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Counting Principles

Permutations
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Sample Spaces and Events

This material represents §1.2.2-1.3.1 from the course notes.



Recall

Last time, we introduced some properties of sets, and we
introduced some counting principles:

Principle (Addition Principle)

When choosing among n disjoint options labeled 1 through n, if
option i has ai possible outcomes for each 1 ≤ i ≤ n, then the
total number of possible outcomes is a1 + a2 + · · ·+ an.

Principle (Multiplication Principle)

When making a sequence of n independent choices, if step i has bi

possible outcomes for each 1 ≤ i ≤ n, then the total number of
possible collections of choices is b1 · b2 · · · · · bn.

Today, we will tackle some more complex counting problems.



Permutations, I

Certain problem types involving rearrangements of distinct objects,
known as permutations, arise frequently in counting problems.

Example: Determine the number of permutations (i.e., ways to
rearrange) the six letters ABCDEF.

There are 6 letters to be arranged into 6 locations.

For the first letter, there are 6 choices (any of ABCDEF).

For the second letter, there are only 5 choices (any letter
except the one we have already chosen).

For the third letter, there are only 4 choices (any letter except
the first two).

Continuing in this way, we see that there are 3 choices for the
fourth letter, 2 choices for the fifth letter, and only 1 choice
for the last letter.

By the multiplication principle, the total number of
permutations is therefore 6 · 5 · 4 · 3 · 2 · 1 = 720.



Permutations, I

Certain problem types involving rearrangements of distinct objects,
known as permutations, arise frequently in counting problems.

Example: Determine the number of permutations (i.e., ways to
rearrange) the six letters ABCDEF.

There are 6 letters to be arranged into 6 locations.

For the first letter, there are 6 choices (any of ABCDEF).

For the second letter, there are only 5 choices (any letter
except the one we have already chosen).

For the third letter, there are only 4 choices (any letter except
the first two).

Continuing in this way, we see that there are 3 choices for the
fourth letter, 2 choices for the fifth letter, and only 1 choice
for the last letter.

By the multiplication principle, the total number of
permutations is therefore 6 · 5 · 4 · 3 · 2 · 1 = 720.



Permutations, II

Example: A new company logo has four design elements, which
must all be different colors chosen from red, orange, yellow, green,
blue, purple, and pink. How many different logos are possible?

There are 7 possible colors.

The first design element has 7 possible colors.

The second element has 6 possible colors (any of the 7 except
the one already used).

In the same way, the third element has 5 possible colors, and
the fourth has 4 possible colors.

Thus, the total number of logos is 7 · 6 · 5 · 4 = 840.
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Permutations, III

Example: A basketball team has 18 roster players, and must
choose a starting lineup, which consists of a center, power forward,
small forward, point guard, and shooting guard. If each player can
play all 5 positions, how many starting lineups are possible?

There are 18 possible choices for the center.

Once the center is chosen, there are 17 remaining possibilities
for the power forward.

Once these two are chosen, there are 16 choices for the small
forward, and then 15 for the point guard, and finally 14 for
the shooting guard.

Thus, the total number of starting lineups is
18 · 17 · 16 · 15 · 14 = 1 028 160.
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Permutations, IV

These three examples are all computing permutations, in which we
choose k distinct items from a list of n possibilities, and where the
order of our choices matters. We can give a general formula for
this type of problem using factorials:

Definition

If n is a positive integer, we define the number n! (read “n
factorial”) as n! = n · (n− 1) · · · · · 2 · 1, the product of the positive
integers from 1 to n inclusive. We also set 0! = 1.

Some small values are 1! = 1, 2! = 2, 3! = 6, 4! = 24,
5! = 120, and 6! = 720.

The factorial function grows very fast: to 4 significant figures,
we have 10! = 3.629 · 106, 100! = 9.333 · 10157, and
1000! = 4.024 · 102567.



Permutations, V

Now we can give a formula for counting permutations:

Proposition (Counting Permutations)

The number of ways of choosing k ordered items from a list of n
distinct possibilities (where the order of the k items matters) is

equal to
n!

(n − k)!
= n · (n − 1) · · · · · (n − k + 1). In particular, the

number of ways of rearranging n distinct items is n!.

Proof:

There are n possibilities for the first item, n− 1 for the second
item (any possibility but the one already chosen), n − 2 for
the third item (any possibility but the two already chosen), ...,
and n − k + 1 possibilities for the kth item.

This yields a total number of possibilities of
n · (n − 1) · · · · · (n − k + 1) = n!

(n−k)! as claimed.
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Permutations, VI

Example: A sports league has 31 teams in total. How many ways
are there to choose 16 teams that make the playoffs, assuming that
the ranking of the playoff teams matters and there are no ties?

We are choosing k = 16 teams from a list of n = 31, where
the order matters.

Thus, from the permutation counting formula, the total

number of choices is
31!

15!
= 31 · 30 · · · · · 16.

This is very big to compute by hand, but a computer can
quickly evaluate it: 393 008 709 555 221 760 000 ≈ 3.930 · 1020.
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Combinations, I

Another variation on permutations also shows up often; namely, in
which the order of the list of the k items we choose from the list of
n does not matter. Such selections are known as combinations:

Proposition (Counting Combinations)

The number of ways of choosing k unordered items from a list of n
distinct possibilities is

(n
k

)
= nCk = n!

k!(n−k)! = n·(n−1)·····(n−k+1)
k·(k−1)·····1 .

Proof:

If instead we want the k items to be ordered, we are counting
permutations, of which there are n!

(n−k)! .

Now simply observe that for any unordered list, there are k!
ways to rearrange the k elements on the list.

Thus we have counted each unordered list k! times, so the
number of unordered lists is 1

k! ·
n!

(n−k)! = n!
k!(n−k)! .
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Combinations, II

Some remarks:

The symbols
(n
k

)
and nCk are both typically read as “n choose

k”. We will exclusively use the notation
(n
k

)
.

The numbers
(n
k

)
are called binomial coefficients because they

arise as coefficients of binomial expansions.

Specifically, in the expansion of (x + y)n, the coefficient of
xkyn−k is equal to

(n
k

)
.

For example, we can compute that
(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4, and the middle
term is indeed equal to

(4
2

)
= 4!

2!2! = 6.

Binomial coefficients show up in many different places, and
satisfy numerous identities, such as the “reflection identity”(n
k

)
=

( n
n−k

)
along with the recurrence

(n
k

)
=

(n−1
k

)
+
(n−1
k−1

)
.



Combinations, III

The binomial coefficients can be organized into a famous array
called Pascal’s triangle:

Row 0 1
Row 1 1 1
Row 2 1 2 1
Row 3 1 3 3 1
Row 4 1 4 6 4 1
Row 5 1 5 10 10 5 1
Row 6 1 6 15 20 15 6 1

The entries in row n are the values
(n
0

)
,
(n
1

)
,
(n
2

)
, ... ,

(n
n

)
.

Each entry in row n + 1 is obtained by summing the two entries
above it in row n.



Combinations, IV

In general, expanding the products of factorials is not the most
efficient way to evaluate binomial coefficients.

Instead, the formula

(
n

k

)
=

n · (n − 1) · · · · · (n − k + 1)

k · (k − 1) · · · · · 1
is

typically the most efficient.

For example, computing

(
13

4

)
as

13!

4!9!
requires computing

both 13! and 4!9!, and then evaluating the quotient, which is
rather painful to do by hand.

On the other hand, the formula above gives(
13

4

)
=

13 · 12 · 11 · 10

4 · 3 · 2 · 1
= 13 · 11 · 5 = 715, which is easy to

evaluate by hand.



Combinations, V

Example: How many 3-element subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9}
are there?

Since subsets are not ordered, we are simply counting the
number of ways to choose 3 unordered elements from the
given set of 9.

From our discussion of combinations, the number of such

subsets is

(
9

3

)
=

9 · 8 · 7
3 · 2 · 1

= 84.
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Combinations, VI

Example: At a conference with 30 mathematicians, every pair of
attendees shares a socially-distanced virtual handshake once. How
many total virtual handshakes occur?

Since pairs of people are not ordered, we are counting the
number of ways to choose 2 attendees from a total of 30,

which is

(
30

2

)
=

30 · 29

2 · 1
= 435.
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Combinations, VII

Example: A pizza parlor offers 14 different possible toppings on a
pizza. A pizza may have from 0 up to 4 different toppings. How
many different pizza topping combinations are possible?

In general, there are

(
14

k

)
possible pizzas that have exactly k

toppings, since toppings cannot be repeated and the order
does not matter.

Thus, the number of pizzas with at most 4 toppings is(
14

0

)
+

(
14

1

)
+

(
14

2

)
+

(
14

3

)
+

(
14

4

)
= 1 + 14 + 91 + 364 + 1001 = 1471.
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Combinations, VIII

Example: Determine the number of different 5-card hands that can
be dealt from a standard 52-card deck. (The order of cards in a
hand does not matter.)

Since the order does not matter, we are counting the number
of combinations of 5 cards selected from the deck of 52.

Thus, there are
(52
5

)
= 2 598 960 possible 5-card hands.
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Combinations, IX

Example: Determine the number of different 5-card flush hands,
consisting of 5 cards of the same suit, that can be dealt from a
standard 52-card deck.

There are 4 possible choices of suit. Once we make this
selection, we then select 5 unordered cards from the 13 cards
in that suit.

There are
(13
5

)
= 1287 ways to choose these 5 cards.

Thus, by the multiplication principle, in total there are

4 ·
(

13

5

)
= 5148 possible 5-card flushes.
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Combinations, X (Marks The Spot)

Example: Determine the number of different full-house hands,
consisting of three cards of one rank and a pair of cards in another
rank, that can be dealt from a standard 52-card deck.

Note that there are 13 possible card ranks, and 4 cards of
each rank.

First, there are 13 ways to choose the rank of the 3-of-a-kind,
and then there are 12 ways to choose the rank of the pair.

Once we have chosen the ranks, there are
(4
3

)
= 4 ways to

choose the three cards forming the 3-of-a-kind, and there are(4
2

)
= 6 ways to choose the two cards forming the pair.

Thus, in total there are 13 · 12 · 4 · 6 = 3744 possible full
houses.
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Combinations, XI

Example: Determine the number of possible ways of permuting the
letters in the word MISSISSIPPI.

Since there are 11 letters, it might seem as if there are 11!
permutations of the letters. However, not all permutations
yield different words: for example, if we swap two of the Ss,
the resulting words are the same.

There are 4 Ss, 4 Is, 2 Ps, and 1 M, which we arrange in order.

First, place the 4 Ss: since there are 11 possible locations,
there are

(11
4

)
ways to place them.

Next, place the 4 Is: there are 7 remaining locations, so there
are

(7
4

)
ways to place them.

In the same way, there are
(3
2

)
choices for the 2 Ps, and then

just
(1
1

)
choice for the M.

In total, there are
(11
4

)
·
(7
4

)
·
(3
2

)
·
(1
1

)
= 330 · 35 · 3 = 34650

possible permutations of MISSISSIPPI.
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Combinations, XII

Example: Determine the number of possible ways of permuting the
letters in the word BOSTONIANS that contain the word BOOS.

The number of such permutations is the number of
permutations of the six letters T, N, I, A, N, S and the string
BOOS (which we can think of as being a single string).

There are 2 Ns, and 1 each of T, I, A, S, and BOOS to
arrange.

First, we place the 2 Ns: since there are 7 possible locations,
there are

(7
2

)
ways to place them. The remaining 5 strings can

be permuted arbitrarily, so there are 5! ways to arrange them.

In total, there are
(7
2

)
· 5! = 42 · 120 = 2520 ways of

permuting the letters.
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Counting Medley, I

Example: Consider all of the 4-letter strings that can be made
from the letters ABCDEFGH. Determine the number of strings
satisfying the given condition:

1. No conditions.

2. The string starts with A.

3. The string has no repeated letters.

4. The string has at least one repeated letter.

5. The string does not contain the letter B.

6. The string contains at least one letter B.

7. Each letter is different from the one before it.

8. The string has no repeated letters and is in alphabetical order.

We will do these one at a time.



Counting Medley, II

Example: Consider all of the 4-letter strings that can be made
from the letters ABCDEFGH. Determine the number of strings
satisfying the given conditions:

1. No conditions.

Each letter in the string has 8 possible choices, so there are
84 = 4096 such strings.

2. The string starts with A.

The first letter has 1 possible choice and the remaining 3 have
8 possible choices, so there are 83 = 512 such strings.
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Counting Medley, III

Example: Consider all of the 4-letter strings that can be made
from the letters ABCDEFGH. Determine the number of strings
satisfying the given conditions:

3. The string has no repeated letters.

Because order matters, we are counting permutations of 4
letters taken from a selection of 8.
Thus, there are 8!/4! = 8 · 7 · 6 · 5 = 1680 such strings.

4. The string has at least one repeated letter.

This might seem like it would be very hard to count, because
there are many ways a string could have a repeated letter (a
double letter, a triple letter, two double letters, etc.).
But in fact, this set of strings is simply the complement of the
ones we just counted above.
So, the number of strings with at least one repeated letter is
4096− 1680 = 2416.
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Counting Medley, IV

Example: Consider all of the 4-letter strings that can be made
from the letters ABCDEFGH. Determine the number of strings
satisfying the given conditions:

5. The string does not contain the letter B.

There are now 7 possible choices for each of the 4 letters in
the string, so the total is simply 74 = 2401.

6. The string contains at least one letter B.

Like in part 4, this set of strings is simply the complement of
the ones we just counted above.

So, the number of strings with at least one letter B is
4096− 2401 = 1695.
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Counting Medley, V

Example: 4-letter strings from ABCDEFGH:

7. Each letter is different from the one before it.

There are 8 choices for the first letter. Once we choose it,
there are 7 choices for the second letter (anything but the one
chosen).

Once we choose the second letter, there are 7 choices for the
third letter (anything but the second letter).

For the same reason, there are 7 choices for the fourth letter.
Hence the total is 8 · 7 · 7 · 7 = 2744.

8. The string has no repeated letters and is in alphabetical order.

Given any set of letters, there is only one way to put them in
alphabetical order. So in fact, we are just choosing subsets of
4 distinct letters from our set of 8 (i.e., combinations).

Thus, there are
(8
4

)
= 8!

4!4! = 8·7·6·5
4·3·2·1 = 70 such strings.
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7. Each letter is different from the one before it.

There are 8 choices for the first letter. Once we choose it,
there are 7 choices for the second letter (anything but the one
chosen).

Once we choose the second letter, there are 7 choices for the
third letter (anything but the second letter).

For the same reason, there are 7 choices for the fourth letter.
Hence the total is 8 · 7 · 7 · 7 = 2744.

8. The string has no repeated letters and is in alphabetical order.

Given any set of letters, there is only one way to put them in
alphabetical order. So in fact, we are just choosing subsets of
4 distinct letters from our set of 8 (i.e., combinations).

Thus, there are
(8
4

)
= 8!

4!4! = 8·7·6·5
4·3·2·1 = 70 such strings.



Sample Spaces and Events, I

Our goal now is to use some of these properties of sets and
counting to develop the notion of probability. Today, we will take a
fairly abstract viewpoint based on sets, and then next time we will
specialize to more concrete settings, which will involve applying
counting techniques.

The fundamental idea of “probability” arises from performing an
experiment or observation, and tabulating how often particular
outcomes arise. We need to make this a bit more precise:

“Definition”

For any experiment or observation, the set of possible outcomes is
called the sample space, and an event is a subset of the sample
space.
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Sample Spaces and Events, II

Example: Consider the experiment of “rolling a standard 6-sided
die once”.

There are 6 possible outcomes to this experiment, namely,
rolling a 1, a 2, a 3, a 4, a 5, or a 6, so the sample space is
the set S = {1, 2, 3, 4, 5, 6}.
One event is “rolling a 3”, which would correspond to the
subset {3}.
Another event is “rolling an even number”, which would
correspond to the subset {2, 4, 6}.
A third event is “rolling a number bigger than 2”, which
would correspond to the subset {3, 4, 5, 6}.
A fourth event is “rolling a negative number”, which would
correspond to the empty subset ∅ = {} because there are no
outcomes in the sample space that make this event occur.



Sample Spaces and Events, III

Example: Consider the experiment of “flipping a coin once”.

There are 2 possible outcomes to this experiment: heads and
tails. Thus, the sample space is the set S = {heads, tails},
which we typically abbreviate as S = {H,T}.
One event is “obtaining heads”, corresponding to the subset
{H}.
Another event is “obtaining tails”, corresponding to the
subset {T}.



Sample Spaces and Events, IV

Example: Consider the experiment of “flipping a coin four times”.

By the multiplication principle, there are 24 = 16 possible
outcomes to this experiment (namely, the 16 possible strings
of 4 characters each of which is either H or T ).

One event is “exactly one head is obtained”, corresponding to
the subset {HTTT ,THTT ,TTHT ,TTTH}.
Another event is “the first three flips are tails”, corresponding
to the subset {TTTH,TTTT}.



Sample Spaces and Events, V

Example: Consider the experiment of “drawing one card from a
standard 52-card deck”.

Since there are 52 possible cards, there are 52 outcomes in the
sample space. Some examples include “the four of spades”,
“the ace of clubs”, and “the jack of hearts”.

We could abbreviate each card by its numerical label
(A,2,3,4,5,6,7,8,9,10,J,Q,K) and its suit (♥, ♣, ♦, ♠).

One event is “a king is drawn”, corresponding to the subset
{K♥,K♣,K♦,K♠}.
Another event is “a spade is drawn”, corresponding to
{A♠, 2♠, 3♠, 4♠, 5♠, 6♠, 7♠, 8♠, 9♠, 10♠, J♠,Q♠,K♠}.
A third event is “a red jack is drawn”, corresponding to
{J♥, J♦}.



Sample Spaces and Events, VI

Example: Consider the experiment of “measuring the lifetime of a
refrigerator in years”.

There are many possible outcomes to this experiment,
including 0, 5, 28, 3.2, and 100.

The sample space would (at least in principle) be the set of
nonnegative real numbers: S = [0,∞).

One event is “the refrigerator stops working after at most 3
years”, corresponding to the subset S = [0, 3].

Another event is “the refrigerator works for at least 6 years”,
corresponding to the subset S = [6,∞).

A third event is “the refrigerator is broken when it arrives”,
corresponding to the subset S = {0}.



Sample Spaces and Events, VII

Example: Consider the experiment of “shuffling a standard 52-card
deck”.

Since there are 52 possible cards, there are 52! outcomes in
the sample space, one for each possible permutation of the
cards.

The sample space S is the (quite large!) set of all 52! of these
sequences.

One event is “the first card is an ace of clubs”, while another
event is “the entire deck alternates
red-black-red-black...-red-black”.

It would be quite infeasible to write out the exact subsets
corresponding to these events (it is left as an exercise for you
to verify that their cardinalities are 51! and 26! · 26!
respectively), but in principle we could list them all.



Sample Spaces and Events, VIII

Example: Consider the experiment of “measuring the temperature
in degrees Fahrenheit outside”.

There are many possible outcomes to this experiment,
including 28◦, 87.4◦, and 120◦.

Depending on how accurately the temperature is measured,
and what the possible outside temperatures are, the sample
space could be very large or even infinite.

If the temperature is measured to the nearest whole degree,
and it is never colder than 0◦ nor hotter than 120◦, then the
sample space would be S = {0◦, 1◦, 2◦, . . . , 120◦}.
One event is “the temperature is above freezing”,
corresponding to the subset {33◦, 34◦, . . . , 120◦}.
Another event is “the temperature is a multiple of 10◦”,
corresponding to the subset {0◦, 10◦, 20◦, . . . , 120◦}.



Operations on Events, I

Since we view events as subsets of the sample space, we can
perform the same operations on events as we can on sets.

Definition

If A and B are events in a sample space S, we define the union
A ∪ B to be the event corresponding to the union A ∪ B. We also
define the intersection A ∩ B and the complement Ac analogously.

In the case where the events A and B have A ∩ B = ∅, we say that
A and B are mutually exclusive, since they cannot both occur at
the same time.



Operations on Events, II

Example:

Let S be the sample space S = {1, 2, 3, 4, 5, 6} obtained by
rolling a standard 6-sided die once, with A = {2, 4, 6} the
event of rolling an even number and B = {3, 4, 5, 6} the event
of rolling a number larger than 2.

Then the complement Ac = {1, 3, 5} is the event of not
rolling an even number (i.e., rolling an odd number), and the
complement Bc = {1, 2} is the event of not rolling a number
larger than 2.

Also, the union A ∪ B = {2, 3, 4, 5, 6} is the event of rolling a
number that is even or larger than 2, while the intersection
A ∩ B = {4, 6} is the event of rolling a number that is even
and larger than 2.



Motivation for Probability, I

We have laid out the general framework for events and sample
spaces, so now we can begin studying probabilities of events, which
quantify how likely it is that a particular event will occur.
Rather than simply giving the definition, here is a bit of motivation
for how this should align with your intuition:

If we have an experiment with corresponding sample space S ,
and E is an event (which we consider as being a subset of S),
we would like to define the probability of E , written P(E ), to
be the frequency with which E occurs if we repeat the
experiment many times independently.



Motivation for Probability, II

Specifically, if we repeat the experiment n times and the event
occurs en times, then the relative frequency that E occurs is
the ratio en/n. If we let n grow very large (more formally, if
we take the limit as n→∞) then the ratios en/n should
approach a fixed number, which we call the probability of the
event E .

Since for each n we have 0 ≤ en ≤ n, and thus 0 ≤ en/n ≤ 1,
we see that the limit of the ratios en/n must be in the closed
interval [0, 1]. This tells us that P(E ) should always lie in this
interval.

For the event S (consisting of the entire sample space), we
clearly have P(S) = 1, because if we perform the experiment
n times, the event S always occurs n times, so en = n for
every n.



Motivation for Probability, III

Also, if E1 and E2 are mutually exclusive events, then
P(E1 ∪ E2) = P(E1) + P(E2): this follows by observing that
because both events cannot occur simultaneously, then the
total number of times E1 or E2 occurs in n experiments is
equal to the total number of times E1 occurs plus the total
number of times E2 occurs.

In particular, if S = {s1, s2, . . . , sk} is a finite sample space,
then by applying the above observation repeatedly, we can see
that P({s1}) + P({s2}) + · · ·+ P({sk}) =
P({s1, s2, . . . , sk}) = P(S) = 1.

This means that the sum of all the probabilities of the events
in the sample space is equal to 1.



Motivation for Probability, IV

To summarize, if probabilities behave in accordance with the
properties we just worked out using this intuitive formulation, they
should have the following properties:

1. The probability of any event should represent the proportion
of times it occurs. In particular, it should always be between 0
and 1 (inclusive).

2. The probability of the entire sample space S should equal 1.

3. If E1 and E2 are mutually exclusive events, then P(E1 ∪ E2)
should equal P(E1) + P(E2).

The clever idea, first proposed by Kolmogorov, is that we should
actually turn this logic on its head, and define probabilities of
events using these properties. We will go through this next time.



Summary

We introduced factorials and the binomial coefficients, and used
them to count permutations and combinations.

We discussed a number of examples of using permutations and
combinations to count things.

We introduced events and sample spaces and gave some
motivation for probability.

Next lecture: Calculating probabilities.


