1. Given that discrete random variables X and Y have the joint distribution table given below, find:

$X \setminus Y$	3	4	5	
1	0.1	0.1	0	
3	0.2	0.2	0.1	
4	0	0.1	0.2	

(c) P(X = Y).

(i) E(X) and E(Y).

(d) P(X + Y = 7).

- (j) E(X + 2Y).
- (e) The marginal distribution of X
- (k) var(X) and $\sigma(X)$.
- (f) The marginal distribution of Y
- (l) var(Y) and $\sigma(Y)$.

- (a) P(X = 1, Y = 4).
- (g) P(X > 1).

(m) If X, Y are independent.

(b) P(Y > X).

(h) P(Y < 5).

- (n) cov(X, Y) and corr(X, Y).
- 2. The continuous random variable Z has pdf $p(x) = (8x x^2)/72$ for $0 \le x \le 6$ and 0 for other x. Find:
 - (a) $P(1 \le Z \le 4)$.

- (c) P(Z < 3) and P(Z > 3).
- (e) E(Z) and E(4Z + 5).

- (b) P(Z < 1) and P(Z = 1).
- (d) The c.d.f. (cumulative) for Z.
- (f) var(Z) and $\sigma(Z)$.
- 3. If the continuous random variables X and Y have joint pdf $p(x,y) = c \cdot (x+3y)$ for $0 \le x \le 3$, $0 \le y \le 2$, find
 - (a) The value of c.

(f) P(X = 1).

(k) E(XY).

- (b) $P(0 \le X \le 1, 0 \le Y \le 1)$.
- (g) The marginal distribution of X
- (l) var(X) and $\sigma(X)$.

(c) P(X < 2).

- (h) The marginal distribution of Y
- (m) var(Y) and $\sigma(Y)$.

(d) P(X < Y).

- (i) E(X) and E(Y).
- (n) If X, Y are independent.

(e) P(X+Y<2).

- (j) $E(X^2)$ and $E(Y^2)$.
- (o) cov(X, Y) and corr(X, Y).
- 4. Suppose E(X) = 1, E(Y) = 3, $E(X^2) = 10$, $E(Y^2) = 13$, and E(XY) = 4. Find:
 - (a) E(2X-3).
- (c) $E(XY + 2X^2)$.
- (e) var(Y) and $\sigma(Y)$.
- (g) corr(X, Y).

- (b) E(X + 2Y).
- (d) var(X) and $\sigma(X)$.
- (f) cov(X, Y).
- (h) var(X+Y).
- 5. The continuous random variable X is normally distributed with $\mu = 10$ and $\sigma = 2$. Using the values below, find:

z	-1	0	0.5	1	1.5	2	2.5	3
$P(N_{0,1} \le z)$	0.1587	0.5	0.6915	0.8413	0.9332	0.9772	0.9938	0.9987

- (a) P(X < 14).
- (b) P(8 < X < 12)
- (c) P(X > 13).
- (d) E(2X+5).
- (e) $\sigma(2X+5)$.
- 6. A coin with probability 2/3 of landing heads is flipped 1800 times. Let Y be the random variable counting the total number of heads.
 - (a) Find exact expressions for P(Y=1200) and $P(1200 \le Y \le 1250)$ (you need not evaluate them).
 - (b) Find E(Y) and $\sigma(Y)$.
 - (c) Use the normal approximation with continuity correction to estimate $P(1200 \le Y \le 1250)$.
- 7. A basketball player has a 0.8 probability of making a 1-point free throw, a 0.4 probability of making a 2-point shot, and a 0.2 probability of making a 3-point shot. All shots are independently likely to score.
 - (a) If the player takes 10 2-point shots, what is the probability she scores on at least 2 shots?
 - (b) Find the expected number, and standard deviation, of total points from 100 free throws.
 - (c) Find the expected number, and standard deviation, of total points from a 3-point shot plus a 2-point shot.
 - (d) If the player takes 1000 free throws, 2000 2-point shots, and 500 3-point shots, describe the approximate distribution of the total number of points she scores.

- 8. The weights of widgets are normally distributed with mean 10.05g and standard deviation 0.10g. Sample A consists of 10 widgets and sample B consists of 25 widgets.
 - (a) Describe the distributions of the respective average weights of Sample A and Sample B.
 - (b) Find the probability that a random widget has weight over 10.15g.
 - (c) Find the probability that at least one widget in Sample A has weight over 10.15g.
 - (d) Find the mean and standard deviation of the total weight of Sample A.
 - (e) Find the probability that the total weight of Sample A exceeds 101g.
 - (f) Find the probability that the average weight of Sample A is less than 9.95g.
 - (g) Describe the distribution of the difference in the average weights of Sample A and Sample B.
 - (h) Find the probability that the average weight of Sample A exceeds the average of B by 0.05g or more.
- 9. You wait for the Orange Line at Ruggles during rush hour: your wait time is uniformly distributed between 0min and 7min.
 - (a) What is the probability that you will have to wait 5+ minutes (5 minutes or more)?
 - (b) Find the expected value and standard deviation of your wait time.
 - (c) If you take the train 75 times, describe the approximate distribution of your average wait time.
 - (d) If you take the train 75 times, estimate the probability that your average wait time exceeds 3.57 minutes.
 - (e) If you take the train 75 times, estimate the probability that you have to wait 5+ minutes at least 30 times.
- 10. On average, the Green Line through Northeastern has a service interruption 3 times per week.
 - (a) If X is the random variable measuring the number of times there is a service interruption in one week, what type of distribution is X, and what is its pdf?
 - (b) What is the probability that there is no service interruption this week?
 - (c) What is the probability that there are at least 5 service interruptions this week?
 - (d) What is the probability that there is at least 1 service interruption today?
 - (e) What is the probability that there are exactly 15 service interruptions within the next 30 days?
- 11. You wait for the #28 bus at Ruggles during a snowstorm. Your expected wait time is 30 minutes, independent of the amount of time you have already been waiting.
 - (a) If Y is the random variable measuring your wait time, what type of distribution is Y, and what is its pdf?
 - (b) Find the probability that you wait at least 30 minutes.
 - (c) Find the probability that the bus comes within the next 10 minutes.
- 12. Students in Math 3081 really enjoy the course about 2% of the time¹. Assume there are 130 students in the course.
 - (a) Find the exact probability that either 0 or 1 student really enjoys the course.
 - (b) An approximation to the probability in (a) can be found using a Poisson model. What is the parameter for this model, and what is the probability estimate?
 - (c) An approximation to the probability in (a) can also be found using a normal model. What are the parameters for this model, and what is the probability estimate?
 - (d) Which estimate (Poisson or normal) is more accurate? Briefly explain why you should expect this to be the case.

 $^{^{1}}$ This is false; the actual value is 0%.