
Math 3081 (Probability and Statistics)

Lecture #7 of 27 ∼ July 15th, 2021

Discrete Random Variables (Part 2)

Expected Value (more)

Variance and Standard Deviation

Joint Distributions and Independence

This material represents §2.1.2-2.1.4 from the course notes, and
problems 17-20 on WeBWorK 2 and problems 1-8 on WeBWorK 3.



Recall, I

Recall our definition of a random variable from last class:

Definition

A random variable is a (real-valued) function defined on the
outcomes in a sample space. A discrete random variable is a
random variable is one whose underlying sample space is finite or
countably infinite.

The probability density function packages all of the information
about a random variable:

Definition

If X is a random variable on the sample space S, then the function
pX such that pX (E ) = P(X ∈ E ) for any event E is called the
probability density function (pdf) of X .



Recall, II

We also gave a definition of the “average value” for an arbitrary
discrete random variable:

Definition

If X is a discrete random variable, the expected value of X , written

E (X ), is the sum E (X ) =
∑
si∈S

P(si )X (si ) over all outcomes si in

the sample space S.

The expected value E (X ) is the average of the values that X takes
on the outcomes in the sample space, weighted by the probability
of each outcome. A common application of expected value is to
calculate the expected winnings from a game of chance.



More Expected Value, II

Example: In one version of a “Pick 3” lottery, a single entry ticket
costs $1. In this lottery, 3 single digits are drawn at random, and a
ticket must match all 3 digits in the correct order to win the $500
prize. What is the expected value of one ticket for this lottery?

From the description, we can see that there is a 1/1000
probability of winning the prize and a 999/1000 probability of
winning nothing.

Since winning the prize nets a total of $499 (the prize minus
the $1 entry fee), and winning nothing nets a total of −$1,
the expected value of the random variable giving the net

winnings is equal to
1

1000
($499) +

999

1000
(−$1) = −$0.50.

The expected value of −$0.50, in this case, indicates that if
one plays this lottery many times, on average one should
expect to lose 50 cents on every ticket.
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More Expected Value, II

Example: In one version of the game “Chuck-a-luck”, three
standard 6-sided dice are rolled. Prizes for a bet of $1 are awarded
as follows: $66 for a roll of three 6s, $5 for a roll of two 6s, $1 for
one 6, and $0 for any other roll.

1. If X represents the net win (or loss) from playing the game
once, find the probability distribution for X .

2. Find the expected value of X .

To find the probability distribution, we calculate the
probabilities of the various outcomes and tabulate the
winnings. Notice that these probabilities will be binomially
distributed with n = 3 and p = 1/6.

We can then compute the expected value directly from the
probability distribution.
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More Expected Value, III

Example: In one version of the game “Chuck-a-luck”, three
standard 6-sided dice are rolled. Prizes for a bet of $1 are awarded
as follows: $66 for a roll of three 6s, $5 for a roll of two 6s, $1 for
one 6, and $0 for any other roll.

1. If X represents the net win (or loss) from playing the game
once, find the probability distribution for X .

We have P(three 6s) = (1/6)3 = 1/216. Net winnings: $65.

We have P(two 6s) =
(3
2

)
(1/6)2(5/6) = 15/216. Net

winnings: $4.

We have P(one 6) =
(3
1

)
(1/6)(5/6)2 = 75/216. Net

winnings: $0.

Finally, P(no 6s) = (5/6)3 = 125/216. Net winnings: −$1.

n $65 $4 $0 −$1

P(X = n) 1/216 15/216 75/216 125/216



More Expected Value, III

Example: In one version of the game “Chuck-a-luck”, three
standard 6-sided dice are rolled. Prizes for a bet of $1 are awarded
as follows: $66 for a roll of three 6s, $5 for a roll of two 6s, $1 for
one 6, and $0 for any other roll.

1. If X represents the net win (or loss) from playing the game
once, find the probability distribution for X .

We have P(three 6s) = (1/6)3 = 1/216. Net winnings: $65.

We have P(two 6s) =
(3
2

)
(1/6)2(5/6) = 15/216. Net

winnings: $4.

We have P(one 6) =
(3
1

)
(1/6)(5/6)2 = 75/216. Net

winnings: $0.

Finally, P(no 6s) = (5/6)3 = 125/216. Net winnings: −$1.

n $65 $4 $0 −$1

P(X = n) 1/216 15/216 75/216 125/216



More Expected Value, IV

Example: In one version of the game “Chuck-a-luck”, three
standard 6-sided dice are rolled. Prizes for a bet of $1 are awarded
as follows: $66 for a roll of three 6s, $5 for a roll of two 6s, $1 for
one 6, and $0 for any other roll.

2. Find the expected value of X .

n $65 $4 $0 −$1

P(X = n) 1/216 15/216 75/216 125/216

We can now simply use the probability distribution to
compute E (X ).

E (X ) =
1

216
·($65)+

15

216
·($4)+

75

216
·($0)+

125

216
·(−$1) = $0.

For this game, we can see that the expected winnings are $0,
meaning that the game is fair (in the sense that neither the player
nor the person running the game should expect to win or lose
money on average over the long term).
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Properties of Expected Value, I

Expected value has several important algebraic properties:

Proposition (Linearity and Additivity of Expected Value)

If X and Y are discrete random variables defined on the same
sample space whose expected values exist, and a and b are any real
numbers, then E (aX + b) = a · E (X ) + b and
E (X + Y ) = E (X ) + E (Y ).

Intuitively, if the expected value of X is 4, then it is reasonable
to feel that the expected value of X + 1 should be 5, while the
expected value of 2X should be 8. These two observations,
taken together, form essentially the first part of the statement.

Likewise, if the expected value of Y is 3, then it is also
reasonable to feel that the expected value of X + Y should be
7, the sum of the expected values of X and Y .
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Properties of Expected Value, II

Proof:

Suppose the outcomes in the sample space are s1, s2, . . . on
which X takes on the values x1, x2, . . . and Y takes on the
values y1, y2, . . . with probabilities p1, p2, . . . , where
p1 + p2 + · · · = 1.

Then E (X ) = p1x1 + p2x2 + · · · , E (Y ) = p1y1 + p2y2 + · · · .
Since aX + b takes on the values ax1 + b, ax2 + b, . . . on the
events of the sample space, so
E (aX + b) = p1(ax1 + b) + p2(ax2 + b) + · · ·
= a(p1x1 + p2x2 + · · · ) + b(p1 + p2 + · · · ) = a · E (X ) + b.

Also, X + Y takes on the values x1 + y1, x2 + y2, . . . on the
events of the sample space, so
E (X + Y ) = p1(x1 + y1) + p2(x2 + y2) + · · ·
= (p1x1 + p2x2 + · · · ) + (p1y1 + p2y2 + · · · ) = E (X ) + E (Y ).



Properties of Expected Value, III

Example: An unfair coin with probability p of landing heads is
flipped n times. Find the expected number of heads obtained.

One approach would be to let X be the random variable giving
the total number of heads, then compute the probability
distribution of X and use the result to find the expected value.

Since the number of heads is binomially distributed, the

probability of obtaining k heads is

(
n

k

)
pk(1− p)n−k , the

expected value is
n∑

k=0

(
n

k

)
pk(1− p)n−k · k .

It is not so obvious how to evaluate this sum, but by
incorporating the factor of k into the binomial coefficient,
reindexing the sum, and using the binomial theorem, it can be
shown that the value is np.
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Properties of Expected Value, IV

Example: An unfair coin with probability p of landing heads is
flipped n times. Find the expected number of heads obtained.

The method on the previous slide is not so easy, because it
requires us to do some algebraic manipulations of binomial
coefficient identities.

We can give a vastly simpler approach using properties of
expected value

: first, write X as the sum of random variables
X = X1 + X2 + · · ·+ Xn, where Xi is the number of heads
obtained on the nth flip.

Since E (X1) = E (X2) = · · · = E (Xn) = p since the flips each
have a probability p of landing heads, we can apply the
additivity of expectation to see that
E (X ) = E (X1) + E (X2) + · · ·+ E (Xn) = np.
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Variance and Standard Deviation, I

In addition to computing the expected value of a random variable,
we also would like to be able to measure how much variation the
values have relative to their expected value.

For example, if one random variable X is always equal to 0,
then there is no variation in its value.

If the random variable Y is equal to −2 half the time and 2
the other half the time, then its expected value is also 0, but
there is much more variation in the values of Y than in X .

A third random variable Z has value randomly selected from
{−100,−99, ..., 0, 1, ..., 100}. The expected value of this
random variable is also 0, but it has even more variation in its
values than Y does.



Variance and Standard Deviation, II

We can quantify this “amount of variation” as follows:

Definition

If X is a discrete random variable whose expected value E (X ) = µ
exists and is finite, we define the variance of X to be
var(X ) = E [(X − µ)2], the expected value of the square of the
difference between X and its expectation.

If the random variable X has units, we often also want to have the
variation quantified using the same type of units, which we can
achieve by taking the square root of the variance:

Definition

The standard deviation of X , denoted σ(X ), is the square root of
the variance: σ(X ) =

√
var(X ).



Variance and Standard Deviation, III

Roughly speaking, the standard deviation measures the “average
distance” that a typical outcome of X will be from the expected
outcome. We can also give another formula for the variance:

Proposition (Variance Formula)

For any discrete random variable X , var(X ) = E (X 2)− E (X )2.

Proof:

By the linearity of expectation, we can write
E [(X − µ)2] = E (X 2 − 2µX + µ2) = E (X 2)− 2µE (X ) + µ2.

Then since µ = E (X ), this formula simplifies to
var(X ) = E (X 2)− µ2 = E (X 2)− [E (X )]2, as claimed.

It is usually faster to evaluate the variance using this formula,
rather than the definition.
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Variance and Standard Deviation, IV

Example: If a coin with probability p of landing heads is flipped
once, find the expected value, variance, and standard deviation of
the random variable X giving the number of heads.

There are two possible outcomes: either X = 0 (probability
1− p), or X = 1 (probability p).

The expected value is then E (X ) = (1− p) · 0 + p · 1 = p.

For the variance we have var(X ) = E (X 2)− [E (X )]2.

Then E (X 2) = (1− p) · 02 + p · 12 = p, and so using
E (X ) = p from above, we get var(X ) = p − p2 = p(1− p).

Finally, we have σ(X ) =
√
var(X ) =

√
p(1− p).

In particular, when p = 1/2 the standard deviation is 1/2. This
agrees with the natural idea that although the expected number of
heads obtained when flipping a fair coin is 1/2, the actual outcome
is always a distance 1/2 away from the expectation.
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Variance and Standard Deviation, V

Example: A fair coin is flipped 4 times. Find the expected value,
variance, and standard deviation of the random variable X giving
the total number of heads obtained.

Here is the probability distribution of X (it is binomial):

n 0 1 2 3 4

P(X = n) 1/16 4/16 6/16 4/16 1/16

Since X is binomial, its expected value is
E (X ) = 4 · (1/2) = 2 as we showed last time. (Alternatively,
we could compute it using the table above.) Also,

E (X 2) =
1

16
· 02 +

4

16
· 12 +

6

16
· 22 +

4

16
· 32 +

1

16
· 42 = 5.

Thus, var(X ) = E (X 2)− [E (X )]2 = 5− 22 = 1, and
σ(X ) =

√
var(X ) = 1 also.

Later, we will establish the general formula var(X ) = np(1− p) for
the variance of a binomial distribution with parameters n and p.
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Variance and Standard Deviation, VI

Example: If a standard 6-sided die is rolled once, find the variance
and standard deviation of the random variable X giving the result
of the die roll.

Each of the possible outcomes X = 1, 2, 3, 4, 5, 6 occurs with
probability 1/6.

We compute

E (X ) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

7

2
= 3.5,

and also

E (X 2) =
1

6
· 12 +

1

6
· 22 +

1

6
· 32 +

1

6
· 42 +

1

6
· 52 +

1

6
· 62 =

91

6
.

Thus, var(X ) = E (X 2)− [E (X )]2 =
91

6
− 49

4
=

35

12
≈ 2.917,

and σ(X ) =
√
var(X ) =

√
35

12
≈ 1.708.



Variance and Standard Deviation, VII

Example: Compute the expected value, variance, and standard
deviation of the random variable X whose probability distribution
is given below:

n 1 3 4 8

P(X = n) 0.2 0.5 0.1 0.2

We compute E (X ) = 0.2 · 1 + 0.5 · 3 + 0.1 · 4 + 0.2 · 8 = 3.7.

Also, E (X 2) = 0.2 · 12 + 0.5 · 32 + 0.1 · 42 + 0.2 · 82 = 19.1.

Thus, var(X ) = E (X 2)− E (X )2 = 19.1− 3.72 = 5.41, and
σ(X ) =

√
5.41 ≈ 2.326.
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Variance Properties, I

As we saw earlier, the expected value of a random variable does
not always exist, and even when it does, it can be infinite. We
might ask about similar pathologies for the variance.

The discrete random variable X whose value is 2n occurring
with probability 2−n for n ≥ 1 has infinite expected value.

The discrete random variable Y whose value is (−2)n

occurring with probability 2−n for n ≥ 1 has undefined
expected value.

As long as the expected value exists, however, the variance will
also exist, because it is computed by summing nonnegative values.

However, even when the expected value is finite, the variance
can, peculiarly, be infinite.



Variance Properties, II

Example: Show that the random variable that takes the value 2n

with probability 2/3n, for integers n ≥ 1, has a finite expected
value but an infinite variance.

First recall the formula a + ar + ar2 + · · · = a/(1− r) for the
sum of a geometric series, which is valid for |r | < 1.

Using the formula, the expected value is

E (X ) = 2 · 2

3
+ 22 · 2

9
+ 23 · 2

27
+ · · · = 4.

For the variance, we also must compute

E (X 2) = 4 · 2

3
+ 42 · 2

9
+ 43 · 2

27
+ · · · .

But since the common ratio in this geometric series is
4/3 > 1, the sum is infinite: thus, E (X 2) =∞.

But then the variance is var(X ) = E (X 2)− E (X )2 =∞,
which is to say, the variance is infinite.
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Variance Properties, III

Like expected value, variance also possesses some convenient
algebraic properties:

Proposition (Properties of Variance)

If X is a discrete random variable and a and b are any real
numbers, then var(aX + b) = a2var(X ) and σ(aX + b) = |a|σ(X ).

Proof:

From the linearity of expectation, we know that
E (aX + b) = a · E (X ) + b, and therefore we have
aX + b− E (aX + b) = aX + b− a E (X )− b = a · [X − E (x)].

Then var(aX + b) = E [(aX + b − E (aX + b))2] =
E [a2 · (X − E (x))2] = a2var(X ), and by taking the square
root of both sides we then get σ(aX + b) = |a|σ(X ).
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Variance Properties, IV

Example: If X is a random variable with expected value 1 and
standard deviation 3, what are the expected value and standard
deviation of 2X + 4?

From the properties of expected value and variance, we have
E (2X + 4) = 2E (X ) + 4 = 6 , and

σ(2X + 4) = |2|σ(X ) = 6 .



Variance Properties, IV

Example: If X is a random variable with expected value 1 and
standard deviation 3, what are the expected value and standard
deviation of 2X + 4?

From the properties of expected value and variance, we have
E (2X + 4) = 2E (X ) + 4 = 6 , and

σ(2X + 4) = |2|σ(X ) = 6 .



Joint Distributions, I

We now discuss the situation of having several discrete random
variables defined on the same sample space, to extend some of our
analysis of conditional probability and independence to random
variables.

If we have a collection of random variables X1,X2, . . . ,Xn, we
can summarize all of the possible information about the
behavior of these random variables simultaneously using a
joint probability density distribution, which simply lists all the
possible collections of values of these random variables
together with their probabilities.

[Note: The material from this slide onward is not on midterm 1,
but is eligible for midterm 2.]



Joint Distributions, II

Definition

If X1,X2, . . . ,Xn are discrete random variables on the sample space
S, then the function pX1,X2,...,Xn defined on ordered n-tuples of
events (a1, . . . , an) ∈ S such that
pX1,X2,...,Xn(a1, a2, . . . , an) = P(X1 = a1, X2 = a2, . . . ,Xn = an) is
called the joint probability density function of X1,X2, . . . ,Xn.

The joint probability density function simply measures the
probability that the various random variables take particular
values, for all combinations of possible values.

For the situation of two random variables X and Y , we can
display the joint probability density function by tabulating all
of the possible values of X and Y in a grid.



Joint Distributions, III

Example: The joint distribution for the two discrete random
variables X and Y is given below.

X \ Y 1 4 5

0 0.1 0.2 0

2 0 0.3 0.2

4 0.1 0.1 0

We interpret the table as follows: each entry in the table gives
the probability that X and Y take the indicated values (in the
row and column headers) together.

Thus, for example, the probability that X = 0 and Y = 1 at
the same time is 0.1, while the probability that X = 2 and
Y = 5 at the same time is 0.2, and the probability that X = 4
and Y = 5 at the same time is 0.



Joint Distributions, IV

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

2. P(X = Y = 1).

3. P(X = 3,Y = 1).

4. P(X = Y ).

5. P(Y = 2).

6. P(Y − X = 1).

7. P(X + Y = 3).

We first tabulate the various outcomes and the values of X and Y
on each. Then we use these calculations to set up the joint
distribution table.



Joint Distributions, IV

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

2. P(X = Y = 1).

3. P(X = 3,Y = 1).

4. P(X = Y ).

5. P(Y = 2).

6. P(Y − X = 1).

7. P(X + Y = 3).

We first tabulate the various outcomes and the values of X and Y
on each. Then we use these calculations to set up the joint
distribution table.



Joint Distributions, V

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

Here is a table of all the possible outcomes, their probabilities, and
the values of X and Y on each:

Outcome(s) Probability Value of X Value of Y

HHH 8/27 3 0

HHT , HTH, THH 4/27 2 1

HTT , TTH 2/27 1 2

THT 2/27 1 1

TTT 1/27 0 3



Joint Distributions, V

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

Here is a table of all the possible outcomes, their probabilities, and
the values of X and Y on each:

Outcome(s) Probability Value of X Value of Y

HHH 8/27 3 0

HHT , HTH, THH 4/27 2 1

HTT , TTH 2/27 1 2

THT 2/27 1 1

TTT 1/27 0 3



Joint Distributions, VI

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

Using the table of outcomes, we can construct the joint probability
distribution table:

Y \ X 0 1 2 3

0 0 0 0 8/27

1 0 2/27 12/27 0

2 0 4/27 0 0

3 1/27 0 0 0



Joint Distributions, VI

Example: An unfair coin that comes up heads 2/3 of the time is
flipped 3 times. Let X be the random variable counting the total
number of heads and Y is the random variable counting the
longest run of tails. Find the following:

1. The joint probability distribution table for X and Y .

Using the table of outcomes, we can construct the joint probability
distribution table:

Y \ X 0 1 2 3

0 0 0 0 8/27

1 0 2/27 12/27 0

2 0 4/27 0 0

3 1/27 0 0 0



Joint Distributions, VI

Example: Use the joint distribution table to find:

2. P(X = Y = 1).

3. P(X = 3,Y = 1).

4. P(X = Y ).

5. P(Y = 2).

6. P(Y − X = 1).

7. P(X + Y = 3).

Y \ X 0 1 2 3

0 0 0 0 8/27

1 0 2/27 12/27 0

2 0 4/27 0 0

3 1/27 0 0 0

We see P(X = Y = 1) = 2/27, P(Y = 2) = 4/27,
P(X = 3,Y = 1) = 0, P(Y − X = 1) = 4/27,
P(X = Y ) = 2/27, and
P(X +Y = 3) = (1/27)+(4/27)+(12/27)+(8/27) = 25/27.



Joint Distributions, VI

Example: Use the joint distribution table to find:

2. P(X = Y = 1).

3. P(X = 3,Y = 1).

4. P(X = Y ).

5. P(Y = 2).

6. P(Y − X = 1).

7. P(X + Y = 3).

Y \ X 0 1 2 3

0 0 0 0 8/27

1 0 2/27 12/27 0

2 0 4/27 0 0

3 1/27 0 0 0

We see P(X = Y = 1) = 2/27, P(Y = 2) = 4/27,
P(X = 3,Y = 1) = 0, P(Y − X = 1) = 4/27,
P(X = Y ) = 2/27, and
P(X +Y = 3) = (1/27)+(4/27)+(12/27)+(8/27) = 25/27.



Joint Distributions, VII

Example: The joint probability distribution for the random variables
I and O counting the number of diners sitting inside and outside
(respectively) at a small cafe in August is given below. Find

1. P(I = 2,O = 3)

2. P(I = 1)

3. P(O = 2)

4. P(I + O ≥ 6)

5. P(I = O)

6. P(|I − O| > 2)

7. The probability distribution for O.

8. The probability distribution for I .

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01



Joint Distributions, VIII

1. P(I = 2,O = 3)

2. P(I = 1)

3. P(O = 2)

4. P(I + O ≥ 6)

5. P(I = O)

6. P(|I − O| > 2)

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

We see P(I = 2,O = 3) = 0.01,
P(I = 1) = 0.01 + 0.07 + 0.10 + 0.08 + 0.06 = 0.32,
P(O = 2) = 0.12 + 0.07 = 0.19,
P(I + O ≥ 6) = 0.03 + 0.06 + 0.02 + 0.01 = 0.12,
P(I = O) = 0.03 + 0.01 = 0.04, and
P(|I − O| > 2) = 0.18+0.10+0.08+0.08+0.06+0.02 = 0.52.



Joint Distributions, VIII

1. P(I = 2,O = 3)

2. P(I = 1)

3. P(O = 2)

4. P(I + O ≥ 6)

5. P(I = O)

6. P(|I − O| > 2)

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

We see P(I = 2,O = 3) = 0.01,
P(I = 1) = 0.01 + 0.07 + 0.10 + 0.08 + 0.06 = 0.32,
P(O = 2) = 0.12 + 0.07 = 0.19,
P(I + O ≥ 6) = 0.03 + 0.06 + 0.02 + 0.01 = 0.12,
P(I = O) = 0.03 + 0.01 = 0.04, and
P(|I − O| > 2) = 0.18+0.10+0.08+0.08+0.06+0.02 = 0.52.



Joint Distributions, IX

7. The probability distribution for O.

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

To find the probability distribution for O by itself, we simply
sum over all of the corresponding entries in the table having
the same value for O (i.e., down the columns).

O 0 1 2 3 4 5

Probability 0.03 0.11 0.19 0.29 0.21 0.17



Joint Distributions, IX

7. The probability distribution for O.

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

To find the probability distribution for O by itself, we simply
sum over all of the corresponding entries in the table having
the same value for O (i.e., down the columns).

O 0 1 2 3 4 5

Probability 0.03 0.11 0.19 0.29 0.21 0.17



Joint Distributions, X

8. The probability distribution for I .

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

For I , we instead sum across the rows:

I Probability

0 0.61

1 0.32

2 0.06

3 0.01



Joint Distributions, X

8. The probability distribution for I .

I \ O 0 1 2 3 4 5

0 0.03 0.10 0.12 0.18 0.10 0.08

1 0 0.01 0.07 0.10 0.08 0.06

2 0 0 0 0.01 0.03 0.02

3 0 0 0 0 0 0.01

For I , we instead sum across the rows:

I Probability

0 0.61

1 0.32

2 0.06

3 0.01



Marginal Distributions, I

We can recover individual distributions from the joint distribution:

Proposition (Marginal Densities)

If pX ,Y (a, b) is the joint probability density function for the
discrete random variables X and Y , then for any a and b we may
compute the single-variable probability density functions for X and
Y as pX (a) =

∑
y pX ,Y (a, y) and pY (b) =

∑
x pX ,Y (x , b).

Proof:

Observe that the event {E : X = a} is the union over all real
numbers y of the sets {E : X = a,Y = y}.
Since each of these sets are disjoint (since the random
variable Y can only take one value at a time), we can simply
sum the corresponding probabilities by the probability axioms.

This yields the first formula. The second follows similarly.



Marginal Distributions, I

We can recover individual distributions from the joint distribution:

Proposition (Marginal Densities)

If pX ,Y (a, b) is the joint probability density function for the
discrete random variables X and Y , then for any a and b we may
compute the single-variable probability density functions for X and
Y as pX (a) =

∑
y pX ,Y (a, y) and pY (b) =

∑
x pX ,Y (x , b).

Proof:

Observe that the event {E : X = a} is the union over all real
numbers y of the sets {E : X = a,Y = y}.
Since each of these sets are disjoint (since the random
variable Y can only take one value at a time), we can simply
sum the corresponding probabilities by the probability axioms.

This yields the first formula. The second follows similarly.



Marginal Distributions, II

A probability density function obtained by restricting a given
probability distribution to a subset is called a
marginal probability distribution.

The proposition gives the procedure for computing the
marginal probability distribution on the subsets X = a (as a
varies) and also the subsets of the form Y = b (as b varies).

The word “marginal” is used to evoke the idea of writing the
row and column sums in the margins of the probability
distribution table. When using an actual table, we often do
write the sums this way.

This result also extends to more than two variables in a fairly
natural way (in short: to find the joint distribution for a subset,
simply sum over the other variables).



Marginal Distributions, III

Example: Here are the marginal distributions, displayed as row and
column sums, for the joint I/O distribution in the last example:

I \ O 0 1 2 3 4 5 Sum (I )

0 0.03 0.10 0.12 0.18 0.10 0.08 0.61

1 0 0.01 0.07 0.10 0.08 0.06 0.32

2 0 0 0 0.01 0.03 0.02 0.06

3 0 0 0 0 0 0.01 0.01

Sum (O) 0.03 0.11 0.19 0.29 0.21 0.17



Independence, I

We would now like to use joint distributions to describe when two
random variables are independent.

Like with independence of events in probability spaces, we
would say that two random variables X and Y are
independent when knowing the value of one gives no
additional information about the value of the other.

Explicitly, we want P(X = a|Y = b) = P(X = a) for all a, b.

By our results on conditional probability, this is the same as
saying P(X = a,Y = b) = P(X = a) · P(Y = b).

Recast in the language of probability density functions, this
says pX ,Y (a, b) = pX (a) · pY (b).

In other words, the probability that both X = a and Y = b is
the product of the probabilities of those two separate events
(namely, that X = a and that Y = b).



Independence, I

We would now like to use joint distributions to describe when two
random variables are independent.

Like with independence of events in probability spaces, we
would say that two random variables X and Y are
independent when knowing the value of one gives no
additional information about the value of the other.

Explicitly, we want P(X = a|Y = b) = P(X = a) for all a, b.

By our results on conditional probability, this is the same as
saying P(X = a,Y = b) = P(X = a) · P(Y = b).

Recast in the language of probability density functions, this
says pX ,Y (a, b) = pX (a) · pY (b).

In other words, the probability that both X = a and Y = b is
the product of the probabilities of those two separate events
(namely, that X = a and that Y = b).



Independence, II

Per the discussion on the previous slide, we can define
independence of two random variables as follows:

Definition

Two discrete random variables X and Y with respective probability
density functions pX (x) and pY (y) are independent if their joint
distribution pX ,Y (x , y) satisfies pX ,Y (a, b) = pX (a) · pY (b) for all
real numbers a and b.

Note the similarity to the condition for independence of events:
P(A ∩ B) = P(A) · P(B).



Independence, III

Example: If X and Y have the joint distribution displayed below,
determine whether X and Y are independent.

X \ Y 0 1 2 3

1 0.12 0.18 0.24 0.06

3 0.02 0.03 0.04 0.01

5 0.06 0.09 0.12 0.03

We must first compute the probability distributions for X and Y ,
which we may do by summing the rows and columns, and then we
must check whether pX ,Y (a, b) = pX (a) · pY (b) for each (a, b) in
the table.



Independence, III

Example: If X and Y have the joint distribution displayed below,
determine whether X and Y are independent.

X \ Y 0 1 2 3

1 0.12 0.18 0.24 0.06

3 0.02 0.03 0.04 0.01

5 0.06 0.09 0.12 0.03

We must first compute the probability distributions for X and Y ,
which we may do by summing the rows and columns, and then we
must check whether pX ,Y (a, b) = pX (a) · pY (b) for each (a, b) in
the table.



Independence, IV

Example: If X and Y have the joint distribution displayed below,
determine whether X and Y are independent.

X \ Y 0 1 2 3 Sum

1 0.12 0.18 0.24 0.06 0.6

3 0.02 0.03 0.04 0.01 0.1

5 0.06 0.09 0.12 0.03 0.3

Sum 0.2 0.3 0.4 0.1

The row and column sums have been added to the table.

Now we just need to check whether each entry is the product
of its row sum and column sum.

For the top left entry, we see 0.12 = 0.6 · 0.2 as required.

In fact, the calculation works out correctly for each entry, so
X and Y are independent.



Independence, IV

Example: If X and Y have the joint distribution displayed below,
determine whether X and Y are independent.

X \ Y 0 1 2 3 Sum

1 0.12 0.18 0.24 0.06 0.6

3 0.02 0.03 0.04 0.01 0.1

5 0.06 0.09 0.12 0.03 0.3

Sum 0.2 0.3 0.4 0.1

The row and column sums have been added to the table.

Now we just need to check whether each entry is the product
of its row sum and column sum.

For the top left entry, we see 0.12 = 0.6 · 0.2 as required.

In fact, the calculation works out correctly for each entry, so
X and Y are independent.



Independence, V

Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, determine whether X and Y are independent.

Intuitively, we would expect that these variables should not be
independent, since both X and Y will be affected by the
outcome of the second coin flip.

Indeed, we have P(X = 2,Y = 0) = 0 since X = 2 requires
the middle flip to be heads while Y = 0 requires the middle
flip to be tails.

However, P(X = 2) =
1

4
and P(Y = 0) =

1

4
also, and so

P(X = 2) · P(Y = 0) =
1

16
6= P(X = 2,Y = 0) = 0.

Thus, X and Y are not independent.



Independence, V

Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, determine whether X and Y are independent.

Intuitively, we would expect that these variables should not be
independent, since both X and Y will be affected by the
outcome of the second coin flip.

Indeed, we have P(X = 2,Y = 0) = 0 since X = 2 requires
the middle flip to be heads while Y = 0 requires the middle
flip to be tails.

However, P(X = 2) =
1

4
and P(Y = 0) =

1

4
also, and so

P(X = 2) · P(Y = 0) =
1

16
6= P(X = 2,Y = 0) = 0.

Thus, X and Y are not independent.



Independence, VI

Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, determine whether X and Y are independent.

Alternatively, here is the full joint distribution of X and Y :

X \ Y 0 1 2 Sum

0 1/8 1/8 0 1/4

1 1/8 2/8 1/8 1/2

2 0 1/8 1/8 1/4

Sum 1/4 1/2 1/4

We can see that there are four entries (the four corner entries)
that are not equal to the product of the corresponding row
and column sums, so any of these would yield an appropriate
counterexample.



Independence, VI

Example: A fair coin is flipped 3 times. If X is the total number of
heads in the first two flips and Y is the total number of heads in
the last two flips, determine whether X and Y are independent.

Alternatively, here is the full joint distribution of X and Y :

X \ Y 0 1 2 Sum

0 1/8 1/8 0 1/4

1 1/8 2/8 1/8 1/2

2 0 1/8 1/8 1/4

Sum 1/4 1/2 1/4

We can see that there are four entries (the four corner entries)
that are not equal to the product of the corresponding row
and column sums, so any of these would yield an appropriate
counterexample.



Independence, VII

Just like with probabilities, we may easily extend the notion of
independence to more than two random variables.

The analogous condition is that X1,X2, . . . ,Xn are
independent when, for any subset Y1, . . . ,Yk of the Xi , the
joint distribution pY1,...,Yk

(a1, . . . , ak) is equal to the product
of the individual distributions pY1(a1) · · · · · pYk

(ak).

However, we may compute all of these joint distributions
using the single joint distribution pX1,X2,...,Xn(a1, a2, . . . , an)
(namely, by summing over all of the possible values of the
random variables we are not considering).

So in fact, in fact all of these conditions follow from the single
condition that
pX1,X2,...,Xn(a1, a2, . . . , an) = pX1(a1) · pX2(a2) · · · · · pXn(an).



Independence, VIII

Definition

We say that the discrete random variables X1,X2, . . . ,Xn are
collectively independent if the joint distribution
pX1,X2,...,Xn(a1, a2, . . . , an) = pX1(a1) · pX2(a2) · · · · · pXn(an) for all
real numbers a1, a2, . . . , an.

As a practical matter, unless we have convenient formulas for the
random variables, it is fairly cumbersome to work with joint
distributions involving 3 or more variables at a time. Thus, we will
primarily do calculations in the 2-variable case only.



Summary

We defined the expected value of a discrete random variable and
examined some of its properties.

We defined the variance and standard deviation of a discrete
random variable and examined some of their properties.

We introduced joint distributions and independence of discrete
random variables.

Next lecture: More with independence, covariance, and correlation.


