
Math 3081 (Probability and Statistics)

Lecture #8 of 27 ∼ July 19th, 2021

Discrete Random Variables (Part 3)

Properties of Independence

Covariance and Correlation

Continuous Random Variables

This material represents §2.1.5-2.2.2 from the course notes and
problems 6-10 on WeBWorK 3.



Recall, I

We defined expected value, variance, and standard deviation:

Definition

If X is a discrete random variable, the expected value of X , written

E (X ), is the sum E (X ) =
∑
si∈S

P(si )X (si ) over all outcomes si in

the sample space S.

Definition

If X is a discrete random variable whose expected value E (X ) = µ
exists and is finite, we define the variance of X to be
var(X ) = E [(X − µ)2] = E (X 2)− E (X )2. The standard deviation
is the square root of the variance: σ(X ) =

√
var(X ).



Recall, II

We established a few properties of expected value and variance:

Proposition (Linearity and Additivity of Expected Value)

If X and Y are discrete random variables defined on the same
sample space whose expected values exist, and a and b are any real
numbers, then E (aX + b) = a · E (X ) + b and
E (X + Y ) = E (X ) + E (Y ).

Proposition (Properties of Variance)

If X is a discrete random variable and a and b are any real
numbers, then var(aX + b) = a2var(X ) and σ(aX + b) = |a|σ(X ).



Recall, III

We also introduced joint distributions:

Definition

If X1,X2, . . . ,Xn are discrete random variables on the sample space
S, then the function pX1,X2,...,Xn defined on ordered n-tuples of
events (a1, . . . , an) ∈ S such that
pX1,X2,...,Xn(a1, a2, . . . , an) = P(X1 = a1, X2 = a2, . . . ,Xn = an) is
called the joint probability density function of X1,X2, . . . ,Xn.

With 2 variables, we usually display the joint distribution as a table.

Proposition (Marginal Densities)

If pX ,Y (a, b) is the joint probability density function for the
discrete random variables X and Y , then for any a and b we may
compute the marginal probability density functions for X and Y as
pX (a) =

∑
y pX ,Y (a, y) and pY (b) =

∑
x pX ,Y (x , b).



Recall, IV

We also defined independence of two random variables:

Definition

Two discrete random variables X and Y with respective probability
density functions pX (x) and pY (y) are independent if their joint
distribution pX ,Y (x , y) satisfies pX ,Y (a, b) = pX (a) · pY (b) for all
real numbers a and b.

This extends to more variables as follows:

Definition

We say that the discrete random variables X1,X2, . . . ,Xn are
collectively independent if the joint distribution
pX1,X2,...,Xn(a1, a2, . . . , an) = pX1(a1) · pX2(a2) · · · · · pXn(an) for all
real numbers a1, a2, . . . , an.



Variance and Independence, I

Under the assumption of independence, we can give a few
additional algebraic properties of expected value and variance:

Proposition (Variance and Independence)

If X and Y are independent discrete random variables whose
expected values exist, then E (XY ) = E (X ) · E (Y ), and
var(X + Y ) = var(X ) + var(Y ).

Note that we do require the hypothesis that X and Y be
independent in order for the variance to be additive.

The result can be false for non-independent random variables:
an easy counterexample occurs for X = Y , in which case
var(X + Y ) = var(2X ) = 4var(X ) which is not equal to
var(X ) + var(Y ) = 2var(X ).

Do note, however, that expected value is always additive,
whether or not the variables are independent.
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Variance and Independence, II

1. If X and Y are independent, then E (XY ) = E (X ) · E (Y ).

Proof:

Suppose X takes the values x1, x2, . . . with probabilities
p1, p2, . . . and Y takes the values y1, y2, . . . with probabilities
q1, q2, . . . .

By the assumption of independence, X takes the value xi and
Y takes the value yj , so that XY takes the value xiyj , with
probability piqj .

We therefore have
E (XY ) =

∑
i ,j piqjxiyj =

[∑
i pixi

]
·
[∑

j qjyj

]
= E (X )·E (Y ),

as claimed.



Variance and Independence, III

2. If X and Y are independent, var(X + Y ) = var(X ) + var(Y ).

Proof:

We just showed that E (XY ) = E (X )E (Y ).

Then, by expanding, we see

var(X + Y ) = E [(X + Y )2]− [E (X + Y )]2

= E (X 2 + 2XY + Y 2)− [E (X ) + E (Y )]2

= E (X 2) + 2E (X )E (Y ) + E (Y 2)

−[E (X )2 + 2E (X )E (Y ) + E (Y )2]

= [E (X 2)− E (X )2] + [E (Y 2)− E (Y )2]

= var(X ) + var(Y )

as claimed.
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Variance and Independence, IV

Using these properties of variance, we can calculate the variance
and standard deviation of a binomially-distributed random variable:

Corollary (Binomial Variance)

Let X be the binomially-distributed random variable representing
the total number of successes obtained by performing n
independent Bernoulli trials each of which has a success probability
p. Then E (X ) = np, var(X ) = np(1− p), and
σ(X ) =

√
np(1− p).

Example: For a binomial distribution with n = 100 and p = 1/5,
the expected value is np = 20, the variance is np(1− p) = 16, and
the standard deviation is

√
np(1− p) = 4.



Variance and Independence, IV

Using these properties of variance, we can calculate the variance
and standard deviation of a binomially-distributed random variable:

Corollary (Binomial Variance)

Let X be the binomially-distributed random variable representing
the total number of successes obtained by performing n
independent Bernoulli trials each of which has a success probability
p. Then E (X ) = np, var(X ) = np(1− p), and
σ(X ) =

√
np(1− p).

Example: For a binomial distribution with n = 100 and p = 1/5,
the expected value is np = 20, the variance is np(1− p) = 16, and
the standard deviation is

√
np(1− p) = 4.



Variance and Independence, V

Proof:

Since X is obtained by summing over the individual trials, we
can write X = X1 + X2 + · · ·+ Xn where Xi is the random
variable representing success on the ith trial.

Then E (Xi ) = (1− p) · 0 + p · 1 = p, and so
E (X ) = E (X1) + · · ·+ E (Xn) = np as we found earlier.

Also, E (X 2
i ) = (1− p) · 02 + p · 12 = p, so

var(Xi ) = E (X 2
i )− E (Xi )

2 = p(1− p).

Each of the Xi is a single Bernoulli trial and they are all
collectively independent by assumption.

That means the variance is additive here, so
var(X ) = var(X1) + · · ·+ var(Xn) = np(1− p) and
σ(X ) =

√
var(X ) =

√
np(1− p), as claimed.



Variance and Independence, VI

Example: An unfair coin with a probability 2/3 of landing heads is
flipped 450 times. Find the expected number and the standard
deviation in the number of tails obtained.

Each individual flip can be thought of as a Bernoulli trial, with
success corresponding to obtaining tails with probability
p = 1/3, with a total of n = 450 trials.

Thus, from our results on the binomial distribution, the
expected number of tails is np = 450 · 1/3 = 150 and the

standard deviation is
√

np(1− p) =
√

450 · 1/3 · 2/3 = 10 .
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Variance and Independence, VII

Example: A car dealer has a probability 0.36 of selling a car to any
individual customer, independently. If 25 customers patronize the
dealership, determine the expected number and the standard
deviation in the total number of cars sold.

Each individual customer can be thought of as a Bernoulli
trial, with success corresponding to selling a car with
probability p = 0.36, with a total of n = 25 trials.

Thus, from our results on the binomial distribution, the
expected number of cars sold is np = 25 · 0.36 = 9 and the

standard deviation is
√

np(1− p) =
√

25 · 0.36 · 0.64 = 2.4 .
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Variance and Independence, VIII

Example: During an average NHL game, a team’s goaltender will
face 31 shots, and will independently make a save on each shot
with probability 0.911. Each non-saved shot results in a goal. Find
the following:

1. The expected number of goals allowed per game.

2. The standard deviation of the number of goals allowed per
game.

3. The probability of getting a shutout (saving every shot).

4. The probability of allowing at least 3 goals.

5. The most likely number of goals to allow.

The total number of goals will be binomially distributed with
parameters n = 31 and p = 1− 0.911 = 0.089.

Thus, the probability of allowing k goals is(31
k

)
(0.089)k(0.911)31−k .
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Variance and Independence, IX

Example: During an average NHL game, a team’s goaltender will
face 31 shots, and will independently make a save on each shot
with probability 0.911. Each non-saved shot results in a goal. Find
the following:

1. The expected number of goals allowed per game.

The expected number of goals is np ≈ 2.759.

2. The standard deviation of the number of goals allowed per
game.

The standard deviation in the number of goals is√
np(1− p) ≈ 1.585.

3. The probability of getting a shutout (saving every shot).

From the formula, this probability is (0.911)31 ≈ 5.56%.

Remark: In the last two seasons, the actual shutout
percentages were 6.10% and 5.08%.
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Variance and Independence, X

Example: During an average NHL game, a team’s goaltender will
face 31 shots, and will independently make a save on each shot
with probability 0.911. Each non-saved shot results in a goal. Find
the following:

4. The probability of allowing at least 3 goals.

The probability of allowing at least 3 goals requires summing
many terms. We can instead find the probability of the
complement, allowing at most 2 goals.

That probability is
(31
0

)
(0.089)0(0.911)31 +(31

1

)
(0.089)1(0.911)30 +

(31
2

)
(0.089)2(0.911)29 ≈ 0.4707.

Thus, the desired probability is 1− 0.4707 ≈ 52.93%.
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Variance and Independence, XI

Example: During an average NHL game, a team’s goaltender will
face 31 shots, and will independently make a save on each shot
with probability 0.911. Each non-saved shot results in a goal. Find
the following:

5. The most likely number of goals to allow.

It seems reasonable that the most likely number should
probably be near the expected value.

Evaluating the probabilities for 0, 1, 2, 3, 4, 5 goals yields
5.56%, 16.84%, 24.68%, 23.30%, 15.94%, 8.41%.

So the most likely number of goals is 2 goals, followed closely
by 3 goals.

Notice that these two values sandwich the expected value,
which is 2.759. (This is in fact the case for all binomial
distributions.)
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Covariance, I

Definition

If X and Y are random variables whose expected values exist and
are µX and µY respectively, then the covariance of X and Y is
defined as cov(X ,Y ) = E [(X − µX ) · (Y − µY )].

The covariance measures how well a change in the value of X
(relative to its average) correlates with a change in the value
of Y (relative to its average).

If the covariance is large and positive, then when X increases,
Y will tend also to increase, and inversely when X decreases,
Y will tend also to decrease.

The inverse occurs for a large negative covariance.

When the covariance is near zero, then a change in the value
of X does not tend to correspond to any particular type of
change in the value of Y .



Covariance, II

Example: Find the covariance of the random variables X and Y
with joint distribution below.

X \ Y 0 10 Sum

0 0.4 0.1 0.5

10 0.2 0.3 0.5

Sum 0.6 0.4

We can compute µX = 5, µY = 4.

Then cov(X ,Y ) =
0.4·(−5)·(−4)+0.1·(−5)·(6)+0.2·(5)·(−4)+0.3·(5)·(6) = 10.

We can see that when X is 0, Y is more likely to be 0 than
10, and when X is 10, Y is more likely to be 10 than 0.
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Covariance, III

Even in the simple example we just did, computing the covariance
was a bit complicated. Here is an easier formula for practical
calculation:

Proposition (Covariance Formula)

For any discrete random variables X and Y whose expected values
exist, we have cov(X ,Y ) = E (XY )− E (X )E (Y ).

Proof:

If the expected values of X and Y are µX and µY
respectively, then by linearity of expectation we have
cov(X ,Y ) = E (XY − µXY − µY X + µXµY )
= E (XY )− µXE (Y )− µY E (X ) + µXµY
= E (XY )− µXµY = E (XY )− E (X )E (Y ), as claimed.
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Covariance, IV

We have an immediate corollary of the covariance formula:

Corollary (Covariance and Independence)

If X and Y are independent, then cov(X ,Y ) = 0.

Proof:

If X and Y are independent, then E (XY ) = E (X )E (Y ), so
cov(X ,Y ) = E (XY )− E (X )E (Y ) = 0.

We remark here that the converse of this statement is not true: if
the covariance is zero, it does not imply that X and Y are
independent.



Covariance, V

Example: Find the covariance of the random variables X and Y
with joint distribution below.

X \ Y 0 5 10 Sum

0 0.3 0.2 0 0.5

10 0.4 0 0.1 0.5

Sum 0.7 0.2 0.1

We compute E (X ) = 0.5 · 0 + 0.5 · 10 = 5,
E (Y ) = 0.7 · 0 + 0.2 · 5 + 0.1 · 10 = 2, and
E (XY ) = 0.3 ·0 + 0.2 ·0 + 0 ·0 + 0.4 ·0 + 0 ·50 + 0.1 ·100 = 10.

Therefore, we see
cov(X ,Y ) = E (XY )− E (X )E (Y ) = 10− 5 · 2 = 0 .

Note here that X and Y have covariance zero, but are not
independent.
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Covariance, VI

We have various algebraic properties involving the covariance:

Proposition (Properties of Covariance)

If X and Y are discrete random variables whose expected values
exist, then for any a and b we have the following:

1. cov(X ,X ) = var(X ).

2. cov(Y ,X ) = cov(X ,Y ).

3. cov(X + Y ,Z ) = cov(X ,Z ) + cov(Y ,Z ).

4. cov(aX + b, cY + d) = ac · cov(X ,Y ).

5. var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y ).

Remark (for linear algebra students): Properties 1-3 imply that the
covariance is an inner product on the vector space of discrete
random variables on a fixed sample space S . As such, many tools
of linear algebra (e.g., least-squares estimation) can be used here.



Covariance, VII

Proofs:

1. cov(X ,X ) = var(X ).

By definitions, we have cov(X ,X ) = E [(X − µX )2] = var(X ).

2. cov(Y ,X ) = cov(X ,Y ).

Since (X − µX )(Y − µY ) = (Y − µY )(X − µX ), the expected
values of the two sides are also equal.

3. cov(X + Y ,Z ) = cov(X ,Z ) + cov(Y ,Z ).

Note that E (X + Y ) = E (X ) + E (Y ) = µX + µY .

Then, since (X + Y − µX − µY )(Z − µZ ) =
(X − µX )(Z − µZ ) + (Y − µY )(Z − µZ ), the expected values
of the two sides are also equal.



Covariance, VIII

Proofs:

4. cov(aX + b, cY + d) = ac · cov(X ,Y ).

Notice E (aX + b) = aµX + b and E (cY + d) = cµY + d , so
cov(aX +b, cY +d) = E [(aX +b−aµX−b)(cY +d−cµY−d)]
= ac · E [(X − µX )(Y − µY )] = ac · cov(X ,Y ).

5. var(X + Y ) = var(X ) + var(Y ) + 2cov(X ,Y ).

Note that E (X + Y ) = µX + µY , so var(X + Y )
= E [(X + Y − µX − µY )2] = E [(X − µX )2 + 2(X − µX )(Y −
µY ) + (Y − µY )2] = var(X ) + 2cov(X ,Y ) + var(Y ).



Correlation, I

From the properties we identified, we can see that covariance
scales linearly with both of the random variables X and Y .

In some situations, we prefer to have a “normalized” measure of
covariance, which we can obtain by dividing the covariance by the
product of the standard deviations:

Definition

If X and Y are discrete random variables whose variances exist and
are nonzero, the (Pearson) correlation between X and Y is defined

as corr(X ,Y ) =
cov(X ,Y )

σ(X )σ(Y )
.

It is easy to see that the correlation (unlike the covariance)
remains unchanged upon scaling and translating the variables:
corr(aX + b, cY + d) = corr(X ,Y ).



Correlation, II

For any X and Y , we always have −1 ≤ corr(X ,Y ) ≤ 1.

A correlation near 1 indicates that the variables tend to
increase linearly together and decrease linearly together
(which agrees with the intuitive notion of two variables being
strongly positively correlated).

A correlation near −1 indicates that the variables tend to
increase linearly as the other decreases linearly (which agrees
with the intuitive notion of two variables being strongly
negatively correlated).

A correlation of zero is the same as a covariance of zero: it
indicates that an increase in one variable does not tend to
cause an increase or decrease in the other.

Do note, however (as we saw before) that a correlation of zero
is not equivalent to the variables being independent!



Correlation, III

In other contexts, the correlation is also known as the
linear regression correlation coefficient, since it represents the
closeness by which a linear function can describe the relationship
between X and Y .

A correlation coefficient near 1 indicates that there is a linear
function with a positive slope that models the relationship
closely, while a correlation coefficient near −1 indicates that
there is a linear function with a negative slope that models
the relationship closely.

A correlation coefficient near 0 indicates that there is no linear
function that models the relationship closely: but of course,
this need not mean that the variables are unrelated, merely
that any relationship is not linear.



Correlation, IV

Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, find the covariance and correlation between X
and Y .

Last lecture, we found the joint distribution for X and Y :

X \ Y 0 1 2

0 1/8 1/8 0

1 1/8 2/8 1/8

2 0 1/8 1/8

We can use this table to compute the covariance and
correlation.
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Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, find the covariance and correlation between X
and Y .

Last lecture, we found the joint distribution for X and Y :

X \ Y 0 1 2

0 1/8 1/8 0

1 1/8 2/8 1/8

2 0 1/8 1/8

We can use this table to compute the covariance and
correlation.



Correlation, V

Example: Find the covariance and correlation between X and Y :

X \ Y 0 1 2

0 1/8 1/8 0

1 1/8 2/8 1/8

2 0 1/8 1/8

We can compute E (X ) = E (Y ) = 1, σ(X ) = σ(Y ) =
√

1/2,
and E (XY ) = 3

8 · 0 + 2
8 · 1 + 2

8 · 2 + 1
8 · 4 = 5

4 , and so
cov(X ,Y ) = E (XY )− E (X )E (Y ) = 1/4.

Then corr(X ,Y ) =
cov(X ,Y )

σ(X )σ(Y )
= 1/2.

We can see that there is a positive correlation of moderate
size between X and Y , which is intuitively reasonable because
X and Y each count the number of heads from one
independent coin flip and one shared coin flip.



Correlation, V

Example: Find the covariance and correlation between X and Y :

X \ Y 0 1 2

0 1/8 1/8 0

1 1/8 2/8 1/8

2 0 1/8 1/8

We can compute E (X ) = E (Y ) = 1, σ(X ) = σ(Y ) =
√

1/2,
and E (XY ) = 3

8 · 0 + 2
8 · 1 + 2

8 · 2 + 1
8 · 4 = 5

4 , and so
cov(X ,Y ) = E (XY )− E (X )E (Y ) = 1/4.

Then corr(X ,Y ) =
cov(X ,Y )

σ(X )σ(Y )
= 1/2.

We can see that there is a positive correlation of moderate
size between X and Y , which is intuitively reasonable because
X and Y each count the number of heads from one
independent coin flip and one shared coin flip.



Motivation For Continuous Random Variables, I

We have just examined joint distributions, independence,
covariance, and correlation for discrete random variables. This
marks the end of the major items we will discuss about discrete
random variables for the moment.

We now start the second major portion of this chapter by starting
our discussion of continuous random variables, which essentially
involves doing everything we just did in the last 2.5 lectures over
again, except slightly differently, and with calculus!



Motivation For Continuous Random Variables, II

Our new object of study is the class of random variables whose
underlying sample space is the entire real line.

Because there are uncountably many possible outcomes, to
evaluate probabilities of events we cannot simply sum over the
outcomes that make them up.

Instead, we must use the continuous analogue of summation,
namely, integration.

All of the results we will discuss are very similar to the
corresponding ones for discrete random variables, with the
only added complexity1 being the requirement to evaluate
integrals.

1This is almost a true statement, in the sense that I think it is true but you
will probably think it is false.



Continuous Probability Density Functions, I

Definition

A continuous probability density function is a piecewise-continuous,
nonnegative real-valued function p(x) such that

∫∞
−∞ p(x) dx = 1.

Note that the integral
∫∞
−∞ p(x) dx is in general improper.

(Usually this won’t be an issue for us.)

Here is the purpose of this definition:

In the discrete case, we compute probabilities of events by
adding up values of the probability density function over the
outcomes making up that event.

In the continuous case, we will compute probabilities of events
by integrating the value of the probability density function
over the outcomes making up that event.



Continuous Probability Density Functions, II

Examples:

The function p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
is a continuous

probability density function, since the two components of p(x)
are both continuous and nonnegative, and∫∞
−∞ p(x) dx =

∫ 4
0

1

4
dx =

1

4
x

∣∣∣∣4
x=0

= 1.

The function q(x) =

{
2x for 0 ≤ x ≤ 1

0 for other x
is a continuous

probability density function, since the two components of q(x)
are both continuous and nonnegative, and∫∞
−∞ q(x) dx =

∫ 1
0 2x dx = x2

∣∣1
x=0

= 1.



Continuous Probability Density Functions, II

Examples:

The function p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
is a continuous

probability density function, since the two components of p(x)
are both continuous and nonnegative, and∫∞
−∞ p(x) dx =

∫ 4
0

1

4
dx =

1

4
x

∣∣∣∣4
x=0

= 1.

The function q(x) =

{
2x for 0 ≤ x ≤ 1

0 for other x
is a continuous

probability density function, since the two components of q(x)
are both continuous and nonnegative, and∫∞
−∞ q(x) dx =

∫ 1
0 2x dx = x2

∣∣1
x=0

= 1.



Continuous Probability Density Functions, III

Examples (continued):

The function e(x) =

{
e−x for x ≥ 0

0 for x < 0
is a continuous

probability density function, since the two components of e(x)
are both continuous and nonnegative, and∫∞
−∞ e(x) dx =

∫∞
0 e−x dx = −e−x |∞x=0 = 1.

The function f (x) =
1

π(1 + x2)
is a continuous probability

density function since f (x) is continuous, nonnegative, and∫∞
−∞ f (x) dx =

∫∞
−∞

1

π(1 + x2)
dx =

tan−1(x)

π

∣∣∣∣∞
x=−∞

= 1.



Continuous Probability Density Functions, III

Examples (continued):

The function e(x) =

{
e−x for x ≥ 0

0 for x < 0
is a continuous

probability density function, since the two components of e(x)
are both continuous and nonnegative, and∫∞
−∞ e(x) dx =

∫∞
0 e−x dx = −e−x |∞x=0 = 1.

The function f (x) =
1

π(1 + x2)
is a continuous probability

density function since f (x) is continuous, nonnegative, and∫∞
−∞ f (x) dx =

∫∞
−∞

1

π(1 + x2)
dx =

tan−1(x)

π

∣∣∣∣∞
x=−∞

= 1.



Continuous Random Variables, I

Definition

We say that X is a continuous random variable if there exists a
continuous probability density function p(x) such that for any
interval I on the real line, we have P(X ∈ I ) =

∫
I p(x) dx.

In other words, probabilities for continuous random variables
are computed via integrating the probability density function
on the appropriate interval.

Note that if X is a continuous random variable, then (no
matter what the probability density function is), the value of
P(X = a) is zero for any value of a, since
P(X = a) =

∫ a
a p(x) dx = 0. This means that the probability

that X will attain any specific value a is equal to zero.

One may verify axioms [P1]-[P3] of a probability distribution
will all hold for such a random variable.



Continuous Random Variables, II

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

1. Verify that p is a probability density function.

2. Find P(1 ≤ X ≤ 3).

3. Find P(X ≤ 2).

4. Find P(X ≥ 5).

5. Find P(−2 ≤ X ≤ 3).

6. Find P(X = 2).

For each of these, we need to evaluate the appropriate
integral.

When we set up the integrals, we must remember to break the
range of integration up (if needed) so that we are integrating
the correct component of p(x) on the correct interval.



Continuous Random Variables, II

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

1. Verify that p is a probability density function.

2. Find P(1 ≤ X ≤ 3).

3. Find P(X ≤ 2).

4. Find P(X ≥ 5).

5. Find P(−2 ≤ X ≤ 3).

6. Find P(X = 2).

For each of these, we need to evaluate the appropriate
integral.

When we set up the integrals, we must remember to break the
range of integration up (if needed) so that we are integrating
the correct component of p(x) on the correct interval.



Continuous Random Variables, III

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

1. Verify that p is a probability density function.

Here, we need to check that p integrates to 1.

To do this, we compute
∫∞
−∞ p(x) dx =∫ 0

−∞ 0 dx +
∫ 4
0

x

8
dx +

∫∞
4 0 dx = 0 +

1

16
x2

∣∣∣∣4
x=0

+ 0 = 1, as

required.

Above, we could have simply discarded the parts of the integral
where p is zero, since they will never contribute anything. We will
do this from now on.



Continuous Random Variables, III

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

1. Verify that p is a probability density function.

Here, we need to check that p integrates to 1.

To do this, we compute
∫∞
−∞ p(x) dx =∫ 0

−∞ 0 dx +
∫ 4
0

x

8
dx +

∫∞
4 0 dx = 0 +

1

16
x2

∣∣∣∣4
x=0

+ 0 = 1, as

required.

Above, we could have simply discarded the parts of the integral
where p is zero, since they will never contribute anything. We will
do this from now on.



Continuous Random Variables, IV

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

2. Find P(1 ≤ X ≤ 3).

We have

P(1 ≤ X ≤ 3) =
∫ 3
1 p(x) dx =

∫ 3
1

x

8
dx =

1

16
x2

∣∣∣∣3
x=1

=
1

2
.

3. Find P(X ≤ 2).

We have

P(X ≤ 2) =
∫ 2
−∞ p(x) dx =

∫ 2
0

x

8
dx =

1

16
x2

∣∣∣∣2
x=0

=
1

4
.

Note that we discarded the part of the integral from −∞ to 0
because p is zero there.



Continuous Random Variables, IV

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

2. Find P(1 ≤ X ≤ 3).

We have

P(1 ≤ X ≤ 3) =
∫ 3
1 p(x) dx =

∫ 3
1

x

8
dx =

1

16
x2

∣∣∣∣3
x=1

=
1

2
.

3. Find P(X ≤ 2).

We have

P(X ≤ 2) =
∫ 2
−∞ p(x) dx =

∫ 2
0

x

8
dx =

1

16
x2

∣∣∣∣2
x=0

=
1

4
.

Note that we discarded the part of the integral from −∞ to 0
because p is zero there.



Continuous Random Variables, IV

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

2. Find P(1 ≤ X ≤ 3).

We have

P(1 ≤ X ≤ 3) =
∫ 3
1 p(x) dx =

∫ 3
1

x

8
dx =

1

16
x2

∣∣∣∣3
x=1

=
1

2
.

3. Find P(X ≤ 2).

We have

P(X ≤ 2) =
∫ 2
−∞ p(x) dx =

∫ 2
0

x

8
dx =

1

16
x2

∣∣∣∣2
x=0

=
1

4
.

Note that we discarded the part of the integral from −∞ to 0
because p is zero there.



Continuous Random Variables, V

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

4. Find P(X ≥ 5).

Here, P(X ≥ 5) =
∫∞
5 p(x) dx =

∫∞
5 0 dx = 0.

5. Find P(−2 ≤ X ≤ 3).

Here,

P(−2 ≤ X ≤ 3) =
∫ 3
−2 p(x) dx =

∫ 3
0

x

8
dx =

1

16
x2

∣∣∣∣3
x=0

=
9

16
.

6. Find P(X = 2).

This is P(X = 2) =
∫ 2
2 p(x) dx = 0, since the limits of

integration are equal.



Continuous Random Variables, V

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

4. Find P(X ≥ 5).

Here, P(X ≥ 5) =
∫∞
5 p(x) dx =

∫∞
5 0 dx = 0.

5. Find P(−2 ≤ X ≤ 3).

Here,

P(−2 ≤ X ≤ 3) =
∫ 3
−2 p(x) dx =

∫ 3
0

x

8
dx =

1

16
x2

∣∣∣∣3
x=0

=
9

16
.

6. Find P(X = 2).

This is P(X = 2) =
∫ 2
2 p(x) dx = 0, since the limits of

integration are equal.



Continuous Random Variables, V

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

4. Find P(X ≥ 5).

Here, P(X ≥ 5) =
∫∞
5 p(x) dx =

∫∞
5 0 dx = 0.

5. Find P(−2 ≤ X ≤ 3).

Here,

P(−2 ≤ X ≤ 3) =
∫ 3
−2 p(x) dx =

∫ 3
0

x

8
dx =

1

16
x2

∣∣∣∣3
x=0

=
9

16
.

6. Find P(X = 2).

This is P(X = 2) =
∫ 2
2 p(x) dx = 0, since the limits of

integration are equal.



Continuous Random Variables, V

Example: If X is the continuous random variable whose probability

density function is p(x) =

{
x/8 for 0 ≤ x ≤ 4

0 for other x
, do:

4. Find P(X ≥ 5).

Here, P(X ≥ 5) =
∫∞
5 p(x) dx =

∫∞
5 0 dx = 0.

5. Find P(−2 ≤ X ≤ 3).

Here,

P(−2 ≤ X ≤ 3) =
∫ 3
−2 p(x) dx =

∫ 3
0

x

8
dx =

1

16
x2

∣∣∣∣3
x=0

=
9

16
.

6. Find P(X = 2).

This is P(X = 2) =
∫ 2
2 p(x) dx = 0, since the limits of

integration are equal.



Continuous Random Variables, VI

Since integrals represent areas, we can also view all of these
calculations as computing the area under the graph of y = p(x).

The area under the curve from x = a to x = b then represents
the probability P(a < x < b).

Here is a picture of the area corresponding to P(1 ≤ X ≤ 3):



Cumulative Distribution Functions, I

Definition

If X is a continuous random variable with probability density
function p(x), its cumulative distribution function (cdf) c(x) is
defined as c(x) =

∫ x
−∞ p(t) dt for each real value of x.

The cumulative distribution function c(x) measures the total
probability that the continuous random variable X takes a
value ≤ x : thus, P(X ≤ a) = c(a).

Here are some properties that follow from the definition:

P(X ≥ a) = 1− c(a) for all a, since∫∞
a p(t) dt =

∫∞
−∞ p(t) dt −

∫ a
−∞ p(t) dt.

P(a ≤ X ≤ b) = c(b)− c(a) for every a and b, since∫ b
a p(t) dt =

∫ b
−∞ p(t) dt −

∫ a
−∞ p(t) dt.



Cumulative Distribution Functions, II

Here are some more properties:

By the fundamental theorem of calculus, we have
c ′(x) = p(x) for every x .

Thus, we may freely convert back and forth between the
probability density function and the cumulative distribution
function via differentiation and integration.

Also, since p(x) is nonnegative, if a ≤ b then c(a) ≤ c(b):
this means that the cumulative function is increasing
(technically, nondecreasing).

Since
∫∞
−∞ p(x) dx = 1, we also see limx→∞ c(x) = 1 and

limx→−∞ c(x) = 0.



Cumulative Distribution Functions, III

Examples:

For the random variable with probability density function

p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
, the cumulative distribution

function is c(x) =


0 for x ≤ 0

x/4 for 0 ≤ x ≤ 4

1 for x ≥ 4

.

For the random variable with probability density function

q(x) =

{
0 for x < 1

1/x2 for x ≥ 1
, the cumulative distribution

function is c(x) =

{
0 for x < 1

1− 1/x for x ≥ 1
.



Cumulative Distribution Functions, III

Examples:

For the random variable with probability density function

p(x) =

{
1/4 for 0 ≤ x ≤ 4

0 for other x
, the cumulative distribution

function is c(x) =


0 for x ≤ 0

x/4 for 0 ≤ x ≤ 4

1 for x ≥ 4

.

For the random variable with probability density function

q(x) =

{
0 for x < 1

1/x2 for x ≥ 1
, the cumulative distribution

function is c(x) =

{
0 for x < 1

1− 1/x for x ≥ 1
.



Cumulative Distribution Functions, IV

We could also have defined the cumulative distribution function for
a discrete random variable.

The typical definition is c(x) =
∑

n≤x p(n), which is the
probability P(X ≤ x).

However, for various reasons in certain cases one may prefer
to sum only over all values less than x , rather than less than
or equal to x , and it can be easy to mix up these situations.

For example, P(X ≥ x) = 1− P(X < x) 6= 1− c(x) in the
discrete case, since in fact 1− c(x) = 1− P(X ≤ x).

This is only an issue with discrete random variables: when X
is a continuous random variable, since the probability of
obtaining exactly the value x is always zero, we do have
P(X ≤ x) = P(X < x).

For this reason, we will work with cumulative distribution
functions only in the context of continuous random variables.



Summary

We discussed independence of discrete random variables.

We introduced covariance and correlation of discrete random
variables and discussed some of their properties.

We introduced continuous random variables and their associated
PDFs and CDFs.

Next lecture: Continuous random variables (part 1.5)


