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Bayes’ Formula and Discrete Random Variables (Part 1)

Bayes’ Formula and Applications

The Prosecutor’s Fallacy

Discrete Random Variables

Expected Value

This material represents §1.4.3 + §2.1.1 from the course notes and
problems 15-20 on WeBWorK 2.



Recall, I

Recall the definitions of conditional probability and independence:

Definition

If A and B are events and P(B) > 0, we define the
conditional probability P(A|B), the probability that A occurs given

that B occurred, as P(A|B) =
P(A ∩ B)

P(B)
.

Definition

We say that two events A and B are independent if
P(A|B) = P(A), or equivalently if P(B|A) = P(B).

In practice, we usually use the equivalent formulation that says A
and B are independent precisely when P(A ∩ B) = P(A) · P(B).



More Bayes’ Formula, I

At the end of the last lecture, we also introduced Bayes’ formula:

Theorem (Bayes’ Formula)

If A and B are any events, then

P(B|A) =
P(A|B) · P(B)

P(A|B) · P(B) + P(A|Bc) · P(Bc)
.

More generally, if events B1,B2, . . . ,Bk are mutually exclusive and
have union the entire sample space, then

P(Bi |A) =
P(A|Bi ) · P(Bi )

P(A|B1) · P(B1) + · · ·+ P(A|Bk) · P(Bk)
.

This result is named after Rev. Thomas Bayes who used
conditional probability to give bounds on an unknown parameter (a
topic we will discuss a bit later in the course) in the 1760s.



More Bayes’ Formula, II

Proof:

By definition, P(B|A) = P(A ∩ B)/P(A), and we also have
P(A ∩ B) = P(A|B) · P(B).

Also, as we have noted several times already,
P(A) = P(A ∩ B) + P(A ∩ Bc) since these events are
mutually exclusive and have union A.

Then P(A ∩ B) = P(A|B) · P(B) and
P(A ∩ Bc) = P(A|Bc) · P(Bc) from the definition of
conditional probability. Plugging all of these values in yields
the formula immediately.

The second formula follows in the same way by writing
P(A) = P(A ∩ B1) + P(A ∩ B2) + · · ·+ P(A ∩ Bk).



More Bayes’ Formula, III

Example: Alex has two urns, one labeled H which has 5 black and
4 red balls, and one labeled T which has 4 black and 11 red balls.
Alex flips an unfair coin that has a 2/3 probability of landing
heads, and then draws one ball at random from the
correspondingly-labeled urn (H for heads, T for tails). If Alex draws
a red ball, what is the probability that the coin flip was heads?

Let R, H, T be the events of “red ball”, “heads”, and “tails”.

We want P(H|R), which we may get via Bayes’ formula:

P(H|R) =
P(R|H) · P(H)

P(R|H) · P(H) + P(R|T ) · P(T )

We have P(H) = 2/3, P(T ) = 1/3, and also P(R|H) = 4/9
and P(R|T ) = 11/15. Therefore,

P(H|R) =
P(R|H) · P(H)

P(R|H) · P(H) + P(R|T ) · P(T )
=

40

73
≈ 54.8%.
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Example: Alex has two urns, one labeled H which has 5 black and
4 red balls, and one labeled T which has 4 black and 11 red balls.
Alex flips an unfair coin that has a 2/3 probability of landing
heads, and then draws one ball at random from the
correspondingly-labeled urn (H for heads, T for tails). If Alex draws
a red ball, what is the probability that the coin flip was heads?

Let R, H, T be the events of “red ball”, “heads”, and “tails”.

We want P(H|R), which we may get via Bayes’ formula:

P(H|R) =
P(R|H) · P(H)

P(R|H) · P(H) + P(R|T ) · P(T )

We have P(H) = 2/3, P(T ) = 1/3, and also P(R|H) = 4/9
and P(R|T ) = 11/15. Therefore,

P(H|R) =
P(R|H) · P(H)

P(R|H) · P(H) + P(R|T ) · P(T )
=

40

73
≈ 54.8%.



More Bayes’ Formula, IV

Bayes’ formula can also be used to give another solution to the
Monty Hall Problem:

Recall that P1, P2, P3 identify the prize location and H2, H3

identify which door the host opened: we want P(P1|H2).

By symmetry, P(P1) = P(P2) = P(P3) = 1/3.

Also, from the setup, P(H2|P1) = P(H3|P1) = 1/2,
P(H3|P2) = P(H2|P3) = 1, and P(H2|P2) = P(H3|P3) = 0.

Therefore, since P1,P2,P3 are disjoint and have union the
entire sample space, by Bayes’ formula we see P(P1|H2)

=
P(H2|P1) · P(P1)

P(H2|P1) · P(P1) + P(H2|P2) · P(P2) + P(H2|P3) · P(P3)

=
(1/2) · (1/3)

(1/2) · (1/3) + 0 · (1/3) + 1 · (1/3)
=

1/6

1/2
=

1

3
, as before.
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The Prosecutor’s Fallacy, I

Example (Prosecutor’s Fallacy): A DNA sample from a minor
crime is compared to a state forensic database containing 100,000
records.

A single suspect is identified on this basis alone, with no other
evidence suggesting guilt or innocence.

From analysis of human genetic variation, it is determined
that the probability that a randomly-selected innocent person
would match the DNA sample is 1 in 10000.

At the trial, the prosecutor states that the probability that the
suspect is innocent is only 1 in 10000, and observes that this
figure means that it is overwhelmingly likely (a probability of
99.99%) that the suspect is guilty.

Critique the prosecutor’s statement.



The Prosecutor’s Fallacy, II

We will write everything using more careful notation.

Suppose M is the event that there is a DNA match, and I is
the event that the suspect is innocent.

The conditional probability P(I |M) is the probability that the
suspect is innocent given that there is a DNA match, which is
what the prosecutor is claiming is equal to 1/10000.

However, the 1-in-10000 figure is actually the probability that
there is a match given that the suspect is innocent: this is the
conditional probability P(M|I ), which as we have seen is quite
different from P(I |M).

Thus, the prosecutor has made a serious error: namely, mixing
up the probability P(M|I ) with the probability P(I |M).



The Prosecutor’s Fallacy, II
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there is a match given that the suspect is innocent: this is the
conditional probability P(M|I ), which as we have seen is quite
different from P(I |M).

Thus, the prosecutor has made a serious error: namely, mixing
up the probability P(M|I ) with the probability P(I |M).



The Prosecutor’s Fallacy, III

We can use Bayes’ formula to find the actual value of P(I |M):

We have P(I |M) =
P(M|I ) · P(I )

P(M|I ) · P(I ) + P(M|I c) · P(I c)
.

A priori, there is no reason to believe that the given suspect is
any more likely to be guilty than any other person in the
database, so we will take P(I c) = 1/100000 = 0.00001 so
that P(I ) = 0.99999.

We also take P(M|I ) = 1/10000 = 0.0001 as indicated, and
P(M|I c) = 1 since (we presume) the DNA analysis will always
identify a guilty suspect.

Then P(I |M) =
0.0001 · 0.99999

0.0001 · 0.99999 + 1 · 0.00001
≈ 90.9%.

The conditional probability in this case states that there is a
90.9% chance that the suspect is innocent, given the
existence of a positive match and no other evidence: quite a
far cry from the prosecutor’s claim of 99.999% guilt!



The Prosecutor’s Fallacy, IV

The confusion of the probability of innocence given a positive
match with the probability of a positive match given innocence is
called the prosecutor’s fallacy.

As we just showed with this dramatic example, it is a very
serious error.

This error (and others of a similar nature) have actually led to
erroneous convictions in several famous cases.

In our example, one would expect roughly 100000/10000 = 10
DNA matches to come from the database, and given the lack
of evidence to say otherwise, it is no more likely that the given
suspect is guilty than any of these 10 people.

If you take one thing away from this discussion, it should be the
importance of computing the correct probability! (This is one
reason we have used algebraic language as much as possible.)



Overview of §2: Random Variables

We now begin our next chapter of the course: §2: Random
Variables, which is the study of functions defined on sample spaces.

We will begin by discussing discrete random variables, which
are random variables defined on finite sample spaces (or
countably infinite ones, like the positive integers).

We will develop basic measures of the behavior of random
variables, such as its expected value, variance, and standard
deviation, and also study the situation of having more than
random variable defined on the same sample space.

We then discuss continuous random variables (defined on the
real line), along with the many analogies between discrete and
continuous random variables.

Finally, we discuss a number of important random variables
and some applications to modeling real-world phenomena.



Random Variables: Motivation

When we observe the result of an experiment, we are often
interested in some specific property of the outcome rather than the
entire outcome itself.

For example, if we flip a fair coin 5 times, we may want to
know only the total number of heads obtained, rather than
the exact sequence of all 5 flips.

As another example, if we roll a pair of dice, we may want to
know the sum of the outcomes rather than the results of each
individual roll.

As a third example, if an archer fires an arrow at a target, we
may want to know the number of points she scores, rather
than the exact position of the arrow.

Each of these quantities is a function on the outcomes comprising
the underlying sample space.



Random Variables

Formally, properties of outcomes can be thought of as functions
defined on the outcomes of a sample space:

Definition

A random variable is a (real-valued) function defined on the
outcomes in a sample space.

Since we have spent most of our time analyzing finite sample
spaces, we will first discuss random variables on such sample
spaces:

Definition

A discrete random variable is a random variable is one whose
underlying sample space is finite or countably infinite.



Random Variables

Formally, properties of outcomes can be thought of as functions
defined on the outcomes of a sample space:

Definition

A random variable is a (real-valued) function defined on the
outcomes in a sample space.

Since we have spent most of our time analyzing finite sample
spaces, we will first discuss random variables on such sample
spaces:

Definition

A discrete random variable is a random variable is one whose
underlying sample space is finite or countably infinite.



Discrete Random Variables, I

Examples: Consider the the experiment of flipping a coin 5 times,
with corresponding sample space S .

One random variable X on S is the total number of heads
obtained. The value of X on the outcome HHHHT is 4, while
the value of X on the outcome TTTTT is 0.

Another random variable Y is the length of the longest
consecutive run of heads. The value of Y on the outcome
HTHHT is 2, while the value on THHHH is 4, and the value
on HTHHH is 3.

Because random variables are merely functions on outcomes,
we can define a random variable however we like simply by
specifying all its values.

We can define a third random variable Z to be 1 on the
outcome TTTTT and 0 on all other outcomes. (It identifies
whether we flipped all tails.)
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Discrete Random Variables, I

Examples: Consider the the experiment of flipping a coin 5 times,
with corresponding sample space S .

One random variable X on S is the total number of heads
obtained. The value of X on the outcome HHHHT is 4, while
the value of X on the outcome TTTTT is 0.

Another random variable Y is the length of the longest
consecutive run of heads. The value of Y on the outcome
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Discrete Random Variables, II

Examples: Consider the experiment of rolling a pair of dice, with
corresponding sample space S .

One random variable X is the largest die rolled. The value of
X on the outcome (1, 4) is 4, while the value on (6, 6) is 6
and the value on (1, 5) is 5.

Another random variable S is the sum of the outcomes. The
value of S on the outcome (1, 4) is 5, while the value on (6, 6)
is 12 and the value on (1, 5) is 6.

A third random variable P is the product of the outcomes.

A fourth random variable D is the difference of the outcomes.

A fifth random variable R1 is the number on the first die.

A sixth random variable R2 is the number on the second die.

A seventh random variable is [insert your favorite idea here].



Discrete Random Variables, II

Examples: Consider the experiment of rolling a pair of dice, with
corresponding sample space S .

One random variable X is the largest die rolled. The value of
X on the outcome (1, 4) is 4, while the value on (6, 6) is 6
and the value on (1, 5) is 5.

Another random variable S is the sum of the outcomes. The
value of S on the outcome (1, 4) is 5, while the value on (6, 6)
is 12 and the value on (1, 5) is 6.

A third random variable P is the product of the outcomes.

A fourth random variable D is the difference of the outcomes.

A fifth random variable R1 is the number on the first die.

A sixth random variable R2 is the number on the second die.

A seventh random variable is [insert your favorite idea here].



Discrete Random Variables, III

If X is a random variable, the set of outcomes on which X takes a
particular value (or range of values) is a subset of the sample
space, which is to say, it is an event.

Thus, if we have a probability distribution on the sample space, we
may therefore ask about quantities like the following:

P(X = n), the probability that X takes the value n.

P(X ≥ 5), the probability that the value of X is at least 5.

P(2 < X < 4), the probability that the value of X is strictly
between 2 and 4.
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Discrete Random Variables, IV

A common way to tabulate all of this information is to make a list
or table of all the possible values of X along with their
corresponding probabilities, which we can package conveniently as
a function:

Definition

If X is a random variable on the sample space S, then the function
pX such that pX (E ) = P(X ∈ E ) for any event E is called the
probability density function (pdf) of X .

For discrete random variables, we will usually be interested in the
values pX (a) on a real number a, which gives the probability that
the random variable X takes the value a.



Discrete Random Variables, V

For discrete random variables with a small number of outcomes,
we usually describe the probability density function using a table of
values (i.e., by simply listing all the possible results and their
probabilities).

In certain situations, we can find a convenient formula for the
values of the probability density function on arbitrary events,
but in many other cases, the best we can do is simply to
tabulate all the different values.

We will retain the notation for the underlying probability
density function for applications later, when we will
manipulate general distributions.



Examples, I

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

1. Find the probability distribution for X .

2. Find P(X = 2).

3. Find P(X ≥ 3).

4. Find P(1 < X < 4).



Examples, II

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

1. Find the probability distribution for X .

First, we list all possible outcomes and the corresponding
value of X :

Value of X Outcomes

0 TTTT

1 TTTH, TTHT , THTT , HTTT

2 TTHH, THTH, THHT , HTTH, HTHT , HHTT

3 THHH, HTHH, HHTH, HHHT

4 HHHH



Examples, II

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

1. Find the probability distribution for X .

First, we list all possible outcomes and the corresponding
value of X :

Value of X Outcomes

0 TTTT

1 TTTH, TTHT , THTT , HTTT

2 TTHH, THTH, THHT , HTTH, HTHT , HHTT

3 THHH, HTHH, HHTH, HHHT

4 HHHH



Examples, III

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

1. Find the probability distribution for X .

Using the table on the previous slide, we can then easily find
the probability distribution of X : we just need to compute the
probability that X takes each particular value.

The results are in the (much more compact) table below:

n 0 1 2 3 4

P(X = n) 1/16 4/16 6/16 4/16 1/16



Examples, IV

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

2. Find P(X = 2).

3. Find P(X ≥ 3).

4. Find P(1 < X < 4).

n 0 1 2 3 4

P(X = n) 1/16 4/16 6/16 4/16 1/16

We can now just read off these values from the table:
P(X = 2) = 6/16, P(X ≥ 3) = (4/16) + (1/16) = 5/16, and
P(1 < X < 4) = (6/16) + (4/16) = 10/16.



Examples, IV

Example: If a fair coin is flipped 4 times, let X be the random
variable counting the total number of heads obtained.

2. Find P(X = 2).

3. Find P(X ≥ 3).

4. Find P(1 < X < 4).

n 0 1 2 3 4

P(X = n) 1/16 4/16 6/16 4/16 1/16

We can now just read off these values from the table:
P(X = 2) = 6/16, P(X ≥ 3) = (4/16) + (1/16) = 5/16, and
P(1 < X < 4) = (6/16) + (4/16) = 10/16.



Examples, V

Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

1. Find the probability distribution for X .

2. Find P(X = 1).

3. Find P(X ≥ 1).

4. Find P(X 6= 2).

As in the last example, we simply need to tabulate the
probability of each possible value of X , and then use the
resulting probability distribution table to answer the other
questions.



Examples, V

Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

1. Find the probability distribution for X .

2. Find P(X = 1).

3. Find P(X ≥ 1).

4. Find P(X 6= 2).

As in the last example, we simply need to tabulate the
probability of each possible value of X , and then use the
resulting probability distribution table to answer the other
questions.



Examples, VI

Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

1. Find the probability distribution for X .

We compute the probability that X takes each possible value.

X = 0 means no dice roll sixes: (5/7)3 = 125/343.

X = 1 means one die rolls a six: 3 · (2/7) · (5/7)2 = 150/343.

X = 2 means two dice roll a six: 3 · (2/7)2 · (5/7) = 60/343.

X = 3 means all three dice roll sixes: (2/7)3 = 8/343.

This yields the following probability distribution table:

n 0 1 2 3

P(X = n) 125/343 150/343 60/343 8/343



Examples, VI

Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

1. Find the probability distribution for X .

We compute the probability that X takes each possible value.

X = 0 means no dice roll sixes: (5/7)3 = 125/343.

X = 1 means one die rolls a six: 3 · (2/7) · (5/7)2 = 150/343.

X = 2 means two dice roll a six: 3 · (2/7)2 · (5/7) = 60/343.

X = 3 means all three dice roll sixes: (2/7)3 = 8/343.

This yields the following probability distribution table:

n 0 1 2 3

P(X = n) 125/343 150/343 60/343 8/343



Examples, VII

Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

2. Find P(X = 1).

3. Find P(X ≥ 1).

4. Find P(X 6= 2).

n 0 1 2 3

P(X = n) 125/343 150/343 60/343 8/343

We can now easily compute each of the given probabilities by
reading the appropriate entries from the table.

We see P(X = 1) = 150/343,
P(X ≥ 1) = (150/343) + (60/343) + (8/343) = 218/343, and
P(X 6= 2) = (125/343) + (150/343) + (8/343) = 283/343.
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Example: If three loaded dice each with a probability 2/7 of landing
6 and 1/7 probability for each other outcome are rolled, let X be
the random variable counting the total number of sixes obtained.

2. Find P(X = 1).

3. Find P(X ≥ 1).

4. Find P(X 6= 2).

n 0 1 2 3

P(X = n) 125/343 150/343 60/343 8/343

We can now easily compute each of the given probabilities by
reading the appropriate entries from the table.

We see P(X = 1) = 150/343,
P(X ≥ 1) = (150/343) + (60/343) + (8/343) = 218/343, and
P(X 6= 2) = (125/343) + (150/343) + (8/343) = 283/343.



Examples, VIII

Example: If two standard 6-sided dice are rolled, let S be the
random variable giving the sum of the outcomes.

1. Find the probability distribution for S .

2. Find P(S = 7).

3. Find P(3 < S < 8).

4. Find P(S ≥ 10).



Examples, IX

Example: If two standard 6-sided dice are rolled, let S be the
random variable giving the sum of the outcomes.

1. Find the probability distribution for S .

We can count the possible outcomes based on the associated
value of S that they yield.

For the respective values S = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12
there are 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1 outcomes yielding that
value of S . This yields the table below:

n 2 3 4 5 6 7 8 9 10 11 12

P(S = n)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36
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Example: If two standard 6-sided dice are rolled, let S be the
random variable giving the sum of the outcomes.

1. Find the probability distribution for S .

We can count the possible outcomes based on the associated
value of S that they yield.
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Examples, X

Example: If two standard 6-sided dice are rolled, let S be the
random variable giving the sum of the outcomes.

2. Find P(S = 7).

3. Find P(3 < S < 8).

4. Find P(S ≥ 10).

n 2 3 4 5 6 7 8 9 10 11 12

P(S = n)
1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

Reading the appropriate entries from the table yields
P(S = 7) = 6/36 = 1/6,
P(3 < S < 8) = (3/36) + (4/36) + (5/36) + (6/36) = 1/2,
and P(S ≥ 10) = (3/36) + (2/36) + (1/36) = 1/6.



Examples, X

Example: If two standard 6-sided dice are rolled, let S be the
random variable giving the sum of the outcomes.

2. Find P(S = 7).

3. Find P(3 < S < 8).

4. Find P(S ≥ 10).

n 2 3 4 5 6 7 8 9 10 11 12

P(S = n)
1

36

2

36

3
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4

36

5

36

6
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Reading the appropriate entries from the table yields
P(S = 7) = 6/36 = 1/6,
P(3 < S < 8) = (3/36) + (4/36) + (5/36) + (6/36) = 1/2,
and P(S ≥ 10) = (3/36) + (2/36) + (1/36) = 1/6.



Bernoulli Trials, I

A particularly simple random variable is the one that identifies
whether a specific event has occurred:

Definition

If E is any event, we define the Bernoulli random variable for E to

be XE =

{
1 if E occurs

0 if E does not occur
.

The name for this random variable comes from the idea of a
Bernoulli trial, which is an experiment having only two
possible outcomes, success (with probability p) and failure
(with probability 1− p).

We think of E as being the event of success, while E c is the
event of failure.



Bernoulli Trials, II

Many experiments consist of a sequence of independent Bernoulli
trials, in which the outcome of each trial is independent from the
outcomes of all of the others. Here are a few examples:

Flipping a fair or unfair coin 10 times and testing whether
heads is obtained for each flip.

Recording the results (hit or no hit) from a sequence of 20 of
a baseball player’s at-bats.

Recording the results (positive or negative) from a random
screening of 250 people for a disease.

Rolling a fair or unfair die 30 times and recording whether or
not a 6 was rolled.



Binomial Distributions, I

We can describe explicitly the probability distribution of the
random variable X giving the total number of successes in a
sequence of Bernoulli trials:

Proposition (The Binomial Distribution)

Let X be the random variable representing the total number of
successes obtained by performing n independent Bernoulli trials
each of which has a success probability p. Then the probability
distribution of X is the binomial distribution, in which

P(X = k) =

(
n

k

)
pk(1− p)n−k for integers k with 0 ≤ k ≤ n, and

P(X = k) = 0 for other k.

The binomial distribution is so named because of the presence of
the binomial coefficients

(n
k

)
.



Binomial Distributions, II

Proof:

From our results on counting combinations with binomial
coefficients, we can see that there are

(n
k

)
ways to choose k

trials yielding success out of a total of n.

Furthermore, since all of the trials are independent, the
probability of obtaining any given pattern of k successes and
n − k failures is equal to pk(1− p)n−k .

Thus, since the probability of obtaining any given one of the(n
k

)
outcomes with exactly k successes is pk(1− p)n−k , the

probability of obtaining exactly k successes is(n
k

)
pk(1− p)n−k , as claimed.



Binomial Distributions, III

Example: A baseball player’s batting average is 0.378, meaning
that she has a probability of 0.378 of getting a hit on any given
at-bat, independently of any other at-bat. Find the probabilities of
the following events:

1. In her first 100 at-bats, she gets exactly 37 hits.

2. In her first 100 at-bats, she gets exactly 40 hits.

3. In her first 100 at-bats, she gets exactly 50 hits.

We can view each at-bat as an independent Bernoulli trial
(with a hit being considered a success), so the total number of
hits will be binomially distributed with n = 100 and p = 0.378.



Binomial Distributions, III

Example: A baseball player’s batting average is 0.378, meaning
that she has a probability of 0.378 of getting a hit on any given
at-bat, independently of any other at-bat. Find the probabilities of
the following events:

1. In her first 100 at-bats, she gets exactly 37 hits.
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Binomial Distributions, IV

Example: A baseball player’s batting average is 0.378, meaning
that she has a probability of 0.378 of getting a hit on any given
at-bat, independently of any other at-bat. Find the probabilities of
the following events:

1. In her first 100 at-bats, she gets exactly 37 hits.

2. In her first 100 at-bats, she gets exactly 40 hits.

3. In her first 100 at-bats, she gets exactly 50 hits.

Thus, since the distribution is binomial, the probability of k
hits will be

(100
k

)
· 0.378k · 0.622100−k .

The probability of 37 hits is
(100
37

)
· 0.37837 · 0.62263 ≈ 8.13%.

The probability of 40 hits is
(100
40

)
· 0.37840 · 0.62260 ≈ 7.33%.

The probability of 50 hits is
(100
50

)
· 0.37850 · 0.62250 ≈ 0.37%.



Binomial Distributions, IV
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hits will be

(100
k

)
· 0.378k · 0.622100−k .
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Binomial Distributions, V

Example: An unfair coin with probability 3/5 of coming up heads
on each flip is flipped 60 times. Find the probabilities of

1. Obtaining 30 heads.
2. Obtaining 36 heads.
3. Obtaining 40 heads.

4. Obtaining between 30 and
36 heads (inclusive).

The total number of heads will be binomially distributed with
n = 60 and p = 3/5, so the probability of obtaining exactly k
heads will be

(60
k

)
(3/5)k(2/5)60−k .

The probability of 30 heads is
(60
30

)
(3/5)30(2/5)30 ≈ 3.01%.

The probability of 36 heads is
(60
36

)
(3/5)36(2/5)24 ≈ 10.46%.

The probability of 40 heads is
(60
40

)
(3/5)40(2/5)20 ≈ 6.16%.

The probability of 30 to 36 heads (inclusive) is(60
30

)
(3/5)30(2/5)30 +

(60
31

)
(3/5)31(2/5)29 + · · ·+(60

36

)
(3/5)36(2/5)24 ≈ 50.44%.
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Functions of Random Variables, I

If we have a random variable X defined on the sample space, then
since X is a function on outcomes, we can define various new
random variables in terms of X .

If g is any real-valued function, we can define a new random
variable g(X ) by evaluating g on all of the results of X . Some
possibilities include g(X ) = 2X , which doubles every value of
X , or g(X ) = X 2, which squares every value of X .

More generally, if we have a collection of random variables
X1,X2, . . . ,Xn defined on the same sample space, we can
construct new functions in terms of them, such as the sum
X1 + X2 + · · ·+ Xn that returns the sum of the values of
X1, . . . ,Xn on any given outcome.



Functions of Random Variables, II

Example: Suppose X is the random variable with probability
distribution given below. Find the probability distributions for
2X + 1 and for X 2.

n 1 3 4 8

P(X = n) 0.2 0.5 0.1 0.2

If X = 1, 3, 4, 8 then 2X + 1 = 3, 7, 9, 17 respectively, so we
obtain the following distribution for 2X + 1:

n 3 7 9 17

P(2X + 1 = n) 0.2 0.5 0.1 0.2

In the same way, here is the distribution for X 2:

n 1 9 16 64

P(X 2 = n) 0.2 0.5 0.1 0.2
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Expected Value, I

If we repeat an experiment many times and record the different
values of a random variable X each time, a useful statistic
summarizing the outcomes is the average value of the outcomes.

We would like a way to describe the “average value” of a
random variable X .

Suppose that the sample space has outcomes s1, s2, . . . , sn on
which the random variable X takes on the values x1, x2, . . . , xn
with probabilities p1, p2, . . . , pn, where p1 + · · ·+ pn = 1.

Under our interpretation of these probabilities as giving the
relative frequencies of events when we repeat an experiment,
if we perform the experiment N times (N large), we should
obtain the outcome si (on which X = xi ) approximately piN
times for each 1 ≤ i ≤ n. The average value is then
(p1N)x1 + (p2N)x2 + · · ·+ (pnN)xn

N
= p1x1+p2x2+· · ·+pnxn.



Expected Value, II

We can use the calculation on the previous slide to give a definition
of the “average value” for an arbitrary discrete random variable:

Definition

If X is a discrete random variable, the expected value of X , written

E (X ), is the sum E (X ) =
∑
si∈S

P(si )X (si ) over all outcomes si in

the sample space S.

In words, the expected value E (X ) is the average of the values
that X takes on the outcomes in the sample space, weighted by
the probability of each outcome.

The expected value is also sometimes called the mean or the
average value of X , and is often also written as µX (“mu-X ”) or
as X (“X -bar”).



Expected Value, III

Example: If a fair coin is flipped once, the expected value of the
random variable X giving the number of total heads obtained is

equal to E (X ) =
1

2
· 0 +

1

2
· 1 =

1

2
, because there are two possible

outcomes, 0 heads and 1 head, each of probability 1/2.

In this example, notice that since the coin comes up heads half the
time, it is quite reasonable to say that the average number of
heads per flip is 1/2, which is exactly what this expected value
calculation gives.



Expected Value, IV

Examples:

If an unfair coin with a probability 2/3 of landing heads is
flipped once, the expected value of the random variable X
giving the number of total heads obtained is equal to

E (X ) =
1

3
· 0 +

2

3
· 1 =

2

3
, because there are two possible

outcomes, 0 heads and 1 head, of respective probabilities 1/3
and 2/3.

If a standard 6-sided die is rolled once, the expected value of
the random variable X giving the result is equal to

E (X ) =
1

6
· 1 +

1

6
· 2 +

1

6
· 3 +

1

6
· 4 +

1

6
· 5 +

1

6
· 6 =

7

2
,

because each of the 6 possible outcomes 1,2,3,4,5,6 has
probability 1/6 of occurring.



Expected Value, IV
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Expected Value, V

Example: Find E (X ) and E (Y ) if X and Y are the discrete
random variables whose probability distributions appear below.

n 1 3 4 8

P(X = n) 0.2 0.5 0.1 0.2

P(Y = n) 0.1 0 0.4 0.5

We simply apply the formula in each case.

For X we get E (X ) = 0.2 · 1 + 0.5 · 3 + 0.1 · 4 + 0.2 · 8 = 3.7.

For Y we get E (Y ) = 0.1 · 1 + 0 · 3 + 0.4 · 4 + 0.5 · 8 = 5.7.



Expected Value, V
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Expected Value, VI

The expected value of a discrete random variable can be infinite or
even not defined at all.

Examples:

If X is the discrete random variable whose value is 2n

occurring with probability 2−n for n ≥ 1, then its expected
value is

E (X ) = 2·1
2

+4·1
4

+8·1
8

+16· 1

16
+· · · = 1+1+1+1+· · · =∞.

If Y is the discrete random variable whose value is (−2)n

occurring with the probability 2−n for n ≥ 1, then its expected
value is the sum

2 · (−1

2
)+4 · 1

4
+8 · (−1

8
)+16 · 1

16
+ · · · = −1+1−1+1−· · · .

This sum does not converge, so the expected value of this
random variable is not defined.



Expected Value, VII

A common application of expected value is to calculate the
expected winnings from a game of chance.

In such scenarios, we view the outcomes from the game of
chance as our sample space, and the random variable we are
studying represents the total amount won or lost.

The expected value of this random variable measures the
average amount one should expect to win (or lose!) per game,
upon playing the game many times.



Expected Value, VIII

Example: In one version of a “Pick 3” lottery, a single entry ticket
costs $1. In this lottery, 3 single digits are drawn at random, and a
ticket must match all 3 digits in the correct order to win the $500
prize. What is the expected value of one ticket for this lottery?

From the description, we can see that there is a 1/1000
probability of winning the prize and a 999/1000 probability of
winning nothing.

Since winning the prize nets a total of $499 (the prize minus
the $1 entry fee), and winning nothing nets a total of −$1,
the expected value of the random variable giving the net

winnings is equal to
1

1000
($499) +

999

1000
(−$1) = −$0.50.

The expected value of −$0.50, in this case, indicates that if
one plays this lottery many times, on average one should
expect to lose 50 cents on every ticket.



Expected Value, VIII
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the expected value of the random variable giving the net
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($499) +

999

1000
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one plays this lottery many times, on average one should
expect to lose 50 cents on every ticket.



Summary

We established Bayes’s formula and described some of its uses,
such as analyzing the prosecutor’s fallacy.

We discussed discrete random variables and gave some examples,
including the binomial distribution.

We introduced the expected value of a discrete random variable.

Next lecture: Discrete random variables (part 2).


