
Math 3081 (Probability and Statistics)

Lecture #4 of 27 ∼ July 12th, 2021

Conditional Probability + Independence

Conditional Probability

Computing With Conditional Probability

Independence

This material represents §1.4.1-§1.4.2 from the course notes and
problems 1-8 from WeBWorK 2.



Recall

Last week, we introduced the notion of a probability distribution
and discussed how to compute probabilities under the assumption
of “fairness”, in which all outcomes in the sample space are equally
likely. We also introduced conditional probability:

Definition

If A and B are events and P(B) > 0, we define the
conditional probability P(A|B), the probability that A occurs given

that B occurred, as P(A|B) =
P(A ∩ B)

P(B)
.

Our goal now is to work out some more examples of conditional
probabilities, and then explain how to use them to solve more
general probability problems.



More Conditional Probability, I

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail.

2. The first flip is heads, given there are exactly 3 heads.

3. All four flips are tails, given there is at least one tail.

4. There are at least 3 heads, given there are at least 2 heads.

Each of these is an example of a conditional probability.

To compute them, we use the formula
P(A|B) = P(A ∩ B) /P(B).

This requires us to identify the events A and B and then to
compute P(B) and P(A ∩ B).



More Conditional Probability, I

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail.

2. The first flip is heads, given there are exactly 3 heads.

3. All four flips are tails, given there is at least one tail.

4. There are at least 3 heads, given there are at least 2 heads.

Each of these is an example of a conditional probability.

To compute them, we use the formula
P(A|B) = P(A ∩ B) /P(B).

This requires us to identify the events A and B and then to
compute P(B) and P(A ∩ B).



More Conditional Probability, II

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail.

This probability is of the form P(A|B) where A is the event
that there are exactly two heads and B is the event that the
first flip is a tail.

We can see that P(B) = 1/2 because 8 of the 16 possible
outcomes have the first flip a tail.

Also, A ∩ B is the event that the first flip is a tail and there
are exactly two heads, which occurs in three ways:
{THHT ,THTH,TTHH}. Thus, P(A ∩ B) = 3/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

3/16

1/2
=

3

8
.



More Conditional Probability, II

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail.

This probability is of the form P(A|B) where A is the event
that there are exactly two heads and B is the event that the
first flip is a tail.

We can see that P(B) = 1/2 because 8 of the 16 possible
outcomes have the first flip a tail.

Also, A ∩ B is the event that the first flip is a tail and there
are exactly two heads, which occurs in three ways:
{THHT ,THTH,TTHH}. Thus, P(A ∩ B) = 3/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

3/16

1/2
=

3

8
.



More Conditional Probability, III

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

2. The first flip is heads, given there are exactly 3 heads.

This probability is of the form P(A|B) where A is the event
that the first flip is heads and B is the event that there are
exactly three heads.

We can see that P(B) = 4/16 = 1/4 because there are(4
3

)
= 4 ways to flip three heads.

Also, A ∩ B is the event that the first flip is heads and there
are exactly three heads, which occurs in three ways:
{HHHT ,HHTH,HTHH}. Thus, P(A ∩ B) = 3/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

3/16

1/4
=

3

4
.



More Conditional Probability, III

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

2. The first flip is heads, given there are exactly 3 heads.

This probability is of the form P(A|B) where A is the event
that the first flip is heads and B is the event that there are
exactly three heads.

We can see that P(B) = 4/16 = 1/4 because there are(4
3

)
= 4 ways to flip three heads.

Also, A ∩ B is the event that the first flip is heads and there
are exactly three heads, which occurs in three ways:
{HHHT ,HHTH,HTHH}. Thus, P(A ∩ B) = 3/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

3/16

1/4
=

3

4
.



More Conditional Probability, IV

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

3. All four flips are tails, given there is at least one tail.

This probability is of the form P(A|B) where A is the event
that all four flips are tails and B is the event that there is at
least one tail.

We can see that P(B) = 15/16 because Bc is the event that
there are no tails, which only occurs in one way (hence has
probability 1/16).

Also, A ∩ B is simply the event A, which has probability 1/16.
Thus, P(A ∩ B) = 1/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

1/16

15/16
=

1

15
.



More Conditional Probability, IV

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

3. All four flips are tails, given there is at least one tail.

This probability is of the form P(A|B) where A is the event
that all four flips are tails and B is the event that there is at
least one tail.

We can see that P(B) = 15/16 because Bc is the event that
there are no tails, which only occurs in one way (hence has
probability 1/16).

Also, A ∩ B is simply the event A, which has probability 1/16.
Thus, P(A ∩ B) = 1/16.

Finally, by putting all of this together, we see

P(A|B) =
P(A ∩ B)

P(B)
=

1/16

15/16
=

1

15
.



More Conditional Probability, V

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

4. There are at least 3 heads, given there are at least 2 heads.

This probability is of the form P(A|B) where A is the event
that there are at least three heads and B is the event that
there are at least two heads.

The event B occurs when there are 2, 3, or 4 heads, which
have

(4
2

)
,
(4
3

)
, and

(4
4

)
possibilities, respectively, for a total of

11. Thus, P(B) = 11/16.

A∩B occurs when there are 3 or 4 heads, which have
(4
3

)
and(4

4

)
possibilities for a total of 5. Thus P(A ∩ B) = 5/16.

Therefore P(A|B) =
P(A ∩ B)

P(B)
=

5/16

11/16
=

5

11
.



More Conditional Probability, V

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

4. There are at least 3 heads, given there are at least 2 heads.

This probability is of the form P(A|B) where A is the event
that there are at least three heads and B is the event that
there are at least two heads.

The event B occurs when there are 2, 3, or 4 heads, which
have

(4
2

)
,
(4
3

)
, and

(4
4

)
possibilities, respectively, for a total of

11. Thus, P(B) = 11/16.

A∩B occurs when there are 3 or 4 heads, which have
(4
3

)
and(4

4

)
possibilities for a total of 5. Thus P(A ∩ B) = 5/16.

Therefore P(A|B) =
P(A ∩ B)

P(B)
=

5/16

11/16
=

5

11
.



More Conditional Probability, VI

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail: 3/8.

2. The first flip is heads, given there are exactly 3 heads: 3/4.

3. All four flips are tails, given there is at least one tail: 1/15.

4. There are at least 3 heads, given there are at least 2 heads:
5/11.

It is also possible to solve each of these problems by enumerating
the possible outcomes explicitly.

For (1): there are 8 ways in which the first flip can be a tail,
and in 3 of these, there are exactly 2 heads.

For (2): there are 4 ways in which there are exactly three
heads, and in 3 of these, the first flip is heads.

The others are similar. (Try them yourself!)



More Conditional Probability, VI

Example: Suppose four fair coins are flipped. Determine the
probabilities of the respective events

1. There are exactly two heads, given the first flip is a tail: 3/8.

2. The first flip is heads, given there are exactly 3 heads: 3/4.

3. All four flips are tails, given there is at least one tail: 1/15.

4. There are at least 3 heads, given there are at least 2 heads:
5/11.

It is also possible to solve each of these problems by enumerating
the possible outcomes explicitly.

For (1): there are 8 ways in which the first flip can be a tail,
and in 3 of these, there are exactly 2 heads.

For (2): there are 4 ways in which there are exactly three
heads, and in 3 of these, the first flip is heads.

The others are similar. (Try them yourself!)



More Conditional Probability, VII

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

1. P(Bc).

2. P(A ∩ B).

3. P(A ∪ B).

4. P(B|A).

5. P(A ∩ Bc).

6. P(A|Bc).

7. P(Ac ∩ Bc).

It can be very helpful to use a Venn diagram in solving problems
that involve unions or intersections of events, like this problem
does.



More Conditional Probability, VII

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

1. P(Bc).

2. P(A ∩ B).

3. P(A ∪ B).

4. P(B|A).

5. P(A ∩ Bc).

6. P(A|Bc).

7. P(Ac ∩ Bc).

It can be very helpful to use a Venn diagram in solving problems
that involve unions or intersections of events, like this problem
does.



More Conditional Probability, VIII

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

1. P(Bc).

Using the complement formula, we see that
P(Bc) = 1− P(B) = 1− 0.2 = 0.8.

2. P(A ∩ B).

The conditional probability formula says that

P(A|B) =
P(A ∩ B)

P(B)
.

Rearranging the formula yields
P(A ∩ B) = P(A|B) · P(B) = 0.8 · 0.2 = 0.16.



More Conditional Probability, VIII

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

1. P(Bc).

Using the complement formula, we see that
P(Bc) = 1− P(B) = 1− 0.2 = 0.8.

2. P(A ∩ B).

The conditional probability formula says that

P(A|B) =
P(A ∩ B)

P(B)
.

Rearranging the formula yields
P(A ∩ B) = P(A|B) · P(B) = 0.8 · 0.2 = 0.16.



More Conditional Probability, VIII

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

1. P(Bc).

Using the complement formula, we see that
P(Bc) = 1− P(B) = 1− 0.2 = 0.8.

2. P(A ∩ B).

The conditional probability formula says that

P(A|B) =
P(A ∩ B)

P(B)
.

Rearranging the formula yields
P(A ∩ B) = P(A|B) · P(B) = 0.8 · 0.2 = 0.16.



More Conditional Probability, IX

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

3. P(A ∪ B).

By the union-intersection probability formula, we have
P(A∪B) = P(A)+P(B)−P(A∩B) = 0.4+0.2−0.16 = 0.44.

4. P(B|A).

Using the conditional probability formula, with A and B

interchanged, we see that P(B|A) =
P(A ∩ B)

P(A)
=

0.16

0.4
= 0.4.



More Conditional Probability, IX

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

3. P(A ∪ B).

By the union-intersection probability formula, we have
P(A∪B) = P(A)+P(B)−P(A∩B) = 0.4+0.2−0.16 = 0.44.

4. P(B|A).

Using the conditional probability formula, with A and B

interchanged, we see that P(B|A) =
P(A ∩ B)

P(A)
=

0.16

0.4
= 0.4.



More Conditional Probability, IX

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

3. P(A ∪ B).

By the union-intersection probability formula, we have
P(A∪B) = P(A)+P(B)−P(A∩B) = 0.4+0.2−0.16 = 0.44.

4. P(B|A).

Using the conditional probability formula, with A and B

interchanged, we see that P(B|A) =
P(A ∩ B)

P(A)
=

0.16

0.4
= 0.4.



More Conditional Probability, X (Marks The Spot)

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

5. P(A ∩ Bc).

The idea is to notice that A is the union of the two disjoint
events A ∩ B and A ∩ Bc . (These two events are the two
pieces in the Venn diagram that make up the region for A.)

Therefore, P(A ∩ B) + P(A ∩ Bc) = P(A), so
P(A ∩ Bc) = P(A)− P(A ∩ B) = 0.4− 0.16 = 0.24.

6. P(A|Bc).

Using the conditional probability formula with A and Bc , we

see that P(A|Bc) =
P(A ∩ Bc)

P(Bc)
=

0.24

0.8
= 0.3.



More Conditional Probability, X (Marks The Spot)

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

5. P(A ∩ Bc).

The idea is to notice that A is the union of the two disjoint
events A ∩ B and A ∩ Bc . (These two events are the two
pieces in the Venn diagram that make up the region for A.)

Therefore, P(A ∩ B) + P(A ∩ Bc) = P(A), so
P(A ∩ Bc) = P(A)− P(A ∩ B) = 0.4− 0.16 = 0.24.

6. P(A|Bc).

Using the conditional probability formula with A and Bc , we

see that P(A|Bc) =
P(A ∩ Bc)

P(Bc)
=

0.24

0.8
= 0.3.



More Conditional Probability, X (Marks The Spot)

Example: Suppose A and B are events such that P(A) = 0.4,
P(A|B) = 0.8, and P(B) = 0.2. Find the following:

5. P(A ∩ Bc).

The idea is to notice that A is the union of the two disjoint
events A ∩ B and A ∩ Bc . (These two events are the two
pieces in the Venn diagram that make up the region for A.)

Therefore, P(A ∩ B) + P(A ∩ Bc) = P(A), so
P(A ∩ Bc) = P(A)− P(A ∩ B) = 0.4− 0.16 = 0.24.

6. P(A|Bc).

Using the conditional probability formula with A and Bc , we

see that P(A|Bc) =
P(A ∩ Bc)

P(Bc)
=

0.24

0.8
= 0.3.



Independence, I

We now develop the notion of when two events A and B are
independent of one another.

Intuitively, we would say that A and B are independent if
knowing information about one of them does not provide any
information about the other one.

This is something we can easily rephrase in terms of
conditional probabilities:

Definition

We say that two events A and B are independent if
P(A|B) = P(A), or equivalently, if P(B|A) = P(B). Two events
that are not independent are said to be dependent.



Independence, II

We can rearrange the definition of independence in a different way
using the definition of the conditional probability P(A|B):

Specifically, since P(A|B) =
P(A ∩ B)

P(B)
, saying that

P(A|B) = P(A) is the same as saying that
P(A ∩ B) = P(A) · P(B) after clearing the denominator.

This observation also allows us to see that the two statements
of independence are equivalent to each other, since both
P(A|B) = P(A) and P(B|A) = P(B) are equivalent to
P(A ∩ B) = P(A) · P(B).

To summarize, A and B are independent precisely when
P(A ∩ B) = P(A) · P(B).



Independence, III

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events A that the first roll is a 2 and B that the
second roll is a 5 are independent.

We simply need to decide if P(A ∩ B) = P(A) · P(B).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these A occurs, in 6 of these B occurs, and in 1 of
these A ∩ B occurs.

Thus, P(A) = 1/6, P(B) = 1/6, and P(A ∩ B) = 1/36.

Since indeed P(A ∩ B) = 1/36 = P(A) · P(B), the events A
and B are independent.

This finding of independence is very reasonable: event A only
concerns the first roll while event B only concerns the second roll,
and these two rolls do not affect one another.



Independence, III

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events A that the first roll is a 2 and B that the
second roll is a 5 are independent.

We simply need to decide if P(A ∩ B) = P(A) · P(B).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these A occurs, in 6 of these B occurs, and in 1 of
these A ∩ B occurs.

Thus, P(A) = 1/6, P(B) = 1/6, and P(A ∩ B) = 1/36.

Since indeed P(A ∩ B) = 1/36 = P(A) · P(B), the events A
and B are independent.

This finding of independence is very reasonable: event A only
concerns the first roll while event B only concerns the second roll,
and these two rolls do not affect one another.



Independence, IV

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events A that the first roll is a 2 and C that the sum
of the two rolls is 3 are independent.

We simply need to decide if P(A ∩ C ) = P(A) · P(C ).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these A occurs, in 2 of these C occurs (1-2 or 2-1),
and in 1 of these A ∩ C occurs (2-1).

Thus, P(A) = 1/6, P(C ) = 1/18, and P(A ∩ C ) = 1/36.

We see P(A ∩ C ) = 1/36 while P(A) · P(C ) = 1/108. Since
these are not equal, the events A and C are not independent.

This finding of non-independence is very reasonable: knowing that
the first roll was a 2 (instead of, say, a 6) makes it possible for C
to occur, and (conversely), knowing that the sum was 3 makes it
much more likely that the first roll was a 2.



Independence, IV

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events A that the first roll is a 2 and C that the sum
of the two rolls is 3 are independent.

We simply need to decide if P(A ∩ C ) = P(A) · P(C ).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these A occurs, in 2 of these C occurs (1-2 or 2-1),
and in 1 of these A ∩ C occurs (2-1).

Thus, P(A) = 1/6, P(C ) = 1/18, and P(A ∩ C ) = 1/36.

We see P(A ∩ C ) = 1/36 while P(A) · P(C ) = 1/108. Since
these are not equal, the events A and C are not independent.

This finding of non-independence is very reasonable: knowing that
the first roll was a 2 (instead of, say, a 6) makes it possible for C
to occur, and (conversely), knowing that the sum was 3 makes it
much more likely that the first roll was a 2.



Independence, V

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events B that the second roll is a 5 and C that the
sum of the two rolls is 3 are independent.

We simply need to decide if P(B ∩ C ) = P(B) · P(C ).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these B occurs, in 2 of these C occurs (1-2 or 2-1),
but B and C can never occur together.

Thus, P(B) = 1/6, P(C ) = 1/18, and P(B ∩ C ) = 0.

We see P(B ∩ C ) = 0 while P(B) · P(C ) = 1/108. Since
these are not equal, the events B and C are not independent.

This finding of non-independence is also very reasonable for the
simple reason that B and C are mutually exclusive: thus, knowing
that one of them occurred provides very strong information about
the other (namely, that it did not happen).



Independence, V

Example: Suppose two fair 6-sided dice are rolled. Determine
whether the events B that the second roll is a 5 and C that the
sum of the two rolls is 3 are independent.

We simply need to decide if P(B ∩ C ) = P(B) · P(C ).

There are 36 equally-likely outcomes from rolling the two dice.
In 6 of these B occurs, in 2 of these C occurs (1-2 or 2-1),
but B and C can never occur together.

Thus, P(B) = 1/6, P(C ) = 1/18, and P(B ∩ C ) = 0.

We see P(B ∩ C ) = 0 while P(B) · P(C ) = 1/108. Since
these are not equal, the events B and C are not independent.

This finding of non-independence is also very reasonable for the
simple reason that B and C are mutually exclusive: thus, knowing
that one of them occurred provides very strong information about
the other (namely, that it did not happen).



Independence, VI

Example: A single card is randomly dealt from a standard 52-card
deck. If A is the event “the card is a seven” and B is the event
“the card is not a king”, determine whether A and B are
independent.

There are 52 equally-likely outcomes from selecting one card.
In 4 of these the card is a seven, in 48 of these the card is not
a king, and also in 4 of these it is both a seven and not a king.

Thus, P(A) = 1/13, P(B) = 12/13, and P(A ∩ B) = 1/13.

We see P(A ∩ B) = 1/13 while P(A) · P(B) = 12/169. Since
these are not equal, the events A and B are not independent.

Try explaining why non-independence is reasonable here.



Independence, VI

Example: A single card is randomly dealt from a standard 52-card
deck. If A is the event “the card is a seven” and B is the event
“the card is not a king”, determine whether A and B are
independent.

There are 52 equally-likely outcomes from selecting one card.
In 4 of these the card is a seven, in 48 of these the card is not
a king, and also in 4 of these it is both a seven and not a king.

Thus, P(A) = 1/13, P(B) = 12/13, and P(A ∩ B) = 1/13.

We see P(A ∩ B) = 1/13 while P(A) · P(B) = 12/169. Since
these are not equal, the events A and B are not independent.

Try explaining why non-independence is reasonable here.



Independence, VII

Example: A single card is randomly dealt from a standard 52-card
deck. If A is the event “the card is a seven” and C is the event
“the card is a diamond or spade”, determine whether A and C are
independent.

In 4 outcomes the card is a seven, in 26 outcomes the card is
a diamond or spade, and also in 2 outcomes it is both a seven
and diamond or spade.

Thus, P(A) = 1/13, P(C ) = 1/2, and P(A ∩ C ) = 1/26.

We see P(A ∩ C ) = 1/26 = P(A) · P(C ), so the events A and
C are independent.

Try explaining why independence is reasonable here.



Independence, VII

Example: A single card is randomly dealt from a standard 52-card
deck. If A is the event “the card is a seven” and C is the event
“the card is a diamond or spade”, determine whether A and C are
independent.

In 4 outcomes the card is a seven, in 26 outcomes the card is
a diamond or spade, and also in 2 outcomes it is both a seven
and diamond or spade.

Thus, P(A) = 1/13, P(C ) = 1/2, and P(A ∩ C ) = 1/26.

We see P(A ∩ C ) = 1/26 = P(A) · P(C ), so the events A and
C are independent.

Try explaining why independence is reasonable here.



Independence, VIII

Example: A single card is randomly dealt from a standard 52-card
deck. If B is the event “the card is not a king” and C is the event
“the card is a diamond or spade”, determine whether B and C are
independent.

In 48 outcomes the card is not a king, in 26 outcomes the card
is a diamond or spade, and in 24 of those it is also not a king.

Thus, P(B) = 12/13, P(C ) = 1/2, and P(B ∩ C ) = 6/13.

We see P(B ∩C ) = 6/13 = P(B) ·P(C ), so the events B and
C are independent.

Note also that for these three events, A and C are independent,
and B and C are independent, but A and B are not. (This says
independence is not transitive.)



Independence, VIII

Example: A single card is randomly dealt from a standard 52-card
deck. If B is the event “the card is not a king” and C is the event
“the card is a diamond or spade”, determine whether B and C are
independent.

In 48 outcomes the card is not a king, in 26 outcomes the card
is a diamond or spade, and in 24 of those it is also not a king.

Thus, P(B) = 12/13, P(C ) = 1/2, and P(B ∩ C ) = 6/13.

We see P(B ∩C ) = 6/13 = P(B) ·P(C ), so the events B and
C are independent.

Note also that for these three events, A and C are independent,
and B and C are independent, but A and B are not. (This says
independence is not transitive.)



Independence of Complements, I

If A and B are independent events, then knowing that A occurs
does not affect the probability that B occurs.

Under this interpretation, it is reasonable to expect that Ac and B
should also be independent:

Proposition (Independence of Complements)

If A and B are independent events, then so are Ac and B.

Proof:

First observe P(B) = P(A ∩ B) + P(Ac ∩ B), since the events
A ∩ B and Ac ∩ B are mutually disjoint and have union B.

If A and B are independent, then P(A ∩ B) = P(A)P(B), and
therefore P(Ac ∩ B) = P(B)− P(A ∩ B) =
P(B)− P(A)P(B) = [1− P(A)] · P(B) = P(Ac) · P(B).

This means Ac and B are also independent, as claimed.



Independence of Complements, I

If A and B are independent events, then knowing that A occurs
does not affect the probability that B occurs.

Under this interpretation, it is reasonable to expect that Ac and B
should also be independent:

Proposition (Independence of Complements)

If A and B are independent events, then so are Ac and B.

Proof:

First observe P(B) = P(A ∩ B) + P(Ac ∩ B), since the events
A ∩ B and Ac ∩ B are mutually disjoint and have union B.

If A and B are independent, then P(A ∩ B) = P(A)P(B), and
therefore P(Ac ∩ B) = P(B)− P(A ∩ B) =
P(B)− P(A)P(B) = [1− P(A)] · P(B) = P(Ac) · P(B).

This means Ac and B are also independent, as claimed.



Independence of Complements, II

Example: A single card is randomly dealt from a standard 52-card
deck. If B is the event “the card is not a king” and C is the event
“the card is a diamond or spade”, verify that Bc and C are
independent.

Note that Bc is the event that the card is a king.

From earlier, we have P(B) = 12/13 so P(Bc) = 1/13, and
also P(C ) = 1/2.

Also, Bc ∩ C is the event that the card is a king that is a
diamond or spade, so P(Bc ∩ C ) = 2/52 = 1/26.

Thus, we indeed have P(Bc ∩ C ) = 1/26 = P(Bc) · P(C ), so
Bc and C are independent as claimed.



Independence of Complements, II

Example: A single card is randomly dealt from a standard 52-card
deck. If B is the event “the card is not a king” and C is the event
“the card is a diamond or spade”, verify that Bc and C are
independent.

Note that Bc is the event that the card is a king.

From earlier, we have P(B) = 12/13 so P(Bc) = 1/13, and
also P(C ) = 1/2.

Also, Bc ∩ C is the event that the card is a king that is a
diamond or spade, so P(Bc ∩ C ) = 2/52 = 1/26.

Thus, we indeed have P(Bc ∩ C ) = 1/26 = P(Bc) · P(C ), so
Bc and C are independent as claimed.



Collective Independence, I

We may also define independence of more than two events at once:

Definition

We say that the events E1,E2, . . . ,En are collectively independent
if P(F1 ∩ F2 ∩ · · · ∩ Fk) = P(F1) · P(F2) · · · · · P(Fn) for any subset
F1,F2, . . . ,Fk of E1,E2, . . . ,En.

The intuitive idea is that the collection of events is independent
whenever knowledge of whether some of the events have occurred
does not affect the probability of any of the others.



Collective Independence, II

Example: A fair coin is flipped 3 times. If Ei is the event that the
ith flip is heads for each 1 ≤ i ≤ 3, show that E1,E2,E3 are
collectively independent.

We have P(E1) = P(E2) = P(E3) = 1/2.

First, P(E1 ∩ E2) = 1/4 = P(E1)P(E2).

Second, P(E1 ∩ E3) = 1/4 = P(E1)P(E3).

Third, P(E2 ∩ E3) = 1/4 = P(E2)P(E3).

Finally, P(E1 ∩ E2 ∩ E3) = 1/8 = P(E1)P(E2)P(E3).

Thus, these three events are collectively independent.

The collective independence of these events should be quite
obvious, since each event concerns a different flip of the coin.



Collective Independence, II

Example: A fair coin is flipped 3 times. If Ei is the event that the
ith flip is heads for each 1 ≤ i ≤ 3, show that E1,E2,E3 are
collectively independent.

We have P(E1) = P(E2) = P(E3) = 1/2.

First, P(E1 ∩ E2) = 1/4 = P(E1)P(E2).

Second, P(E1 ∩ E3) = 1/4 = P(E1)P(E3).

Third, P(E2 ∩ E3) = 1/4 = P(E2)P(E3).

Finally, P(E1 ∩ E2 ∩ E3) = 1/8 = P(E1)P(E2)P(E3).

Thus, these three events are collectively independent.

The collective independence of these events should be quite
obvious, since each event concerns a different flip of the coin.



Collective Independence, III

For three events, it is already quite tedious to check collective
independence (since we need to compute the probabilities of all
their events and all possible intersections).

It is natural to wonder whether it is possible to skip some of these
calculations (e.g., perhaps we can just check the intersection of
each pair). In fact, this is not possible, as we show in the next
example.



Collective Independence, IV

Example: A fair coin is flipped 3 times. If Eij represents the event
that the ith and jth flips are the same, show that each pair of
E12,E13,E23 are independent but that they are not collectively
independent.

We have P(E12) = P(E13) = P(E23) = 1/2.

Now, E12 ∩ E13 is the event where all 3 flips are the same, as
are E12 ∩ E23 and E13 ∩ E23, so each of these pairwise
intersections has probability 1/4.

Then we see P(E12 ∩ E13) = 1/4 = P(E12) · P(E13) so these
two are independent, as are the other two pairs.

However, E12 ∩ E13 ∩ E23 is also the event where all 3 flips are
the same, so P(E12 ∩ E13 ∩ E23) = 1/4, which is not equal to
P(E12) · P(E13) · P(E23) = 1/8.

Thus, the events are not collectively independent.



Collective Independence, IV

Example: A fair coin is flipped 3 times. If Eij represents the event
that the ith and jth flips are the same, show that each pair of
E12,E13,E23 are independent but that they are not collectively
independent.

We have P(E12) = P(E13) = P(E23) = 1/2.

Now, E12 ∩ E13 is the event where all 3 flips are the same, as
are E12 ∩ E23 and E13 ∩ E23, so each of these pairwise
intersections has probability 1/4.

Then we see P(E12 ∩ E13) = 1/4 = P(E12) · P(E13) so these
two are independent, as are the other two pairs.

However, E12 ∩ E13 ∩ E23 is also the event where all 3 flips are
the same, so P(E12 ∩ E13 ∩ E23) = 1/4, which is not equal to
P(E12) · P(E13) · P(E23) = 1/8.

Thus, the events are not collectively independent.



Collective Independence, V

Our main application of collective independence is that it allows us
to calculate probabilities of general sequences of independent
events.

Explicitly, suppose we have a sequence of collectively
independent events E1,E2, . . . ,En.

Then the probability of the intersection
P(E1 ∩ E2 ∩ · · · ∩ En) = P(E1) · P(E2) · · · · · P(En).

So, if we can decompose a complicated event as the
intersection of simpler independent events, we can find the
probability of the intersection (namely, as the product above).



General Probabilities, I

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

1. She gets four hits during the game.

2. She gets a hit in her first two at-bats but not the other two.

3. She gets exactly two hits during the game.

4. She gets at least one hit in her last two at-bats.

5. She gets at least one hit during the game.

Our sample space will be the 24 = 16 possible outcomes of the
four at-bats. However, not all the outcomes are equally likely.

If Ei is the event of getting a hit on the ith at-bat, then
P(Ei ) = 0.4 and P(E c

i ) = 1− 0.4 = 0.6.

We can use the collective independence formula to find the
probabilities of intersections of these events.



General Probabilities, I

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

1. She gets four hits during the game.

2. She gets a hit in her first two at-bats but not the other two.

3. She gets exactly two hits during the game.

4. She gets at least one hit in her last two at-bats.

5. She gets at least one hit during the game.

Our sample space will be the 24 = 16 possible outcomes of the
four at-bats. However, not all the outcomes are equally likely.

If Ei is the event of getting a hit on the ith at-bat, then
P(Ei ) = 0.4 and P(E c

i ) = 1− 0.4 = 0.6.

We can use the collective independence formula to find the
probabilities of intersections of these events.



General Probabilities, II

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

1. She gets four hits during the game.

This event corresponds to the intersection E1 ∩ E2 ∩ E3 ∩ E4.

Since the four at-bats are collectively independent, the
probability of getting a hit during all four at-bats is therefore
P(E1 ∩ E2 ∩ E3 ∩ E4) = P(E1) · P(E2) · P(E3) · P(E4) =
0.44 = 2.56%.



General Probabilities, II

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

1. She gets four hits during the game.

This event corresponds to the intersection E1 ∩ E2 ∩ E3 ∩ E4.

Since the four at-bats are collectively independent, the
probability of getting a hit during all four at-bats is therefore
P(E1 ∩ E2 ∩ E3 ∩ E4) = P(E1) · P(E2) · P(E3) · P(E4) =
0.44 = 2.56%.



General Probabilities, III

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

2. She gets a hit in her first two at-bats but not the other two.

This event corresponds to the intersection E1 ∩ E2 ∩ E c
3 ∩ E c

4 .

Since the four at-bats are independent (and independent
events also have independent complements), the probability of
this event is therefore P(E1 ∩ E2 ∩ E c

3 ∩ E c
4 ) =

P(E1) · P(E2) · P(E c
3 ) · P(E c

4 ) = 0.4 · 0.4 · 0.6 · 0.6 = 5.76%.



General Probabilities, III

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

2. She gets a hit in her first two at-bats but not the other two.

This event corresponds to the intersection E1 ∩ E2 ∩ E c
3 ∩ E c

4 .

Since the four at-bats are independent (and independent
events also have independent complements), the probability of
this event is therefore P(E1 ∩ E2 ∩ E c

3 ∩ E c
4 ) =

P(E1) · P(E2) · P(E c
3 ) · P(E c

4 ) = 0.4 · 0.4 · 0.6 · 0.6 = 5.76%.



General Probabilities, IV

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

3. She gets exactly two hits during the game.

First, we need to identify the various outcomes that make up
this event.

It is not hard to see that this event is the union of
(4
2

)
= 6

possible events (one of which is event 2 from the previous
slide), each of which has 2 hits and 2 non-hits in the 4 at-bats.

By independence and the calculation for event (ii), each of
these events has probability 0.42 · 0.62 and they are all
mutually exclusive.

Thus, the probability of their union is simply the sum of their
individual probabilities, which is 6 · 0.42 · 0.62 = 34.56%.



General Probabilities, IV

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

3. She gets exactly two hits during the game.

First, we need to identify the various outcomes that make up
this event.

It is not hard to see that this event is the union of
(4
2

)
= 6

possible events (one of which is event 2 from the previous
slide), each of which has 2 hits and 2 non-hits in the 4 at-bats.

By independence and the calculation for event (ii), each of
these events has probability 0.42 · 0.62 and they are all
mutually exclusive.

Thus, the probability of their union is simply the sum of their
individual probabilities, which is 6 · 0.42 · 0.62 = 34.56%.



General Probabilities, V

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

4. She gets at least one hit in her last two at-bats.

This event is the union of the two mutually exclusive events
E3 and E c

3 ∩ E4 (she either gets a hit in her third at-bat, or
misses the third and makes the fourth).

By independence, P(E c
3 ∩ E4) = P(E c

3 ) · P(E4) = 0.24.

Since P(E3) = 0.4, we see that the probability of our event is
the sum P(E3) + P(E c

3 ∩ E4) = 0.64 = 64%.

Another approach would be to recognize that this event is the
complement of not getting a hit in either of the last two
at-bats (which is E c

3 ∩ E c
4 , of probability 0.6 · 0.6 = 0.36).

A third approach would be to list all 12 possible outcomes.



General Probabilities, V

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

4. She gets at least one hit in her last two at-bats.

This event is the union of the two mutually exclusive events
E3 and E c

3 ∩ E4 (she either gets a hit in her third at-bat, or
misses the third and makes the fourth).

By independence, P(E c
3 ∩ E4) = P(E c

3 ) · P(E4) = 0.24.

Since P(E3) = 0.4, we see that the probability of our event is
the sum P(E3) + P(E c

3 ∩ E4) = 0.64 = 64%.

Another approach would be to recognize that this event is the
complement of not getting a hit in either of the last two
at-bats (which is E c

3 ∩ E c
4 , of probability 0.6 · 0.6 = 0.36).

A third approach would be to list all 12 possible outcomes.



General Probabilities, VI

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

5. She gets at least one hit during the game.

One option would be to list all the possible outcomes that
make up this event, and sum their respective probabilities.

However, it is much quicker to recognize that this event is the
complement of the event of not getting any hits in the game,
which is E c

1 ∩ E c
2 ∩ E c

3 ∩ E c
4 .

So, by independence, we have P(E c
1 ∩ E c

2 ∩ E c
3 ∩ E c

4 ) =
P(E c

1 ) · P(E c
2 ) · P(E c

3 ) · P(E c
4 ) = 0.64 = 0.1296.

Thus, the probability of getting at least one hit in the game is
1− 0.1296 = 0.8704 = 87.04%.



General Probabilities, VI

Example: A baseball player’s batting average is 0.4, meaning that
she has a probability of 0.4 of getting a hit on any given at-bat,
independently of any other at-bat. If she bats 4 times during a
game, compute the probabilities of the following events:

5. She gets at least one hit during the game.

One option would be to list all the possible outcomes that
make up this event, and sum their respective probabilities.

However, it is much quicker to recognize that this event is the
complement of the event of not getting any hits in the game,
which is E c

1 ∩ E c
2 ∩ E c

3 ∩ E c
4 .

So, by independence, we have P(E c
1 ∩ E c

2 ∩ E c
3 ∩ E c

4 ) =
P(E c

1 ) · P(E c
2 ) · P(E c

3 ) · P(E c
4 ) = 0.64 = 0.1296.

Thus, the probability of getting at least one hit in the game is
1− 0.1296 = 0.8704 = 87.04%.



Probability Medley, I

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

1. Both rolls are sixes.

2. At least one roll is a six.

3. The sum of the rolls is 10.

4. The two rolls are equal.

Our sample space will be the 62 = 36 possible pairs of rolls.
However, not all the outcomes are equally likely.

The given information tells us that for each die, the probability
of a 1, 2, 3, 4, or 5 is 1/7 while the probability of a 6 is 2/7.

Now we use the collective independence formula to find the
probabilities of the listed events.

We will write Ai for the event of rolling i with die A and Bi

for rolling i with die B.



Probability Medley, I

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

1. Both rolls are sixes.

2. At least one roll is a six.

3. The sum of the rolls is 10.

4. The two rolls are equal.

Our sample space will be the 62 = 36 possible pairs of rolls.
However, not all the outcomes are equally likely.

The given information tells us that for each die, the probability
of a 1, 2, 3, 4, or 5 is 1/7 while the probability of a 6 is 2/7.

Now we use the collective independence formula to find the
probabilities of the listed events.

We will write Ai for the event of rolling i with die A and Bi

for rolling i with die B.



Probability Medley, II

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

1. Both rolls are sixes.

This event is the intersection A6 ∩ B6.

Since P(A6) = P(B6) = 2/7, and the rolls are independent,
we have P(A6 ∩ B6) = P(A6) · P(B6) = 4/49.



Probability Medley, II

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

1. Both rolls are sixes.

This event is the intersection A6 ∩ B6.

Since P(A6) = P(B6) = 2/7, and the rolls are independent,
we have P(A6 ∩ B6) = P(A6) · P(B6) = 4/49.



Probability Medley, III

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

2. At least one roll is a six.

This event is the union A6 ∪ B6. By the union-intersection
formula, we have P(A6 ∪ B6) =
P(A6) + P(B6)− P(A6 ∩ B6) = 2/7 + 2/7− 4/49 = 24/49.

Alternatively, notice that this event is the complement of not
rolling a 6 with either die, which is Ac

6 ∩ Bc
6 .

Since P(Ac
6 ∩ Bc

6 ) = P(Ac
6) · P(Bc

6 ) = (5/7) · (5/7) = 25/49,
the original event has probability 1− 25/49 = 24/49.



Probability Medley, III

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

2. At least one roll is a six.

This event is the union A6 ∪ B6. By the union-intersection
formula, we have P(A6 ∪ B6) =
P(A6) + P(B6)− P(A6 ∩ B6) = 2/7 + 2/7− 4/49 = 24/49.

Alternatively, notice that this event is the complement of not
rolling a 6 with either die, which is Ac

6 ∩ Bc
6 .

Since P(Ac
6 ∩ Bc

6 ) = P(Ac
6) · P(Bc

6 ) = (5/7) · (5/7) = 25/49,
the original event has probability 1− 25/49 = 24/49.



Probability Medley, IV

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

3. The sum of the rolls is 10.

There are three possible outcomes that make up this event:
(6,4), (5,5), and (4,6), which correspond to the intersections
A6 ∩ B4, A5 ∩ B5, and A4 ∩ B6.

The probabilities of these three intersections are
P(A6 ∩ B4) = (2/7) · (1/7) = 2/49,
P(A5 ∩ B5) = (1/7) · (1/7) = 1/49, and
P(A4 ∩ B6) = (1/7) · (2/7) = 2/49.

Therefore, the probability of this event is simply the sum
(2/49) + (1/49) + (2/49) = 5/49.



Probability Medley, IV

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

3. The sum of the rolls is 10.

There are three possible outcomes that make up this event:
(6,4), (5,5), and (4,6), which correspond to the intersections
A6 ∩ B4, A5 ∩ B5, and A4 ∩ B6.

The probabilities of these three intersections are
P(A6 ∩ B4) = (2/7) · (1/7) = 2/49,
P(A5 ∩ B5) = (1/7) · (1/7) = 1/49, and
P(A4 ∩ B6) = (1/7) · (2/7) = 2/49.

Therefore, the probability of this event is simply the sum
(2/49) + (1/49) + (2/49) = 5/49.



Probability Medley, V

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

4. The two rolls are equal.

There are six outcomes that make up this event: (1,1), (2,2),
(3,3), (4,4), (5,5), and (6,6).

Like in the previous parts, we can find the probabilities of
these outcomes by multiplying the appropriate individual die
probabilities. We see that the first five each have probability
(1/7) · (1/7) = 1/49 while the last has probability
(2/7) · (2/7) = 4/49.

Therefore, the probability of this event is
5 · (1/49) + (4/49) = 9/49.



Probability Medley, V

Example: Two 6-sided dice are rolled. The dice are weighted so
that rolling a 6 is twice as likely as any one of the other 5 equally
likely outcomes. Find the probabilities of the following events:

4. The two rolls are equal.

There are six outcomes that make up this event: (1,1), (2,2),
(3,3), (4,4), (5,5), and (6,6).

Like in the previous parts, we can find the probabilities of
these outcomes by multiplying the appropriate individual die
probabilities. We see that the first five each have probability
(1/7) · (1/7) = 1/49 while the last has probability
(2/7) · (2/7) = 4/49.

Therefore, the probability of this event is
5 · (1/49) + (4/49) = 9/49.



Summary

We discussed more properties of conditional probabilities.

We introduced the notion of independence of events and discussed
some properties of independence.

We discussed how to compute more general probabilities using
independence.

Next lecture: Computing general probabilities.


