
Math 3081 (Probability and Statistics)

Lecture #1 of 27 ∼ July 6, 2021

Introduction + Sets and Counting

Welcome to Math 3081 + Course Logistics

Sets, Subsets, Cardinality

Unions, Intersections, Complements, Venn Diagrams

Counting: Addition and Multiplication Principles

This material represents §1.1-§1.2.1 from the course notes.



Welcome!

Welcome to Math 3081 (Probability and Statistics)! Here are some
course-related locations to bookmark:

The course webpage is here: https://web.northeastern.

edu/dummit/teaching_su21_3081.html . Most
course-related information is posted there.

Homework assignments are in WeBWorK via Rederly:
https://app.rederly.com/ .

Course-related discussion will be done via Piazza:
https://piazza.com/class/kqb79ko8yki2d2

Exams will be distributed and collected via Canvas:
https://canvas.northeastern.edu/

https://web.northeastern.edu/dummit/teaching_su21_3081.html
https://web.northeastern.edu/dummit/teaching_su21_3081.html
https://app.rederly.com/
https://piazza.com/class/kqb79ko8yki2d2
https://canvas.northeastern.edu/


Course Topics: Probability and Statistics

As you might expect based on the title, we will be covering
probability and statistics in this course. More specifically:

Probability: sets, counting, probability distributions,
conditional probability, independence, applications of
probability, discrete and continuous random variables, joint
distributions, expected value / variance / standard deviation,
the binomial / Poisson / exponential / normal distributions,
the central limit theorem, modeling applications.

Statistics: parameter estimation, maximum likelihood
estimates, interval estimation, hypothesis testing, p-values, z
scores and z testing, errors and misuses of hypothesis tests,
Student’s and Welch’s t tests, the χ2 tests for independence
and goodness-of-fit, and statistical methodology.

The term is split evenly between these two clusters of topics.



Lectures

The course lectures will be conducted via Zoom. All lectures are
recorded for later viewing. For security reasons (since these lecture
slides are posted publicly) the links to upcoming and past lectures
are only available via the Canvas page or via the Piazza page.

Section 1 meets MTWR from 1:30pm-3:10pm Eastern time.

Section 2 meets MTWR from 9:50am-11:30am Eastern time.

Attendance is highly encouraged but not required. Since I am
teaching both sections of 3081 this term, for your convenience you
may attend either lecture (they will cover the same material at the
same pace).



Grades and Exams, I

The assignments in this class consist of weekly WeBWorK
(homework) and biweekly exams. More specifically:

There will be 7 WeBWorK assignments, one each week. Every
problem on every assignment will be counted, and your score
is [total points scored]/[total problems assigned].

There will be 4 exams: three midterms and a final. Exams will
be distributed via Canvas and will have the same format and
length as if they were being given in class.

You will sign up for a fixed time window in which to take your
exam and submit scans of your responses. If you miss an
exam for any reason, you will receive a zero. Makeup exams
will not be given. The final can replace a missed midterm.



Grades and Exams, II

There are four exams in this course: three 60-min midterm exams
and a final exam.

The three midterms will be held on Sat Jul 17, Sat Jul 31,
and Sat Aug 14 (every two weeks starting in week 2). You will
have an option of at least four possible time windows during
which to take the exam, spread throughout the day.

The final exam will be held on Mon Aug 23 or Tue Aug 24 and
will have at least five time options spread across the two days.

There are two options for the final: a 2-hour comprehensive
final, or a 45-minute short final. You will decide which one to
take after the last class day.

The comprehensive final covers the whole semester, while the
short final only covers the material after midterm 3.



Grades and Exams, III

Your course grade consists of 15% WeBWorK (homework) and
85% exams.

If you take the comprehensive final, your exam score is the
maximum of (3×20% each midterm + 25% final) and
(2×25% best two midterms + 35% final).

If you take the short final, your exam score is
(3×23% each midterm + 16% final).

Thus, with the short final, all of the midterms count and you
cannot drop any scores, so this option is only recommended if
you have done well on all of the other exams.

On the other hand, if you take the comprehensive final, you
have the opportunity to make up for a low or missing midterm
grade (since the lowest midterm can be dropped).



Grades and Exams, IV

The letter grades in the course are not assigned via a fixed scale (it
is determined by the distribution at the end of the term). However,
there are lower bounds:

A raw average of 92% will be at least an A.

A raw average of 90% will be at least an A-.

A raw average of 88% will be at least a B+.

A raw average of 82% will be at least a B.

A raw average of 80% will be at least a B-.

A raw average of 78% will be at least a C+.

A raw average of 72% will be at least a C.

A raw average of 60% will guarantee a passing grade.

Approximate grade correspondences will be provided with the
midterm exam scores so that you can track your progress.



WeBWorK, I

There will be 7 WeBWorK assignments, one each week, typically
due at 5am Eastern on Fridays. (The first assignment is instead
due this Sunday at 5am, since it is the first week.)

WeBWorK is an open-source electronic homework system
designed specifically for mathematics and statistics courses.
The main advantage (for you) is that it is free for students.

Each assignment will have approximately 20 problems. All
problems are worth 1 point; many problems have multiple
parts, each of which is worth some fraction of 1 point.

You are encouraged to consider the homeworks as being due
“Thursday evening”.

You are allowed a 12-hour grace period after the official due time
of 5am, in which you may continue working on problems for 50%
credit. Extensions can only be given in absolute emergencies.



WeBWorK, II

To access WeBWorK, go to https://app.rederly.com/ and log
in with your Northeastern email address and password.

Your WeBWorK username is your Northeastern email address.
(You must use your Northeastern email address!)

To set up your account password, check your Canvas
messages for the invitation link to create your password.

Try logging into WeBWorK now to check that things work
properly, if you haven’t already done so.

https://app.rederly.com/


WeBWorK, III

How to use WeBWorK as wisely as possible:

Consider the homeworks as being due “Thursday evening”.
(WeBWorK 1 is due two days later since it is the first week.)

Look over the problems as soon as the set is open so you
know what material is covered, and then spread out your work
on the problems over several days. Do not fall into the trap of
only starting the assignment the evening before it is due!

If you are stuck on a problem, move to another one and then
come back. If you’re still stuck, ask for help on Piazza, during
office hours, or using WeBWorK’s “Email Instructor” button.

Make sure to do as much of every assignment as possible,
even if you cannot completely finish it.

Because of the compressed nature of the course, the midterm
exams on Saturdays will cover the material on the WeBWorK
assignment due immediately before.



Piazza

Math 3081 will use Piazza as a course discussion forum:
https://piazza.com/class/kqb79ko8yki2d2. The Piazza
page is open only by invitation to 3081 students and is linked to
Canvas. Check your email for the invitation.

Links to the recordings of the past lectures will be hosted on
the Piazza page, as well as the link to upcoming lectures and
problem sessions.

You are encouraged to conduct discussions about the course
and associated topics on Piazza. In particular, you are
welcome to ask questions about the WeBWorK problems. If
you do, it is helpful to others if you include a snapshot of your
version of the problem.

Try visiting the Piazza page now, if you haven’t already done so.

https://piazza.com/class/kqb79ko8yki2d2


Problem Sessions + Office Hours

The TA will hold a weekly problem session on Thursdays from
noon to 1pm via Zoom. It is devoted to going over problems on
the recent course material similar to the problems on the upcoming
WeBWorK, and is recorded for those not attending live.

The TA and instructor also hold weekly office hours, intended as a
time for you to get one-on-one help with WeBWorK and ask other
course-related questions (with the instructor). Office hours are at
the following times:

Prof. Dummit: 3:15pm-4:30pm MR, or by appointment

TA: 3:30pm-4:30pm T.

Office hours are held via Zoom and are not recorded.



Miscellaneous Info

Here is some other miscellaneous information:

The instructor will write lecture notes for the course (in lieu of
an official textbook) as the semester progresses. The course
will roughly follow the presentation in Larsen and Marx’s “An
Introduction to Mathematical Statistics and its Applications”
(5th edition), but it is not necessary to purchase the textbook.

Course prerequisites: Math 1242, 1252, or 1342 (Calculus 2).

Collaboration and technology: You are free to use calculators
and computer technology for homework problems, and
calculators are allowed on exams. You are allowed to work on,
and discuss, homework assignments together, as long as the
actual submissions are your own work. Collaboration is, of
course, not allowed on exams.



Other Boilerplate, I

Statement on Academic Integrity: A commitment to the
principles of academic integrity is essential to the mission of
Northeastern University. Academic dishonesty violates the
most fundamental values of an intellectual community and
undermines the achievements of the entire University.
Violations of academic integrity include (but are not limited
to) cheating on assignments or exams, fabrication or
misrepresentation of data or other work, plagiarism,
unauthorized collaboration, and facilitation of others’
dishonesty. Possible sanctions include (but are not limited to)
warnings, grade penalties, course failure, suspension, and
expulsion.



Other Boilerplate, II

Statement on Accommodations: Any student with a disability
is encouraged to meet with or otherwise contact the instructor
during the first week of classes to discuss accommodations.
The student must bring a current Memorandum of
Accommodations from the Office of Student Disability
Services.

Statement on Classroom Behavior: Disruptive classroom
behavior will not be tolerated. In general, any behavior that
impedes the ability of your fellow students to learn will be
viewed as disruptive.

Statement on Inclusivity: Faculty are encouraged to address
students by their preferred name and gender pronoun. If you
would like to be addressed using a specific name or pronoun,
please let your instructor know.



Other Boilerplate, III

Statement on Evaluations: Students are requested to
complete the TRACE evaluations at the end of the course.

Miscellaneous Disclaimer: The instructor reserves the right to
change course policies, including the evaluation scheme of the
course (e.g., in the event of natural disaster or global
pandemic).1 Notice will be given in the event of any
substantial changes.

1This is a verbatim quote from my syllabus template from 10 years ago, just
in case you’re wondering.



Awkward Transition To Doing Actual Math Now

Pause here for questions about course logistics.

Note to self: don’t read this slide out loud.



Overview of §1: Counting and Probability

Our first topic in Probability and Statistics is to discuss probability,
which quantifies how likely it is that a particular event will occur.

We begin with a brief review of various basic properties of sets
and set operations (this lecture).

Then we introduce basic counting principles (also this
lecture), permutations, combinations, and binomial
coefficients (next lecture), which are all ultimately grounded
in properties of sets.

With those basics in hand, we can develop the fundamentals
of discrete probability (after that), which in turn rely heavily
on counting principles and set properties.



Let’s Talk About Sets, I

“Definition”

A set is a well-defined collection of distinct elements.

The elements of a set can be essentially anything: integers,
real numbers, other sets, people.

Sets are generally denoted by capital or script letters, and
when listing the elements of a set, curly brackets {·} are used.

Sets do not have to have any elements: the empty set ∅ = { }
is the set with no elements at all.

Two sets are the same precisely if all of their elements are the
same. The elements in a set are not ordered, and no element
can appear in a set more than once: thus {1, 4, 3} and
{3, 1, 4} are the same set.



Let’s Talk About Sets, II

There are two primary ways to describe a set.

Method 1 is to list all the elements (implicitly or explicitly).
Examples:

A = {1, 2, 4, 5} is the set containing the four numbers 1, 2, 4,
and 5.

B = {1, 2, 3, 4, . . . , 100} is the set containing the first 100
positive integers.

Method 2 is to describe properties of the elements.
Examples:

The S of solutions x to the equation x2 = 1 has two
elements: S = {1,−1}.
The set T of TAs for this course has one element
T = {Jiewei Feng}.



Let’s Talk About Sets, III

The most basic query we can make of a set is whether a particular
object x is an element or not:

Definition (Notation)

If S is a set, x ∈ S means “x is an element of S”, and x 6∈ S
means “x is not an element of S”.

Examples:

For S = {1, 2, 5} we have 1 ∈ S and 5 ∈ S but 3 6∈ S and
π 6∈ S .

If S is the set of English words starting with the letter A, we
have apple ∈ S and antlers ∈ S and anaphylaxis ∈ S , while
potatoes 6∈ S and 7 6∈ S and 1000 6∈ S .



Let’s Talk About Sets, IV

The situation where one set contains all the elements of another
set is important:

Definition

If A and B are two sets with the property that every element of A
is also an element of B, we say A is a subset of B (or that A
is contained in B) and write A ⊆ B.

Examples:

If A = {1, 2, 3}, B = {1, 4, 5}, and C = {1, 2, 3, 4, 5}, then
A ⊆ C and B ⊆ C but neither A nor B is a subset of the
other.

If S is the set of all English words and T is the set of all
English words starting with the letter t, then T ⊆ S .

If A is any set, then the empty set ∅ is contained in A.



Let’s Talk About Sets, V

The number of elements in a set is also quite important:

Definition

If A is any set, the cardinality of A, denoted #A or |A|, is the
number of distinct elements in A.

Examples:

For A = {1, 2, 3} and B = {2, 4, 6, 8, 10, . . . , 100}, then
#A = 3 and #B = 50.

The cardinality of the empty set ∅ is 0.

The cardinality of the set {1, 2, 3, 4, . . . } of positive integers is
∞.

It is easy to see that if A ⊆ B, then #A ≤ #B.



Set Operations, I: Intersection and Union

Given two sets, we now consider the elements common to both
sets, and also the elements in at least one of the two sets:

Definition

If A and B are two sets, then the intersection A ∩ B is the set of
all elements contained in both A and B. The union A ∪ B is the
set of all elements contained in either A or B (or both).

Examples:

If A = {1, 2, 3} and B = {1, 4, 5}, then A ∩ B = {1} and
A ∪ B = {1, 2, 3, 4, 5}.
If C = {0, 2, 6} and D = {3, 5}, then C ∩ D = ∅ and
C ∪ D = {0, 2, 3, 5, 6}.

It is easy to see that if A ⊆ B, then A ∩ B = A and A ∪ B = B.



Set Operations, II: Intersection and Union

Examples (continued):

If E = {2, 4, 6, 8, . . . } is the set of all positive even integers
and S = {1, 4, 9, 16, . . . } is the set of all positive perfect
squares, then E ∩ S = {4, 16, 36, 64, . . . } is the set of all even
perfect squares.

If A = {1, 2, 3}, B = {1, 3, 4}, and C = {1, 3, 9}, then
A ∩ B ∩ C = {1, 3} while A ∪ B ∪ C = {1, 2, 3, 4, 9}.
If R = {1, 2, 3}, S = {1, 3, 4}, and T = {1, 3, 9}, then
(R ∩ S) ∪ T = {1, 3} ∪ {1, 3, 9} = {1, 3, 9} while
R ∩ (S ∪ T ) = {1, 2, 3} ∩ {1, 3, 4, 9} = {1, 3}.

The last example shows that we cannot mix unions and
intersections without specifying the order of operations.



Set Operations, III: Venn Diagrams

Venn diagrams are very useful for visualizing unions and
intersections. Here is a Venn diagram for the sets
A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10, 12}:



Set Operations, IV: Venn Diagrams

Here is a Venn diagram for the sets A = {2, 6, 10, 14},
B = {2, 5, 6}, C = {0, 1, 2, 3, 5}:



Set Operations, V: Venn Diagrams

There is a simple relation between the sizes of two sets and the
sizes of their union and intersection:

Theorem (Sizes of Unions and Intersections)

If A and B are any sets, then #(A ∪ B) + #(A ∩ B) = #A + #B.

Proof: Both sides count every element in A ∩ B twice and every
other element once, so they are equal. (Try drawing a Venn
diagram if you can’t see why this is true.)



Set Operations, V: Venn Diagrams

There is a simple relation between the sizes of two sets and the
sizes of their union and intersection:

Theorem (Sizes of Unions and Intersections)

If A and B are any sets, then #(A ∪ B) + #(A ∩ B) = #A + #B.

Proof: Both sides count every element in A ∩ B twice and every
other element once, so they are equal. (Try drawing a Venn
diagram if you can’t see why this is true.)



Set Operations, VI: Venn Diagrams

Example: For A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10, 12}, verify
that #(A ∪ B) + #(A ∩ B) = #A + #B.

Using the Venn diagram we can see #A = 5, #B = 6,
#A ∩ B = 2, #A ∪ B = 9, and indeed 9 + 2 = 5 + 6.



Set Operations, VI: Venn Diagrams

Example: For A = {1, 2, 3, 4, 5} and B = {2, 4, 6, 8, 10, 12}, verify
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Set Operations, VII: Venn Diagrams

Example: A survey of 80 reptile owners shows that 59 own a snake
and 53 own a lizard, and none have any other pets. How many
owners have both a snake and a lizard?

Let S be the set of snake owners and L be the set of lizard
owners. Then #S = 59, #L = 53, and #(S ∪ L) = 80.

Thus #(S ∩ L) = #S + #L−#(S ∪ L) = 59 + 53− 80 = 32,
meaning that 32 owners have both a snake and a lizard.
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Set Operations, VIII: Universal Sets

In many contexts, it is useful to think of all the sets we are
discussing as being subsets of some particular larger set S , which
we refer to as a universal set of elements under consideration.

In general, we must always specify precisely what this
universal set U is, unless it is clear from context. For example,
if we are discussing sets of integers, a sensible choice is to
take U to be the set of integers, but there is no reason we
couldn’t instead take U to be the set of all real numbers.

It might seem to be convenient to use the same universal set
in all contexts, but it turns out that assuming the existence of
a general “universal set” of all possible elements leads to
logical contradictions2.

2If you want to learn more about this, look up “Russell’s Paradox”, and/or
take Math 1365!



Set Operations, IX: The Rise of Skywalker Complements

If we have chosen a suitable universal set U and A is a subset of
U, then we may speak of the elements of U not in A.

Definition

If U is a universal set and A ⊆ U, then the complement of A (as a
subset of U), denoted as Ac , is the set of elements of U not in A.

Example:

With universal set U = {1, 2, 3, 4, 5, 6}, if A = {1, 3, 4} and
B = {1, 2, 3, 4, 5, 6}, then Ac = {2, 5, 6} and Bc = ∅.

Other notations sometimes used for the complement of A as a
subset of U include A′, A, U\A, and U − A.



Set Operations, X: Complements

In a Venn diagram, we always identify the universal set U in the
diagram (usually by marking it in the corner), and represent Ac as
the area outside the region marked as A:



Set Operations, XI: Complements

We have a few basic properties of complements that follow from
the definition:

Observe that for any set A, we have A ∪ Ac = U, because
every element is either in A or not in A.

Also, A ∩ Ac = ∅ because by definition no element is both in
A and not in A.

Using the two properties above and the union-intersection
cardinality formula, we see that
#A + #Ac = #(A ∪ Ac) + #(A ∩ Ac) = #U.

This means, if A is finite, then #Ac = #U −#A.

It is also true that (Ac)c = A (try working this one out yourself!).



Set Operations, XII: Example

Example: In a literature class, a total of 45 short stories are read:

25 are romantic, 18 are science fiction, and 14 are dystopian.

Furthermore, 8 of the science fiction stories are romantic, 2 of
which are also dystopian.

There are 7 dystopian science fiction stories.

Every dystopian story is either romantic or science fiction.

Determine the number of short stories that are (i) romantic or
dystopian, (ii) non-dystopian science fiction, and (iii) none of the
three categories.

We can solve this kind of problem using a Venn diagram.
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Set Operations, XII: Example

Let U be all 45 short stories, R the romantic stories, S the
science-fiction stories, and D the dystopian stories. Then

There are 45 stories, so #U = 45.

There are 25 romantic stories, so #R = 25.

There are 18 science-fiction stories, so #S = 18.

There are 14 dystopian stories, so #D = 14.

There are 8 romantic science-fiction stories, so #(R ∩ S) = 8.
Of these 2 are dystopian, so #(R ∩ S ∩ D) = 2, hence also
#(R ∩ S ∩ Dc) = 6,

There are 7 dystopian science-fiction stories, so #(S ∩D) = 7.

Finally, #(D ∩ Rc ∩ Sc) = 0 because there are no stories that
are dystopian, but not romantic and not science fiction.



Set Operations, XIII: Example

Now we can assemble this information into a Venn diagram:

Next, we can use the unused information to fill in the other entries.



Set Operations, XIV: Example

The end result is shown below:

Now we simply read off the desired answers: #(R ∪ D) = 30,
#(S ∩ Dc) = 11, #(Rc ∩ Sc ∩ Dc) = 10.



Set Operations, XV: Cartesian Products

There is one more important set operation that we will need to use:

Definition

If A and B are any sets, the Cartesian product is the set A× B
consisting of all ordered pairs (a, b) where a ∈ A and b ∈ B.

Examples:

If A = {1, 2} and B = {1, 3, 5}, then
A× B = {(1, 1), (1, 3), (1, 5), (2, 1), (2, 3), (2, 5)}.
If A = {H,T} then
A× A = {(H,H), (H,T ), (T ,H), (T ,T )}.

As is easy to guess based on the examples, there is a simple
formula for the cardinality of a Cartesian product: for any sets A
and B we have #(A× B) = #A ·#B.



Set Operations, XVI: Cartesian Products

A common use of the Cartesian product is to list all possible
outcomes when one event is followed by another.

The second example on the previous slide indicates the
possible outcomes of flipping one coin followed by flipping
another coin.

Another possibility would be to list all the results of rolling a
standard six-sided die twice in a row.

We can also take Cartesian products of more than two sets,
which simply is the set of all the appropriate ordered tuples.

For example, the Cartesian product A× B × C is the set of all
ordered triples (a, b, c) where a ∈ A, b ∈ B, and c ∈ C .

Our goal is now to use some of these properties of sets to solve
counting problems, since these techniques will be very useful when
we start working with probability.



Counting Basics: Addition Principle

Our first basic counting principle is called the “addition principle”:

Principle (Addition Principle)

When choosing among n disjoint options labeled 1 through n, if
option i has ai possible outcomes for each 1 ≤ i ≤ n, then the
total number of possible outcomes is a1 + a2 + · · ·+ an.

Example:

If a restaurant offers 5 main courses with chicken, 6 main
courses with beef, and 12 vegetarian main courses, then the
total possible number of main courses is 5 + 6 + 12 = 23.

The addition principle can be justified using our results about sets:
if Ai corresponds to the set of outcomes of option i , then because
all of the different options are disjoint,
#(A1 ∪ A2 ∪ · · · ∪ An) = #A1 + #A2 + · · ·+ #An.



Counting Basics: Multiplication Principle

Our other basic counting principle is the “multiplication principle”:

Principle (Multiplication Principle)

When making a sequence of n independent choices, if step i has bi

possible outcomes for each 1 ≤ i ≤ n, then the total number of
possible collections of choices is b1 · b2 · · · · · bn.

Examples:

If a fair coin is tossed (2 possible outcomes) and then a fair
6-sided die is rolled (6 possible outcomes), the total number
of possible results is 2 · 6 = 12.

If a fair coin is tossed 4 times, the total number of possible
results is 2 · 2 · 2 · 2 = 16.

The multiplication principle can also be justified using our results
about sets: if Bi corresponds to the set of outcomes of choice i ,
then #(B1 × B2 × · · · × Bn) = #B1 ·#B2 · · · · ·#Bn.



Counting Basics: Examples, I

Example: Determine the number of possible outcomes from rolling
a 6-sided die 5 times in a row.

Each individual roll has 6 possible outcomes. Thus, by the
multiplication principle, the number of possible sequences of 5
rolls is 65 = 7776.

Example: Determine the number of possible ways to write a
sequence of four digits 0-9 in a row.

Each individual digit has 10 possible choices. Thus, by the
multiplication principle, the number of possible sequences of 4
digits is 104 = 10000.
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Counting Basics: Examples, II

Example: An ice creamery offers 25 different flavors. Each order of
ice cream may be served in either a sugar cone, a waffle cone, or a
dish, and may have 2 or 3 scoops (which must be the same flavor).
Also, any order may come with a cherry or nuts (or neither), but
not both. How many different orders are possible?

We tabulate all of the possible choices separately.

First, we choose an ice cream flavor: 25 options.

Then we choose a sugar cone, waffle cone, or dish: 3 options.

Next we choose the number of scoops: 2 options.

Finally, we choose either a cherry, nuts, or neither: 3 options.

By the multiplication principle, the total number of possible
orders is 25 · 3 · 2 · 3 = 450.
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Counting Basics: Examples, III

Example: An artist is painting the four walls of her kitchen. The
north and south walls can each be eggshell, cream, or snow, while
the east and west walls can each be blue, cyan, turquoise, or
emerald. How many ways can the kitchen be painted if any
combination of wall colors is acceptable?

We tabulate all of the possible choices separately.

The north wall has 3 color options.

The south wall has 3 color options.

The east wall has 4 color options.

The west wall has 4 color options.

By the multiplication principle, the total number of possible
paint combinations is 3 · 3 · 4 · 4 = 144.
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emerald. How many ways can the kitchen be painted if any
combination of wall colors is acceptable?

We tabulate all of the possible choices separately.

The north wall has 3 color options.

The south wall has 3 color options.

The east wall has 4 color options.

The west wall has 4 color options.

By the multiplication principle, the total number of possible
paint combinations is 3 · 3 · 4 · 4 = 144.



Counting Basics: Examples, IV

Example: Determine the number of subsets of the set {1, 2, . . . , n}.

Here, we can completely characterize a subset of {1, 2, . . . , n}
by listing, for each k ∈ {1, 2, . . . , n}, whether k ∈ S or k 6∈ S .

This means that for each of the n elements in the original set,
we make a selection among 2 different options.

So, by the multiplication principle, the number of possible

ways of making this sequence of n choices is 2n .
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Counting Basics: Examples, V

Example: At a car dealership, Brand X sells 11 different models of
cars each of which comes in 20 different colors, while Brand Y sells
6 different models of cars each of which comes in 5 different
colors. How many different possible car options (including brand,
model, and color) can be purchased at the dealership?

If a Brand X car is purchased, there are 11 choices for the
model and 20 choices for the color, so by the multiplication
principle there are 11 · 20 = 220 possible options in this case.

If a Brand Y car is purchased, there are 6 choices for the
model and 5 choices for the color, so by the multiplication
principle there are 6 · 5 = 30 possible options in this case.

Since these two cases are disjoint, in total there are
220 + 30 = 250 possible car options.
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Counting Basics: Examples, VI

Example: A local United States telephone number has 7 digits and
cannot start with 0, 1, or the three digits 555. How many such
telephone numbers are possible?

The first digit has 8 possibilities (namely, the digits 2 through
9 inclusive) and the other six digits each have 10 possibilities.
Thus, by the multiplication principle, there are
8 · 106 = 8 000 000 total telephone numbers.

However, we have included the numbers starting with 555:
each of these has 10 choices for each of the last 4 digits, for a
total of 104 = 10 000 telephone numbers.

Subtracting the disallowed numbers yields a total of
8 000 000− 10 000 = 7 990 000 local telephone numbers.
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Counting Basics: Examples, VII

Example (again): A local United States telephone number has 7
digits and cannot start with 0, 1, or the three digits 555. How
many such telephone numbers are possible?

Each of the 7 digits has 10 possibilities, which would give a
total of 107 = 10 000 000 telephone numbers.

However, we must subtract the disallowed ones starting with
0, 1, or 555.

The numbers starting with 0 have 1 choice for the first digit
and 10 choices for the other 6, a total of 1 · 106 = 1 000 000.

Similarly, there are also 1 000 000 numbers starting with 1.

The numbers starting with 555 have 1 choice for each of the
first 3 digits and 10 for the last 4, a total of 13 · 104 = 10 000.

Excluding the disallowed numbers yields
10 000 000− 2 · 1 000 000− 10 000 = 7 990 000 possibilities.
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Summary

We discussed the logistics for Math 3081.

We discussed sets and basic set operations (subsets, cardinality,
union, intersection, complement, and Cartesian product) and how
to visualize them with Venn diagrams.

We introduced basic counting principles.

Next lecture: Permutations, combinations, events, sample spaces.


