	$X \setminus Y$ 3 4 5	(c) $P(X = Y)$.	(i) $E(X)$ and $E(Y)$.						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(d) $P(X + Y = 7)$.	(j) $E(X+2Y)$.						
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(e) The marginal distribution of 2	X (k) var(X) and $\sigma(X)$.						
		(f) The marginal distribution of 2	(l) $\operatorname{var}(Y)$ and $\sigma(Y)$.						
(a) $P(X = 1, Y = 4).$	(g) $P(X > 1)$.	(m) If X, Y are independent.						
(b) $P(Y > X)$.	(h) $P(Y < 5)$.	(n) $\operatorname{cov}(X, Y)$ and $\operatorname{corr}(X, Y)$.						
2. The continuous random variable Z has p.d.f. $p(x) = (8x - x^2)/72$ for $0 \le x \le 6$ and 0 for other .									
(a) $P(1 \le Z \le 4).$	(c) $P(Z < 3)$ and $P(Z > 3)$.	(e) $E(Z)$ and $E(4Z + 5)$.						
(b) $P(Z < 1)$ and $P(Z = 1)$.	(d) The c.d.f. (cumulative) for Z	(f) $\operatorname{var}(Z)$ and $\sigma(Z)$.						
3. If	the continuous random variables X	and Y have joint pdf $p(x, y) = c \cdot$	$(x+3y)$ for $0 \le x \le 3, 0 \le y \le 2$, find						
(a) The value of c .	(f) $P(X = 1)$.	(k) $E(XY)$.						
(b) $P(0 \le X \le 1, 0 \le Y \le 1).$	(g) The marginal distribution of 2	(l) $var(X)$ and $\sigma(X)$.						
(c) $P(X < 2).$	(h) The marginal distribution of Y	Y (m) $\operatorname{var}(Y)$ and $\sigma(Y)$.						
(d) $P(X < Y)$.	(i) $E(X)$ and $E(Y)$.	(n) If X, Y are independent.						
(e) $P(X + Y < 2).$	(j) $E(X^2)$ and $E(Y^2)$.	(o) $\operatorname{cov}(X, Y)$ and $\operatorname{corr}(X, Y)$.						
4. Sı	ppose $E(X) = 1, E(Y) = 3, E(X^2)$	= 10, $E(Y^2) = 13$, and $E(XY) =$	4. Find:						
(a) $E(2X-3)$. (c) $E(X)$	$(Y + 2X^2)$. (e) $\operatorname{var}(Y)$ and	d $\sigma(Y)$. (g) corr (X, Y) .						
(b) $E(X + 2Y)$. (d) var(X) and $\sigma(X)$. (f) $\operatorname{cov}(X, Y)$.	(h) $\operatorname{var}(X+Y)$.						
-									

1. Given that discrete random variables X and Y have the joint distribution table given below, find:

5. The continuous random variable X is normally distributed with $\mu = 10$ and $\sigma = 2$. Using the values below, find:

	z	-1	0	0.5	1	1.5	2	2.5	3]
	$P(N_{0,1} \le z)$	0.1587	0.5	0.6915	0.8413	0.9332	0.9772	0.9938	0.9987]
(a) $P($	X < 14).	(b) $P(8)$	$\leq X \leq$	$\leq 12)$	(c) $P(X)$	> 13).	(d) <i>E</i>	E(2X+5)).	(e) $\sigma(2X+5)$.

6. A coin with probability 2/3 of landing heads is flipped 1800 times. Let Y be the random variable counting the total number of heads.

- (a) Find exact expressions for P(Y = 1200) and $P(1200 \le Y \le 1250)$.
- (b) Find E(Y) and $\sigma(Y)$.
- (c) Use the normal approximation with continuity correction to estimate $P(1200 \le Y \le 1250)$.

7. A basketball player has a 0.8 probability of making a 1-point free throw, a 0.4 probability of making a 2-point shot, and a 0.2 probability of making a 3-point shot. All shots are independently likely to score.

- (a) If the player takes 10 2-point shots, what is the probability she scores on at least 2 shots?
- (b) Find the expected number, and standard deviation, of total points from 100 free throws.
- (c) Find the expected number, and standard deviation, of total points from a 3-point shot plus a 2-point shot.
- (d) If the player takes 1000 free throws, 2000 2-point shots, and 500 3-point shots, describe the approximate distribution of the total number of points she scores.

- 8. The weights of widgets are normally distributed with mean 10.05g and standard deviation 0.10g. Sample A consists of 10 widgets and sample B consists of 25 widgets.
 - (a) Describe the distributions of the respective average weights of Sample A and Sample B.
 - (b) Find the probability that a random widget has weight over 10.15g.
 - (c) Find the probability that at least one widget in Sample A has weight over 10.15g.
 - (d) Find the mean and standard deviation of the total weight of Sample A.
 - (e) Find the probability that the total weight of Sample A exceeds 101g.
 - (f) Find the probability that the average weight of Sample A is less than 9.95g.
 - (g) Describe the distribution of the difference in the average weights of Sample A and Sample B.
 - (h) Find the probability that the average weight of Sample A exceeds the average of B by 0.05g or more.
- 9. You wait for the Orange Line at Ruggles during rush hour: your wait time is uniformly distributed between 0min and 7min.
 - (a) What is the probability that you will have to wait 5+ minutes (5 minutes or more)?
 - (b) Find the expected value and standard deviation of your wait time.
 - (c) If you take the train 75 times, describe the approximate distribution of your average wait time.
 - (d) If you take the train 75 times, estimate the probability that your average wait time exceeds 3.57 minutes.
 - (e) If you take the train 75 times, estimate the probability that you have to wait 5+ minutes at least 30 times.
- 10. On average, the Green Line through Northeastern has a service interruption 3 times per week.
 - (a) If X is the random variable measuring the number of times there is a service interruption in one week, what type of distribution is X, and what is its pdf?
 - (b) What is the probability that there is no service interruption this week?
 - (c) What is the probability that there are at least 5 service interruptions this week?
 - (d) What is the probability that there is at least 1 service interruption today?
 - (e) What is the probability that there are exactly 15 service interruptions within the next 30 days?
- 11. You wait for the #28 bus at Ruggles during a snowstorm. Your expected wait time is 30 minutes, independent of the amount of time you have already been waiting.
 - (a) If Y is the random variable measuring your wait time, what type of distribution is Y, and what is its pdf?
 - (b) Find the probability that you wait at least 30 minutes.
 - (c) Find the probability that the bus comes within the next 10 minutes.
- 12. Students in Math 3081 really enjoy the course about 2% of the time¹. Assume there are 130 students in the course.
 - (a) Find the exact probability that either 0 or 1 student really enjoys the course.
 - (b) An approximation to the probability in (a) can be found using a Poisson model. What is the parameter for this model, and what is the probability estimate?
 - (c) An approximation to the probability in (a) can also be found using a normal model. What are the parameters for this model, and what is the probability estimate?
 - (d) Which estimate (Poisson or normal) is more accurate? Briefly explain why you should expect this to be the case.

¹This is false; the actual value is 0%.