 ≤ Y ≤ 2).

3. Find P(0 ≤ Y ≤ 1).

4. Find P(Y > X ).

5. Find P(X > 3Y ).

6. Find P(X > 2Y and Y > X/3).

We just need to set up the appropriate integrals.

We can restrict our attention to the rectangle where
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2 since that is the only place where
the density function is nonzero.



Joint Distribution Examples, V

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = c(2x + y) for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Find the value of c .

2. Find P(0 ≤ X ≤ 1 and 1 ≤ Y ≤ 2).

3. Find P(0 ≤ Y ≤ 1).

4. Find P(Y > X ).

5. Find P(X > 3Y ).

6. Find P(X > 2Y and Y > X/3).

We just need to set up the appropriate integrals.

We can restrict our attention to the rectangle where
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2 since that is the only place where
the density function is nonzero.



Joint Distribution Examples, VI

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = c(2x + y) for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Find the value of c .

Since p is a probability density function, its integral over its
entire domain must equal zero.

Ignoring the places where p is zero gives the following integral:∫ 3

0

∫ 2

0
c(2x + y) dy dx =

∫ 3

0
c(2xy + y2/2)|2y=0 dx

=

∫ 3

0
c(4x + 2) dx

= c(2x2 + 2x)|3x=0 = 24c .

Therefore, we must have 24c = 1 so c = 1/24.



Joint Distribution Examples, VI

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = c(2x + y) for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

1. Find the value of c .

Since p is a probability density function, its integral over its
entire domain must equal zero.

Ignoring the places where p is zero gives the following integral:∫ 3

0

∫ 2

0
c(2x + y) dy dx =

∫ 3

0
c(2xy + y2/2)|2y=0 dx

=

∫ 3

0
c(4x + 2) dx

= c(2x2 + 2x)|3x=0 = 24c .

Therefore, we must have 24c = 1 so c = 1/24.



Joint Distribution Examples, VII

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

2. Find P(0 ≤ X ≤ 1 and 1 ≤ Y ≤ 2).

Here, the region of interest has 0 ≤ x ≤ 1 and 1 ≤ y ≤ 2.

This yields the following integral:∫ 1

0

∫ 2

1

1

24
(2x + y) dy dx =

∫ 1

0

1

24
(2xy + y2/2)|2y=1 dx

=

∫ 1

0

1

48
(4x + 3) dx

=
1

48
(2x2 + 3x)|1x=0 =

5

48
.



Joint Distribution Examples, VII

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

2. Find P(0 ≤ X ≤ 1 and 1 ≤ Y ≤ 2).

Here, the region of interest has 0 ≤ x ≤ 1 and 1 ≤ y ≤ 2.

This yields the following integral:∫ 1

0

∫ 2

1

1

24
(2x + y) dy dx =

∫ 1

0

1

24
(2xy + y2/2)|2y=1 dx

=

∫ 1

0

1

48
(4x + 3) dx

=
1

48
(2x2 + 3x)|1x=0 =

5

48
.



Joint Distribution Examples, VIII

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(0 ≤ Y ≤ 1).

Here, there is no restriction on the value of X , so the region
of interest has 0 ≤ x ≤ 3 and 0 ≤ y ≤ 1.

This yields the following integral:∫ 3

0

∫ 1

0

1

24
(2x + y) dy dx =

∫ 3

0

1

24
(2xy + y2/2)|1y=0 dx

=

∫ 3

0

1

48
(4x + 1) dx

=
1

48
(2x2 + x)|3x=0 =

7

16
.



Joint Distribution Examples, VIII

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(0 ≤ Y ≤ 1).

Here, there is no restriction on the value of X , so the region
of interest has 0 ≤ x ≤ 3 and 0 ≤ y ≤ 1.

This yields the following integral:∫ 3

0

∫ 1

0

1

24
(2x + y) dy dx =

∫ 3

0

1

24
(2xy + y2/2)|1y=0 dx

=

∫ 3

0

1

48
(4x + 1) dx

=
1

48
(2x2 + x)|3x=0 =

7

16
.



Joint Distribution Examples, IX

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(Y > X ).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 2.

For each slice, the bottom
curve is y = x and the upper
curve is the line y = 2.

Therefore, the integral is∫ 2

0

∫ 2

x

1

24
(2x + y) dy dx .



Joint Distribution Examples, IX

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(Y > X ).

The region is below.

Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 2.

For each slice, the bottom
curve is y = x and the upper
curve is the line y = 2.

Therefore, the integral is∫ 2

0

∫ 2

x

1

24
(2x + y) dy dx .



Joint Distribution Examples, IX

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(Y > X ).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 2.

For each slice, the bottom
curve is y = x and the upper
curve is the line y = 2.

Therefore, the integral is∫ 2

0

∫ 2

x

1

24
(2x + y) dy dx .



Joint Distribution Examples, X: Are We There Yet?

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

3. Find P(Y > X ).

Now we just have to evaluate

∫ 2

0

∫ 2

x

1

24
(2x + y) dy dx .

This yields∫ 2

0

∫ 2

x

1

24
(2x + y) dy dx =

∫ 2

0

1

24
(2xy + y2/2)|2y=x dx

=

∫ 2

0

1

48
(4 + 8x − 5x2) dx

=
1

144
(12x + 12x2 − 5x3)|2x=0 =

1

16
.



Joint Distribution Examples, XI: Nope

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

5. Find P(X > 3Y ).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = 0 and the upper
curve is the line x = 3y ,
which is y = x/3.

Therefore, the integral is∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx .



Joint Distribution Examples, XI: Nope

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

5. Find P(X > 3Y ).

The region is below.

Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = 0 and the upper
curve is the line x = 3y ,
which is y = x/3.

Therefore, the integral is∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx .



Joint Distribution Examples, XI: Nope

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

5. Find P(X > 3Y ).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = 0 and the upper
curve is the line x = 3y ,
which is y = x/3.

Therefore, the integral is∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx .



Joint Distribution Examples, XII: Wait, There’s More

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

5. Find P(X > 3Y ).

Now we just have to evaluate

∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx .

This yields∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx =

∫ 3

0

1

24
(2xy + y2/2)|x/3y=0 dx

=

∫ 3

0

13

432
x2 dx

=
13

1296
x3|3x=0 =

13

48
.



Joint Distribution Examples, XIII: Unlucky

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

6. Find P(X > 2Y and Y > X/3).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = x/3 and the
upper curve is the line
x = 2y , which is y = x/2.

Therefore, the integral is∫ 3

0

∫ x/2

x/3

1

24
(2x + y) dy dx .



Joint Distribution Examples, XIII: Unlucky

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

6. Find P(X > 2Y and Y > X/3).

The region is below.

Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = x/3 and the
upper curve is the line
x = 2y , which is y = x/2.

Therefore, the integral is∫ 3

0

∫ x/2

x/3

1

24
(2x + y) dy dx .



Joint Distribution Examples, XIII: Unlucky

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

6. Find P(X > 2Y and Y > X/3).

The region is below. Slicing it up gives the
leftmost slice at x = 0 and
the rightmost slice at x = 3.

For each slice, the bottom
curve is y = x/3 and the
upper curve is the line
x = 2y , which is y = x/2.

Therefore, the integral is∫ 3

0

∫ x/2

x/3

1

24
(2x + y) dy dx .



Joint Distribution Examples, XIV: Finally, The End

Example: The continuous random variables X and Y have joint
probability density function defined by p(x , y) = (2x + y)/24 for
0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and p(x , y) = 0 elsewhere. Do:

6. Find P(X > 2Y and Y > X/3).

Now we just have to evaluate

∫ 3

0

∫ x/2

x/3

1

24
(2x + y) dy dx .

This yields∫ 3

0

∫ x/3

0

1

24
(2x + y) dy dx =

∫ 3

0

1

24
(2xy + y2/2)|x/2y=x/3 dx

=

∫ 3

0

29

1728
x2 dx

=
29

5184
x3|3x=0 =

29

192
.



More Variables! (But Let’s Not...)

We can also work with joint distributions in more than two
variables.

Definition

If X1,X2, . . . ,Xn are continuous random variables, then the
function pX1,X2,...,Xn(a1, a2, . . . , an) defined on ordered n-tuples of
real numbers, such that P[(X1,X2, . . . ,Xn) ∈ D] =∫∫
· · ·
∫
D pX1,X2,...,Xn(a1, a2, . . . , an) dandan−1 · · · da1 for every

region D in n-dimensional space is called the
joint probability density function of X1,X2, . . . ,Xn.

We will not actually do any of these calculations with more than 2
variables, since the calculations grow substantially in length with
3+ variables.



Marginal Distributions, I

As in the case of discrete random variables, we can also recover
the individual probability distributions pX (x) and pY (y) for either
variable from their joint distribution by integrating over the other
variable:

Proposition (Marginal Densities)

If pX ,Y (a, b) is the joint probability density function for the
continuous random variables X and Y , then for any a and b we
may compute the single-variable probability density functions for X
and Y as pX (x) =

∫∞
−∞ pX ,Y (x , y) dy and

pY (y) =
∫∞
−∞ pX ,Y (x , y) dx.



Marginal Distributions, II

Proof:

By the definition of the joint probability density function, we
know that P(a ≤ X ≤ b) = P(a ≤ X ≤ b,−∞ < Y <∞) =∫ b
a

∫∞
−∞ pX ,Y (x , y) dy dx .

Thus, we see that integrating
∫∞
−∞ pX ,Y (x , y) dy with respect

to x on the interval [a, b] yields P(a ≤ X ≤ b), which means
that

∫∞
−∞ pX ,Y (x , y) dy is the probability density function for

X .

The second formula follows in the same way upon
interchanging the roles of X and Y and switching the order of
integration in the iterated integral (this is allowed by a result
known as Fubini’s theorem, since the integrand is
nonnegative).



Marginal Distributions, III

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

1. Find the marginal probability density function for X .

2. Find P(1 ≤ X ≤ 2).

3. Find the marginal probability density function for Y .

4. Find P(0 ≤ Y ≤ 1).

To compute the probability density functions, we simply
integrate the joint pdf with respect to the other variable.

Then we can find the requested probabilities using the
marginal probability density functions.



Marginal Distributions, III

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

1. Find the marginal probability density function for X .

2. Find P(1 ≤ X ≤ 2).

3. Find the marginal probability density function for Y .

4. Find P(0 ≤ Y ≤ 1).

To compute the probability density functions, we simply
integrate the joint pdf with respect to the other variable.

Then we can find the requested probabilities using the
marginal probability density functions.



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

1. Find the marginal probability density function for X .

The marginal pdf for X is given by pX (x) =
∫∞
−∞ p(x , y) dy =∫ 2

0

1

24
(2x + y) dy =

1

48
(4xy + y2)

∣∣∣2
y=0

=
1

12
(2x + 1) for

0 ≤ x ≤ 3.

2. Find P(1 ≤ X ≤ 2).

This probability is the integral of pX (x) from x = 1 to x = 2.

Explicitly, it is
∫ 2
1

1

12
(2x + 1) =

1

12
(x2 + x)|2x=1 =

1

3
.



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

1. Find the marginal probability density function for X .

The marginal pdf for X is given by pX (x) =
∫∞
−∞ p(x , y) dy =∫ 2

0

1

24
(2x + y) dy =

1

48
(4xy + y2)

∣∣∣2
y=0

=
1

12
(2x + 1) for

0 ≤ x ≤ 3.

2. Find P(1 ≤ X ≤ 2).

This probability is the integral of pX (x) from x = 1 to x = 2.

Explicitly, it is
∫ 2
1

1

12
(2x + 1) =

1

12
(x2 + x)|2x=1 =

1

3
.



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

1. Find the marginal probability density function for X .

The marginal pdf for X is given by pX (x) =
∫∞
−∞ p(x , y) dy =∫ 2

0

1

24
(2x + y) dy =

1

48
(4xy + y2)

∣∣∣2
y=0

=
1

12
(2x + 1) for

0 ≤ x ≤ 3.

2. Find P(1 ≤ X ≤ 2).

This probability is the integral of pX (x) from x = 1 to x = 2.

Explicitly, it is
∫ 2
1

1

12
(2x + 1) =

1

12
(x2 + x)|2x=1 =

1

3
.



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

3. Find the marginal probability density function for Y .

The marginal pdf for Y is given by pY (y) =
∫∞
−∞ p(x , y) dx =∫ 3

0

1

24
(2x + y) dx =

1

24
(x2 + xy)

∣∣∣3
x=0

=
1

8
(y + 3) for

0 ≤ y ≤ 2.

4. Find P(0 ≤ Y ≤ 1).

This probability is the integral of pY (y) from y = 0 to y = 1.

Explicitly, it is
∫ 1
0

1

8
(y + 3) =

1

8
(y2/2 + 3y)|1y=0 =

7

16
.

Note that we actually did this one earlier by setting up the
double integral (and of course, we also got 7/16).



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

3. Find the marginal probability density function for Y .

The marginal pdf for Y is given by pY (y) =
∫∞
−∞ p(x , y) dx =∫ 3

0

1

24
(2x + y) dx =

1

24
(x2 + xy)

∣∣∣3
x=0

=
1

8
(y + 3) for

0 ≤ y ≤ 2.

4. Find P(0 ≤ Y ≤ 1).

This probability is the integral of pY (y) from y = 0 to y = 1.

Explicitly, it is
∫ 1
0

1

8
(y + 3) =

1

8
(y2/2 + 3y)|1y=0 =

7

16
.

Note that we actually did this one earlier by setting up the
double integral (and of course, we also got 7/16).



Marginal Distributions, IV

Example: Let X and Y have joint distribution
p(x , y) = (2x + y)/24 for 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2, and
p(x , y) = 0 elsewhere.

3. Find the marginal probability density function for Y .

The marginal pdf for Y is given by pY (y) =
∫∞
−∞ p(x , y) dx =∫ 3

0

1

24
(2x + y) dx =

1

24
(x2 + xy)

∣∣∣3
x=0

=
1

8
(y + 3) for

0 ≤ y ≤ 2.

4. Find P(0 ≤ Y ≤ 1).

This probability is the integral of pY (y) from y = 0 to y = 1.

Explicitly, it is
∫ 1
0

1

8
(y + 3) =

1

8
(y2/2 + 3y)|1y=0 =

7

16
.

Note that we actually did this one earlier by setting up the
double integral (and of course, we also got 7/16).



Summary

We discussed a bit more with Markov’s and Chebyshev’s
inequalities.

We discussed how to set up double integrals and gave several
examples.

We introduced joint distributions for continuous random variables
and gave several examples of probability calculations.

Next lecture: Independence, covariance, and correlation (again),
normal distributions.


