E. Dummit's MAT 3081 (Summer-II 2021) \sim Exam 1 Review Problems

1.	Of 130 students in Math 3081, 88 study every day, 73 we (a) How many students study every day but don't work (b) How many students neither study nor work on their	on their homework every day?
2.	Find the number of 5-letter strings that can be made from (a) The string starts with AG.(b) The string has no repeated letters.(c) The string contains neither C nor G.	om the letters ABCDEFG such that: (d) The string has at least one repeated letter. (e) The string contains at least one B. (f) The string has no doubled letters (no AA,).
3.	A tennis team of 14 people selects 3 nonoverlapping pair of ways of making these selections if the order of the 3 p	
4.	A fair coin is flipped 10 times. Find the probabilities of	
	(a) All the flips are heads.(b) The first and last flips are heads.(c) Exactly 4 flips are tails.	(d) At least 8 heads are obtained.(e) The first three flips are all the same.(f) There are more tails than heads.
5.	 Three standard 6-sided dice of different colors are rolled. (a) Three of a kind (all dice equal). (b) Pair (two dice equal, third different). (c) No pair (all dice different). (d) 6-3-2 in some order. (e) No 6s or 5s are rolled. 	 Find the probabilities of the following events: (f) At least one 6 is rolled. (g) 3-3-3, given no 6s or 5s are rolled. (h) 1-1-5 in some order, given a pair is rolled. (i) 6-3-2 in some order, given a 6 is rolled. (j) 6-3-2 in some order, given no pair is rolled.
6.	 An urn contains 10 red and 8 orange balls. 4 balls are dated (a) All 4 balls are red. (b) 1 ball is red and 3 are orange. 	rawn without replacement. Find the probabilities that: (c) All 4 balls are red, given that ≥ 1 is red. (d) Ball #1 is orange, given that ≥ 3 are red.
7.	Suppose A and B are events such that $P(A) = 0.4$, $P(B)$ (a) $P(A^c)$. (c) $P(A^c \cap B)$. (e) $P(B^c)$. (b) $P(A \cap B)$. (d) $P(B)$. (f) $P(A \cup B)$.	(g) $P(A \cap B^c)$. (i) $P(B^c A)$. (k) $P(A^c B^c)$.
8.	Suppose $P(A) = 0.3$ and $P(B) = 0.4$. Find $P(A \cup B)$ if	A and B are (a) mutually exclusive, (b) independent.
9.	 Market research shows that 15% of Americans and 90% Canadian attendees and 60% American attendees. Find (a) A random attendee is American and likes poutine. (b) A random attendee likes poutine. 	-
	Given that discrete random variables X and Y have prove $\begin{array}{c c c c c c c c c c c c c c c c c c c $	(a) $P(1 \le X \le 3)$. (b) $P(Y > 2)$. (c) $E(X)$ and $E(Y)$. (d) $E(X + 2Y)$. (e) $var(X)$ and $\sigma(X)$. (f) $var(Y)$ and $\sigma(Y)$.

variable counting the number of green balls selected, find

(a) The probability distribution for X.

(c) The expected value of X.

(b) P(X < 3).

(d) The variance and standard deviation of X.