Name _____

• Show work.

1. (16 pts) Suppose *X* is a discrete random variable with the pdf

 $P(X = k) = p_X(k) = \theta (1 - \theta)^k$ for k = 0, 1, 2, 3, ...

where θ is an unknown parameter. Find the maximum likelihood estimate (MLE) for θ based on a random sample of size $n: k_1, ..., k_n$.

- 2. (12 pts) Suppose $E(X) = \theta/2$, $E(Y) = \theta$, and $Var(X) = Var(Y) = \theta$. Consider the estimator $\hat{\theta} = 2cX + (1 - c)Y$ with 0 < c < 1
 - a) (5 pts) Show that $\hat{\theta}$ is unbiased for all values of *c*.

b) (7 pts) Find the value of *c* which minimizes the variance of $\hat{\theta}$.

- 3. (12 pts) A roulette wheel is supposed to land on red 9 out of 19 times (or 47.37%). Fred found that the roulette wheel he recently bought landed on red 305 times in 600 spins.
 - a) (7 pts) Construct a 95% confidence interval for the proportion of landing on red for Fred's roulette wheel, and assess if the wheel is working properly.

- b) (5 pts) If he wants the margin of error to be 1%, how many spins should he make?
- 4. (15 pts) Suppose you collected a sample of 100 data points from a normal distribution with unknown mean μ and known σ = 2.4, and calculated a 95% Z confidence interval.
 - a) (5 pts) What is the width of the confidence interval?
 - b) (5 pts) If two independent samples of size 100 are collected and two 95% intervals are constructed, what is the probability that only one of intervals contain the true mean?
 - c) (5 pts) Suppose we want to keep the confidence level at 95% but halve the width, what is the sample size we should have?
- 5. (13 pts) A researcher claims that 25% of the U.S. population has circulation problems, but a rival researcher claims that there may be evidence in her study that the percentage should be lower, according to a random sample of 189 persons, where 38 are found to have circulation problems.
 - a) (8 pts) State your null and alternative hypothesis. What do you conclude at the $\alpha = 0.05$ significance level about the claim of the rival research? Use the P-value.

b) (5 pts) For what values of α will the null hypothesis be rejected?

- 6. (12 pts) Suppose we test an unknown proportion p with $H_0: p = 0.3$ against $H_1: p > 0.3$ at $\alpha = 0.1$. The sample size is 500.
 - a) (6 pts) If the number of success is 161, do we reject H_0 ? Use the test statistic.

b) (6 pts) What is the smallest number of successes that will cause H_0 to be rejected?

7. (6 pts) We test the null hypothesis $H_0: \mu = 25$ against $H_1: \mu \neq 25$ based on a random sample of size n = 30 drawn from a normal distribution with $\sigma = 8$. The decision rule is to reject H_0 when $\bar{x} < 23$ or $\bar{x} > 27$, where \bar{x} is the sample mean. Find the significance level α of the test.

- 8. (14 pts) We test the null hypothesis $H_0: \mu = 105$ against $H_1: \mu > 105$ based on a random sample of size n = 55 drawn from a normal distribution with $\sigma = 18$ at the significance level $\alpha = 0.01$.
 - a) (5 pts) Find the critical value.

b) (9 pts) Find the probability of committing a Type II error **and** the power of the test if the true mean is 112.