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Lecture #5 of 27 ∼ July 13, 2021

Independence and Computing General Probabilities

More With Independence

Computing General Probabilities

This material represents §1.4.2-§1.4.3 from the course notes and
problems 9-14 from WeBWorK 2.



Recall

Recall the definition of conditional probability:

Definition

If A and B are events and P(B) > 0, we define the
conditional probability P(A|B), the probability that A occurs given
that B occurred, as P(A|B) = P(A ∩ B)/P(B).

We also defined independence.

Definition

We say that two events A and B are independent when
P(A ∩ B) = P(A) · P(B), which is equivalent to P(A|B) = P(A)
and to P(B|A) = P(B). Two events that are not independent are
said to be dependent.

We can use independence to compute probabilities of combinations
of independent events as products.



Computing More Probabilities, I

We will now extend the ideas we have developed (of computing
probabilities as products) to cover non-independent events.

Our starting point is the rearrangement of the conditional
probability formula: P(A ∩ B) = P(B|A) · P(A).

We interpret this formula as follows: if we want to find the
probability that both A and B occur, first we compute the
probability that A occurs, and then we multiply this by the
probability that B also occurs given that A occurred.

In many situations, it turns out to be much easier to compute
the probabilities P(A) and P(B|A) separately by viewing the
events of “choosing A” and then “choosing B given A” as
being choices made in a sequence.

This formula is the probability version of the multiplication
principle, and we use it in the same way.



Computing More Probabilities, II

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

1. The first ball is red.

2. The second ball is red given that the first ball is red.

3. Both balls are red.

4. The first ball is purple and the second ball is red.

5. One ball is red and the other is purple.

Let R1 (respectively P1) be the event that the first ball is red
(respectively purple) and R2 (respectively P2) be the event
that the second ball is red (respectively purple).
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Computing More Probabilities, III

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

1. The first ball is red.

This event is simply R1.

If we use the sample space consisting only of the first ball
drawn from the urn, then each of the 16 outcomes is equally
likely, and 4 of them yield a red ball drawn.

Thus, we see P(R1) = 4/16 = 0.25.
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Computing More Probabilities, IV

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

2. The second ball is red given that the first ball is red.

This event is P(R2|R1).

Imagine drawing the first red ball from the urn and then
discarding it.

Then, drawing the second ball is the same as drawing one ball
from an urn containing 3 red balls and 12 purple balls.

By the same logic as before, the probability that a red ball is
drawn now is P(R2|R1) = 3/15 = 0.2.



Computing More Probabilities, IV
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Computing More Probabilities, V

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

3. Both balls are red.

This event is P(R1 ∩ R2).

By the intersection formula, we have P(R1 ∩ R2) =
P(R2|R1) · P(R1) = (3/15) · (4/16) = 1/20 = 0.05.

You can think of this calculation (4/16) · (3/15) as working just
like the multiplication principle:

The probability that the first ball is red is 4/16 (4 red balls
from the total of 16).

Then, once we make that selection, the probability that the
second ball is red is 3/15 (3 red balls from the total of 15).

The overall probability is then simply the product of the
probabilities arising from each choice in the sequence.
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Computing More Probabilities, VI

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

4. The first ball is purple and the second ball is red.

This event is P(P1 ∩ R2) = P(R2|P1) · P(P1).

For P(P1), we see that in choosing the first ball, there are 12
purple out of a total of 16, so P(P1) = 12/16 = 0.75.

Then, for P(R2|P1), after one purple ball is chosen there are 4
red and 11 purple remaining, so the probability of selecting a
red one is 4/15.

Thus,
P(P1 ∩ R2) = P(R2|P1) · P(P1) = (12/16) · (4/15) = 0.2.
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Computing More Probabilities, VII

Example: Suppose an urn contains 4 red balls and 12 purple balls.
If two balls are randomly drawn from the urn without replacement,
determine the probabilities of the following events:

5. One ball is red and the other is purple.

This event is the union of the two mutually exclusive events
R1 ∩ P2 (first red then purple) and P1 ∩ R2 (first purple then
red).

We already computed P(P1 ∩ R2) = (3/4) · (4/15) = 1/5.

In the same way, we can find
P(R1 ∩ P2) = (4/16) · (12/15) = 1/5.

Thus, the probability of the original event is the sum
1/5 + 1/5 = 0.4.
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Computing More Probabilities, VIII

We can extend the logic in the last example for intersections of
more than two events.

For example, for three events A,B,C , we have
P(A ∩ B ∩ C ) = P(C |A ∩ B) · P(A ∩ B) =
P(C |A ∩ B) · P(B|A) · P(A).

If we view these probabilities as a sequence of choices, then
this formula tells us that we can compute the probability of
A ∩ B ∩ C by “choosing A”, then “choosing B given A”, then
“choosing C given both A and B”.

The same idea extends to intersections of four or more events.

The advantage to this approach is that it allows us to break
complicated events down into simpler ones whose probabilities
can be computed quickly using a small sample space.



Computing More Probabilities, IX

Example: Four cards are randomly drawn from a standard 52-card
deck. Find the probabilities of these events:

1. All four cards are kings.

2. All four cards are diamonds.

3. The first two cards are nines and the last two are aces.

4. The four cards are all different suits.

For each of these, we think of selecting each card in order so that
it satisfies the required condition, and then multiply all of the
corresponding conditional probabilities.
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Computing More Probabilities, X

Example: Four cards are randomly drawn from a standard 52-card
deck. Find the probabilities of these events:

1. All four cards are kings.

There are four kings in the deck, so the probability of the first
card being a king is 4/52.

Once the first card is selected as a king, the probability of the
second card also being a king is 3/51 (3 kings out of 51
remaining cards).

Similarly, the probabilities for the final two cards being kings
are 2/50 and 1/49.

Thus, the overall probability is
(4/52) · (3/51) · (2/50) · (1/49) = 1/270725.

Note that we could also have solved this problem using
counting principles (there are

(52
4

)
= 270725 unordered hands,

exactly one of which is the hand with four kings).
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Computing More Probabilities, XI

Example: Four cards are randomly drawn from a standard 52-card
deck. Find the probabilities of these events:

2. All four cards are diamonds.

There are 13 diamonds in the deck. So, by the same logic we
just used, the probability of the first card being a diamond is
13/52, then for the second card it is 12/51, for the third card
it is 11/50, and for the last card it is 10/49.

Thus, the overall probability is
(13/52) · (12/51) · (11/50) · (10/49) = 11/4165.

3. The first two cards are nines and the last two are aces.

By the same sort of approach, this probability is
(4/52) · (3/51) · (4/50) · (3/49) = 6/270725.
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Computing More Probabilities, XII

Example: Four cards are randomly drawn from a standard 52-card
deck. Find the probabilities of these events:

4. The four cards are all different suits.

For this event, we can think of selecting any card as the first
card: probability 52/52.

Then the next card must be a different suit, so there are 39
such cards out of 51 remaining: probability 39/51.

The third card must be one of the two remaining suits (26
cards out of 50 total): probability 26/50.

The last card must be the final remaining suit (13 cards out of
49 total): probability 13/49.

Thus, the overall probability is
(52/52) · (39/51) · (26/50) · (13/49) = 2197/20825 ≈ 10.55%.
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The Monty Hall Problem, I

Example (Monty Hall Problem): On a game show, a contestant
chooses one of three doors: behind one door is a car and behind
the other two are goats. The host opens one of the two unchosen
doors to reveal a goat, and then offers the contestant the option of
switching their choice from their original door to the remaining
unopened door in the hopes of winning the car. Should the
contestant accept the offer to switch doors?

In this problem, we also make the following implicit assumptions:

The car is randomly hidden behind one of the doors.

The host knows what is behind each door.

The host always opens a door that the contestant has not
chosen that reveals a goat (randomly selecting between the
two if the contestant has chosen the car).

The host always offers the option to switch doors.
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The Monty Hall Problem, II

We want to compute the probability that the car is behind the
contestant’s door.

Suppose we label the contestant’s door with the number 1,
the door opened by the host with the number 2, and the
remaining door with the number 3.

Let P1, P2, P3 be the events in which the prize is behind door
1, 2, or 3 respectively, and H2 and H3 be the events in which
the host opens door 2 and door 3 respectively.

Then the probability we want to compute is P(P1|H2), the
probability that the prize is behind door 1 given that the host
opened door 2.

From the conditional probability formula,
P(P1|H2) = P(P1 ∩ H2)/P(H2).

So we are reduced to finding P(P1 ∩ H2) and P(H2).



The Monty Hall Problem, III

We want to find P(P1|H2) = P(P1 ∩ H2)/P(H2).

First, P(P1) = P(P2) = P(P3) = 1/3 since the car is equally
likely to be behind any of the doors at the start of the game.

Also, P(H2) = P(H3) = 1/2 since by symmetry the host is
equally likely to open door 2 or door 3.

So we need only compute P(P1 ∩ H2) = P(H2|P1) · P(P1).

But P(H2|P1) = P(H3|P1) = 1/2 since if the prize is behind
door 1, the host is equally likely to open door 2 or door 3.

Therefore, we get P(P1 ∩ H2) = (1/2) · (1/3) = 1/6.

So, P(P1|H2) = P(P1 ∩ H2)/P(H2) = (1/6)/(1/2) = 1/3.

Our calculations show there is a 1/3 probability that the prize is
behind door 1 (the door chosen by the contestant), hence a 2/3
probability that the prize is behind door 3 (the remaining unchosen
door). In conclusion: it is better to switch!



The Monty Hall Problem, IV

This problem (the Monty Hall problem) is fairly infamous and was
originally popularized in this form by vos Savant in 1990.

Although she gave the correct answer to the puzzle in her
solution, she evidently received many thousands of letters
from readers who disagreed with the answer!

It is a very common mistake to argue that because there are
now only 2 doors remaining to choose between, the probability
that the prize is behind each of them must be 1/2.

Another way to reason out the solution to the puzzle is to
change the game’s formulation from “the host opens one of
the unchosen doors” to “the host offers the contestant the
choice of having both unchosen doors”.

This new version is equivalent to the original (in terms of
whether the contestant wins the car), but now it is very clear
that switching is twice as likely to yield the prize!
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The Monty Hall Problem, V

Here is another approach to the solution based on listing outcomes:

Label the doors A, B, C, where the contestant selects door A.

Before the host opens one of the other doors, the probability
that the car is behind any one of these doors is 1/3.

If the car is behind door A, then the host will open door B
half the time and door C half the time. Thus overall,
P(car A, host B) = P(car A, host C) = 1/6.

If the car is behind door B, then the host will open door C
every time, so P(car B, host B) = 0, P(car B, host C) = 1/3.

Likewise, P(car C, host B) = 1/3, P(car C, host C) = 0.

Now suppose the host opens door B. The total probability of
this event is 1/6 + 1/3 = 1/2, and so the conditional
probability that the car is behind door A is (1/6)/(1/2) = 1/3.

Likewise, if the host opens door C, the probability that the car
is behind door A is again (1/6)/(1/2) = 1/3.
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The Birthday Problem, I

Example: Assume that birthdays are randomly distributed among
the 365 days in a non-leap year, and ignore February 29th.

1. What is the probability pn that in a group of n people, some
pair have the same birthday?

2. What is the smallest number of people required for which
there will be at least a 50% chance of having two people with
the same birthday?

Before we analyze this problem, take a moment to estimate how
big you think the answer to the second question is. (Is 10 people
enough to get a 50% chance? 50 people? 100 people? 200
people?)



The Birthday Problem, II

1. What is the probability pn that in a group of n people, some
pair have the same birthday?

If we have 5 people, there are many ways that some pair of
them could have the same birthday (e.g., the first two people,
the last two people, the first and fourth, etc.).

It is not so easy to answer the problem by counting in this
manner.

Instead, consider the complementary event: no two people
have the same birthday, which is to say, all the birthdays are
different. Now go through, one at a time:

The first person may have any birthday: probability 1.

The second person may have any birthday except the 1
already used: probability 364/365.

The third person may have any birthday except the 2 already
used: probability 363/365.
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The Birthday Problem, III

1. What is the probability pn that in a group of n people, some
pair have the same birthday?

In general, the kth person has 366− k possible birthdays, so
the probability of this event (conditioned on the previous
ones) is (366− k)/365.

Therefore, by our formula for the probability of the
intersection of events, the probability that no two people have

the same birthday is
365

365
· 364

365
· 363

365
· · · · · 366− n

365
.

This means the answer to the original question is

pn = 1− 365

365
· 364

365
· 363

365
· · · · · 366− n

365
.
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The Birthday Problem, IV

1. What is the probability pn that in a group of n people, some
pair have the same birthday?

The formula is nice enough, but here are some actual values:

n 5 10 15 20 22 23

pn 2.7% 11.7% 25.3% 41.1% 47.6% 50.7%

n 25 30 40 50 60 70

pn 56.9% 70.6% 89.1% 97.0% 99.4% 99.9%

In particular, the tables show that the answer to the second part

2. What is the smallest number of people required for which
there will be at least a 50% chance of having two people with
the same birthday?

is 23 people.
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The Birthday Problem, V

The number we derived (23 people) tends to be surprisingly small
to most people. We can give a heuristic argument for why this is
actually the right order of magnitude:

Observe that the desired event (some pair of people share a
birthday) is the union of the events that one of the pairs of
people in the group has the same birthday.

The probability that any given pair shares a birthday is 1/365.

Although these events are not independent, they are
moderately close to independent. With k people, there are(k
2

)
such pairs, and so the rough probability of getting at least

one match is 1− (364/365)(k2) ≈ 1−
(k
2

)
/365.

Setting this equal to 50% leads to an estimate
k ≈ 1

2 +
√

365 ≈ 19.6, not too far off the actual answer of 23.



Probability With Venn Diagrams, I

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

1. P(A ∩ B).

2. P(Ac ∩ B).

3. P(B).

4. P(A ∩ Bc).

5. P(Ac ∩ Bc).

6. P(A ∪ B).

7. P(A|B).

8. P(A|Bc).

9. P(A ∪ B|A).

10. P(A∩B|A∪B).

11. P(Ac ∪ B).

12. P(Ac∪B|A∪Bc).



Probability With Venn Diagrams, II

When working with intersections and unions of events, it is very
helpful to label the results on a Venn diagram like the one below:

We can label each region with its associated probability.



Probability With Venn Diagrams, III

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

1. P(A ∩ B).

By the conditional probability formula,
P(A ∩ B) = P(B|A) · P(A) = 0.7 · 0.6 = 0.42.

2. P(Ac ∩ B).

Since P(A) = 0.6, we have P(Ac) = 1− 0.6 = 0.4.

Then by the conditional probability formula,
P(Ac ∩ B) = P(B|Ac) · P(Ac) = 0.2 · 0.4 = 0.08.



Probability With Venn Diagrams, IV

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

3. P(B).

As is readily seen from the Venn diagram, B is the union of
the two mutually exclusive events A ∩ B and Ac ∩ B.

We computed P(A ∩ B) = 0.42 and P(Ac ∩ B) = 0.08 earlier,
so we must have P(B) = 0.42 + 0.08 = 0.5.

4. P(A ∩ Bc).

As is readily seen from the Venn diagram, A is the union of
the two mutually exclusive events A ∩ B and A ∩ Bc .

Therefore,
P(A ∩ Bc) = P(A)− P(A ∩ B) = 0.6− 0.42 = 0.18.



Probability With Venn Diagrams, V

Now that we have found the probabilities associated to three of
the four regions in the Venn diagram, we can fill in the last one
(on the outside) since the sum of all the probabilities must be 1:



Probability With Venn Diagrams, VI

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

5. P(Ac ∩ Bc).

We can read this probability directly from the Venn diagram
(since it is the region on the outside), so P(Ac ∩ Bc) = 0.32.

6. P(A ∪ B).

We can also read this probability directly from the Venn
diagram as 0.18 + 0.42 + 0.08 = 0.68.

Alternatively, we could use the union-intersection formula:
P(A∪B) = P(A)+P(B)−P(A∩B) = 0.6+0.5−0.42 = 0.68.



Probability With Venn Diagrams, VII

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

7. P(A|B).

From the conditional probability formula,
P(A|B) = P(A ∩ B)/P(B) = 0.42/0.5 = 0.84.

8. P(A|Bc).

From the conditional probability formula,
P(A|Bc) = P(A ∩ Bc)/P(Bc) = 0.18/0.5 = 0.36.

9. P(A ∪ B|A).

A ∪ B is guaranteed to occur if A does, so the probability is 1.

Alternatively, we can see that the intersection of these two
events is simply A, so the conditional probability is
P(A ∪ B|A) = P(A)/P(A) = 1.



Probability With Venn Diagrams, VIII

Example: Suppose A and B are events such that P(A) = 0.6,
P(B|A) = 0.7, and P(B|Ac) = 0.2. Find the following:

10. P(A ∩ B|A ∪ B).

The intersection of these events is simply A ∩ B, so
P(A∩B|A∪B) = P(A∩B)/P(A∪B) = 0.42/0.68 ≈ 0.6176.

11. P(Ac ∪ B).

We can read this off of the Venn diagram, or use the
union-intersection formula: P(Ac ∪ B) =
P(Ac) + P(B)− P(Ac ∩ B) = 0.4 + 0.5− 0.08 = 0.82.

12. P(Ac ∪ B|A ∪ Bc).

We can use the Venn diagram to see the intersection of these
two events consists of the two regions A ∩ B and Ac ∩ Bc , so
its probability is P(A∩B) + P(Ac ∩Bc) = 0.42 + 0.32 = 0.74.

Thus, P(Ac ∪ B|A ∪ Bc) = 0.74/0.92 ≈ 0.8043.



This One Got Way Realer in 2020, I

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

1. What is the probability that a randomly chosen patient who
tests positive actually has the disease?

2. What is the probability that a randomly chosen patient who
tests negative actually doesn’t have the disease?

3. What are the probabilities if everyone is tested twice?

Let D, ND, +, and − be the events of having the disease, not
having the disease, testing positive, and testing negative.

We are given P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97
so that P(−|D) = 0.03, and P(−|ND) = 0.99 so that
P(+|ND) = 0.01.



This One Got Way Realer in 2020, I

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

1. What is the probability that a randomly chosen patient who
tests positive actually has the disease?

2. What is the probability that a randomly chosen patient who
tests negative actually doesn’t have the disease?

3. What are the probabilities if everyone is tested twice?

Let D, ND, +, and − be the events of having the disease, not
having the disease, testing positive, and testing negative.

We are given P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97
so that P(−|D) = 0.03, and P(−|ND) = 0.99 so that
P(+|ND) = 0.01.



This One Got Way Realer in 2020, II

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

1. What is the probability that a randomly chosen patient who
tests positive actually has the disease?

We have P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97,
P(−|D) = 0.03, P(−|ND) = 0.99, P(+|ND) = 0.01.

We want to compute P(D|+) = P(D ∩+)/P(+).

First, P(D ∩+) = P(+|D) · P(D) = 0.97 · 0.02 = 0.0194.

Also, we have P(+) = P(D ∩+) + P(ND ∩+).

Since P(ND ∩+) = P(+|ND) ·P(ND) = 0.01 ·0.98 = 0.0098,
this means P(+) = 0.0194 + 0.0098 = 0.0292.

So, P(D|+) = P(D ∩+)/P(+) = 0.0194/0.0292 ≈ 0.6644.



This One Got Way Realer in 2020, II

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

1. What is the probability that a randomly chosen patient who
tests positive actually has the disease?

We have P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97,
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First, P(D ∩+) = P(+|D) · P(D) = 0.97 · 0.02 = 0.0194.

Also, we have P(+) = P(D ∩+) + P(ND ∩+).

Since P(ND ∩+) = P(+|ND) ·P(ND) = 0.01 ·0.98 = 0.0098,
this means P(+) = 0.0194 + 0.0098 = 0.0292.

So, P(D|+) = P(D ∩+)/P(+) = 0.0194/0.0292 ≈ 0.6644.



This One Got Way Realer in 2020, III

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

2. What is the probability that a randomly chosen patient who
tests negative actually doesn’t have the disease?

We have P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97,
P(−|D) = 0.03, P(−|ND) = 0.99, P(+|ND) = 0.01.

Now we want P(ND|−) = P(ND ∩ −)/P(−).

First, P(ND ∩−) = P(−|ND) ·P(ND) = 0.99 · 0.98 = 0.9702.

Also, P(D ∩ −) = P(−|D) · P(D) = 0.03 · 0.02 = 0.0006.

Thus, P(−) = 0.9702 + 0.0006 = 0.9708. Therefore,
P(ND|−) = P(ND ∩ −)/P(−) = 0.9702/0.9708 ≈ 0.9994.



This One Got Way Realer in 2020, III

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

2. What is the probability that a randomly chosen patient who
tests negative actually doesn’t have the disease?

We have P(D) = 0.02, P(ND) = 0.98, P(+|D) = 0.97,
P(−|D) = 0.03, P(−|ND) = 0.99, P(+|ND) = 0.01.

Now we want P(ND|−) = P(ND ∩ −)/P(−).

First, P(ND ∩−) = P(−|ND) ·P(ND) = 0.99 · 0.98 = 0.9702.

Also, P(D ∩ −) = P(−|D) · P(D) = 0.03 · 0.02 = 0.0006.

Thus, P(−) = 0.9702 + 0.0006 = 0.9708. Therefore,
P(ND|−) = P(ND ∩ −)/P(−) = 0.9702/0.9708 ≈ 0.9994.



This One Got Way Realer in 2020, IV

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

3. What are the probabilities if everyone is tested twice?

We analyse the cases separately.

First suppose that the patient has the disease. Then the
probability they obtain two positive tests is 0.972, so
P(D ∩++) = 0.02 · 0.972 = 0.018818.

The probability they obtain two negative tests is
P(D ∩ −−) = 0.02 · 0.032 = 0.000018.

Now suppose that the patient does not have the disease.

Using the same logic as above, we can compute that
P(ND ∩++) = 0.98 · 0.012 = 0.000098 and
P(ND ∩ −−) = 0.98 · 0.992 = 0.960498.
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Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

3. What are the probabilities if everyone is tested twice?

We analyse the cases separately.

First suppose that the patient has the disease. Then the
probability they obtain two positive tests is 0.972, so
P(D ∩++) = 0.02 · 0.972 = 0.018818.

The probability they obtain two negative tests is
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P(ND ∩++) = 0.98 · 0.012 = 0.000098 and
P(ND ∩ −−) = 0.98 · 0.992 = 0.960498.



This One Got Way Realer in 2020, V

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

3. What are the probabilities if everyone is tested twice?

We calculated P(D ∩++) = 0.018818,
P(D ∩ −−) = 0.000018, P(ND ∩++) = 0.000098 and
P(ND ∩ −−) = 0.960498.

Thus, the total probability of obtaining two positive tests is
P(D ∩++) + P(ND ∩++) = 0.018916.

So, if someone tests positive twice the probability they have
the disease is P(D|+ +) = 0.018818/0.018916 ≈ 0.9948.

Likewise, the total probability of having two negative tests is
0.960516, so P(ND| − −) = 0.960498/0.960516 ≈ 0.99998.



This One Got Way Realer in 2020, VI

Example: A medical test for a disease will detect the disease in
97% of test samples from patients who have the disease, but it
also has a false positive rate of 1%. Suppose 2% of the population
actually has the disease.

3. What are the probabilities if everyone is tested twice?

We can also examine the case where the tests are inconclusive
(one positive, one negative).

As before, we can calculate
P(+− |D) = P(−+ |D) = 0.97 · 0.03 · 0.02 = 0.000582 while
P(+− |ND) = P(−+ |ND) = 0.01 · 0.99 · 0.98 = 0.009702.

Thus, the total probability of getting one positive and one
negative test is 2 · 0.000582 + 2 · 0.009702 = 0.020568.

In this situation, the conditional probability of having the
disease is 2 · 0.000582/0.020568 ≈ 0.0566 (about 5.66%),
while the conditional probability of not having the disease is
2 · 0.009702/0.020568 ≈ 0.9434 (about 94.34%).
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This One Got Way Realer in 2020, VII

You may find it surprising that single positive test (which gives the
correct result with at least “97% accuracy” in all scenarios) still
only yields about a 2/3 probability of actually having the disease.

Ultimately, the reason for this disparity is that a typical person
is very unlikely to have the disease: so, even though the false
positive rate is low, since the disease rate is also low, the total
number of correct positives ends up being the same order of
magnitude as the total number of false positives.

Thus, even if a person tests positive once, it is still not
especially likely that they have the disease, unless there is
some reason to think that the person was not a
randomly-selected member of the population.

However, doing a second test (as we saw) vastly improves the
accuracy of identifying people who have the disease, at least
under the assumption that the two tests are independent.



Bayes’ Formula, I

In this last example, we computed a conditional probability using
the values of the conditional probabilities “in the other order”.

Specifically, we used P(+|D) and P(+|ND) to find P(D|+),
and we also used P(−|D) and P(−|ND) to find P(ND|−).

The main idea in each case was to use the given information to
compute the two necessary probabilities for finding the desired
conditional probability.



Bayes’ Formula, II

We can give a general formula for making calculations like these:

Theorem (Bayes’ Formula)

If A and B are any events, then

P(B|A) =
P(A|B) · P(B)

P(A|B) · P(B) + P(A|Bc) · P(Bc)
.

More generally, if events B1,B2, . . . ,Bk are mutually exclusive and
have union the entire sample space, then

P(Bi |A) =
P(A|Bi ) · P(Bi )

P(A|B1) · P(B1) + · · ·+ P(A|Bk) · P(Bk)
.

This result is named after Rev. Thomas Bayes. We will do more
with it next time.



Summary

We discussed collective independence and its uses in calculating
probabilities of sequences of events

We discussed methods for computing probabilities of sequences of
events using conditional probabilities.

We discussed the Monty Hall problem, the Birthday problem, and
how to use Venn diagrams in probability problems.

Next lecture: Bayes’ theorem, applications of probability.


