- 1. (a) $\hat{\mu}_X = 8.8, S_X = 2.77489.$
 - (b) n-1 = 4 df. 80% CI: $t_{\alpha/2} = 1.5332$ yielding (6.89734, 10.70266). 95% CI: $t_{\alpha/2} = 2.7764$ yielding (5.35352, 12.24548).
 - (c) One-sample t test. $H_0: \mu = 4, H_a: \mu > 4$. Test statistic t = 3.86795, p-value is $P(T_4 \ge 3.86795) = 0.00901,$ reject null hypothesis.
 - (d) n-1 = 4 df. 80% CI: $\chi^2_{\alpha/2} = 1.0636$, $\chi^2_{1-\alpha/2} = 7.7794$ yielding (3.95915, 28.95762). 95% CI: $\chi^2_{\alpha/2} = 0.4844$, $\chi^2_{1-\alpha/2} = 11.1433$ yielding (2.73400, 63.58138).
 - (e) χ^2 test for variance. $H_0: \sigma^2 = 100, H_a: \sigma^2 < 100$. Test statistic $\chi^2 = 0.308, p$ -value is $P(Q_4 \le 0.308) = 0.01070$, reject null hypothesis.
 - (f) Student's equal-variances t test. $H_0: \mu_X \mu_Y = 0, H_a: \mu_X \mu_Y \neq 0.$ $\hat{\mu}_X = 8.8, \hat{\mu}_Y = 7, S_X = 2.77489, S_Y = 5.59762, S_{pool} = 4.22239.$ Test statistic t = 0.63549 with df = 7, p-value is $p = 2P(T_7 \ge 0.63549) = 0.54532$, fail to reject null hypothesis.
 - (g) 7 df, use pooled variance. $\hat{\mu}_X \hat{\mu}_Y = 1.8, \ S = S_{\text{pool}} \sqrt{\frac{1}{5} + \frac{1}{4}} = 2.83246.50\%$ CI: $t_{\alpha/2} = 0.7111$ yielding (-0.21428, 3.81428).90% CI: $t_{\alpha/2} = 1.89458$ yielding (-3.56633, 7.16633).
- 2. (a) One-sample t test (z test is also acceptable since sample size is large). $H_0: \mu = 20.000, H_a: \mu \neq 20.000.$ Test statistic t = -0.62827 with n - 1 = 99 df, so p-value is $p = 2P(T_{99} \leq -0.62827) = 0.53127$ [for z-test, p-value is $2P(N_{0,1} \leq -0.62827) = 0.52983$], fail to reject null hypothesis. (Bolt diameter at spec.)
 - (b) n-1 = 99 df. 90% CI: $t_{\alpha/2} = 1.6604$ yielding (19.9563mm, 20.0197mm). 99% CI: $t_{\alpha/2} = 2.6364$ yielding (19.9378mm, 20.0382mm). [Using z instead of t gives CIs (19.9566mm, 20.0194mm), (19.9388mm, 20.0372mm).
 - (c) χ^2 test for variance. $H_0: \sigma^2 = 0.0400 \text{mm}^2$, $H_a: \sigma^2 < 0.0400 \text{mm}^2$. n-1 = 99 df. Test statistic $\chi^2 = 90.2905$, *p*-value is $P(Q_{99} \le 90.2905) = 0.27748$, fail to reject null hypothesis. (Bolt variance within spec.)
 - (d) n-1 = 99 df. 90% CI: $\chi^2_{\alpha/2} = 77.0463$, $\chi^2_{1-\alpha/2} = 123.2252$ yielding (0.1712mm, 0.2165mm). 99% CI: $\chi^2_{\alpha/2} = 66.5101$, $\chi^2_{1-\alpha/2} = 138.9868$ yielding (0.1612mm, 0.2330mm).
- 3. (a) Two-sample t test. $\hat{\mu}_A = 32$ pp, $S_A = 13.6626$ pp, $\hat{\mu}_B = 25$ pp, $S_B = 6.2849$ pp. $H_0 : \mu_A \mu_B = 0$, $H_a : \mu_A - \mu_B \neq 0$. Student: $S_{\text{pool}} = 10.12776$, df = 7, test statistic is t = 1.03034, p-value is $2P(T_7 \ge 1.03034) = 0.33713$, fail to reject H_0 . Welch: $S_{\text{unpool}} = 7.29155$, df = 4.0154, test statistic is t = 0.94762, p-value is $2P(T_{4.0154} \ge 0.94762) = 0.39679$, fail to reject H_0 .
 - (b) Two-sample t test. $\hat{\mu}_m = 72.2, S_m = 14.48012, \hat{\mu}_p = 85.16667, S_p = 6.70572.$ $H_0: \mu_m \mu_p = 0, H_a: \mu_m \mu_p < 0.$ Student: $S_{\text{pool}} = 10.87113, df = 9$, test statistic is t = -1.96978, p-value is $P(T_9 \le -1.96978) = 0.04019,$ fail to reject H_0 . Welch: $S_{\text{unpool}} = 7.03096, df = 5.4189$, test statistic is t = -1.84422, p-value is $P(T_{5.4189} \le -1.84422) = 0.05998$, fail to reject H_0 .
 - (c) One-sample t test (matched pairs). $H_0: \mu_d = 0, H_a: \mu_d \neq 0.$ $\hat{\mu}_d = 1, S_d = 4.95696$, test statistic is t = 0.57060, p-value is $P(T_7 \ge 0.57060) = 0.58611$, fail to reject H_0 .
 - (d) Two-sample t test. $\hat{\mu}_m = 134.\overline{3}, S_m = 14.0119, \hat{\mu}_b = 181.\overline{6}, S_b = 9.6090.$ $H_0: \mu_m \mu_b = 0, H_a: \mu_m \mu_b < 0.$ Student: $S_{\text{pool}} = 12.01388, df = 4$, test statistic is t = -4.82536, p-value is $P(T_4 \le -4.82536) = 0.004245,$ reject H_0 . Welch: $S_{\text{unpool}} = 9.80929, df = 3.5405$, test statistic is t = -4.82536, p-value is $P(T_{3.5405} \le -4.82536) = 0.005734$, reject H_0 .

(e) χ^2 test for independence. Comparison table is below. χ^2 statistic is d = 0.54492, df = 3, *p*-value is $P(Q_3 \ge 0.54492) = 0.90892$, fail to reject H_0 (seems independent).

Exp (Obs)	USA	UK	China	Russia
Senior	45.47(46)	25.18(27)	26.31(26)	21.04(19)
Junior	75.53(75)	41.82(40)	43.69(44)	34.96(37)

(f) Two-sample t test. $H_0: \mu_m - \mu_f = 0, H_a: \mu_m - \mu_f > 0.$ Student: $S_{\text{pool}} = \$22139, df = 46$, test statistic is t = 2.58736, p-value is $p(T_{46} \ge 2.58736) = 0.00644$, reject H_0 .

Welch: $S_{unpool} = $6770, df = 33.137$, test statistic is t = 2.52268, p-value is $p(T_{33.137} \ge 2.52268) = 0.00831,$ reject H_0 .

Pooled CIs: $\hat{\mu}_{\text{diff}} = \$17078, \ S = S_{\text{pool}} \sqrt{\frac{1}{30} + \frac{1}{18}} = \$6601, \ df = 46. \ 80\% \ \text{CI:} \ t_{\alpha/2} = 1.3002 \ \text{yielding}$ (\$8496, \$25660), 95% CI: $t_{\alpha/2} = 2.0129 \ \text{yielding}$ (\$3792, \$30364).

Unpooled CIs: $\hat{\mu}_{\text{diff}} = \17078 , $S = S_{\text{unpool}} = \6770 , df = 33.137. 80% CI: $t_{\alpha/2} = 1.3076$ yielding (\$8226, \$25930), 95% CI: $t_{\alpha/2} = 2.0342$ yielding (\$3307, \$30849).

(g) χ^2 test for independence. Comparison table is below. χ^2 statistic is d = 16.4934, df = 1, *p*-value is $P(Q_1 \ge 16.4934) = 0.000049$, reject H_0 (seems non-independent).

Exp (Obs)	Callback	No Callback
White	195.5(234)	2229.5(2191)
Black	195.5(157)	2229.5 (2268)

(h) χ^2 test for goodness of fit. Comparison table is below. χ^2 statistic is d = 112.52, df = 2, *p*-value is $P(Q_2 \ge 16.4934) = 3.68 \cdot 10^{-25}$, reject H_0 (definitely not as predicted by model!).

	,		· · · · · · · · · · · · · · · · · · ·
$\operatorname{Exp}(\operatorname{Obs})$	0.001	0.01	0.05
Just Over	104 (94)	98(76)	$183 \ (87)$
Just Under	104(114)	98(120)	183 (279)

(i) Two-sample t test. $\hat{\mu}_s =$ \$200.74, $S_s =$ \$22.617, $\hat{\mu}_c =$ \$196.69, $S_c =$ \$20.353. $H_0 : \mu_s - \mu_c = 0, H_a : \mu_s - \mu_c > 0.$

Student: $S_{\text{pool}} = 21.7394$, df = 5, test statistic is t = 0.24392, *p*-value is $P(T_5 \ge 0.24392) = 0.40849$, fail to reject H_0 .

Welch: $S_{unpool} = 16.3082$, df = 4.7206, test statistic is t = 0.24834, *p*-value is $P(T_{4.7206} \ge 0.24834) = 0.40715$, fail to reject H_0 .

Pooled CIs: $\hat{\mu}_{\text{diff}} = \$4.05, \ S = S_{\text{pool}}\sqrt{\frac{1}{30} + \frac{1}{18}} = \$16.604, \ df = 5.50\%$ CI: $t_{\alpha/2} = 0.7267$ yielding (-\\$8.02, \\$16.12), 80% CI: $t_{\alpha/2} = 1.4759$ yielding (-\\$20.46, \\$28.56).

Unpooled CIs: $\hat{\mu}_{diff} = \$4.05$, $S = S_{unpool} = \$16.308$, df = 4.7206. 50% CI: $t_{\alpha/2} = 0.7300$ yielding (-\$7.85, \$15.95), 80% CI: $t_{\alpha/2} = 1.4891$ yielding (-\$20.23, \$28.33).

- (j) χ^2 test for goodness of fit. Expected values are all 100. For (i), χ^2 statistic is d = 0.42, df = 9, p-value is $P(Q_9 \ge 0.42) = 0.9999857$, fail to reject H_0 . For (ii), these do seem to close to the model. Testing for "too good" results gives p-value $P(Q_9 \le 0.42) = 0.000014$, reject H_0 (model is too accurate, suggests forgery).
- (k) χ^2 test for goodness of fit. Expected values are 1000 times Benford probability (i.e., just read as 301, 176, 125, etc.). For (i), χ^2 statistic is d = 13.4150, df = 8, *p*-value is $P(Q_8 \ge 13.4150) = 0.09835$, fail to reject H_0 . For (ii), these results are not suspiciously accurate it seems finally that the ex-pollster ex-accountant is doing their job properly!