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1 Vector Spaces

In this chapter we will introduce the notion of a vector space, which generalizes the notion of vectors in 2- and 3-
dimensional space. We introduce vector spaces from an axiomatic perspective, deriving a number of basic properties
using only the axioms, and then develop the general theory of vector spaces. Speci�cally, we discuss subspaces,
span, linear dependence and independence, and bases, in particular showing that every vector space possesses a
basis (a linearly independent spanning set) and giving methods for �nding bases of vector spaces.

1.1 The Formal De�nition of a Vector Space

• The two operations of addition and scalar multiplication (and the various algebraic properties they satisfy)
are the key properties of vectors in Rn and of matrices. We would like to investigate other collections of things
which possess those same properties.

• De�nition: Let F be a �eld, and refer to the elements of F as scalars. A vector space over F is a triple (V,+, ·)
of a collection V of elements called vectors, together with two binary operations1, addition of vectors (+) and
scalar multiplication of a vector by a scalar (·), satisfying the following axioms:

[V1] Addition is commutative: v +w = w + v for any vectors v and w.

[V2] Addition is associative: (u+ v) +w = u+ (v +w) for any vectors u, v, and w.

[V3] There exists a zero vector 0, with v + 0 = v = 0+ v for any vector v.

[V4] Every vector v has an additive inverse −v, with v + (−v) = 0 = (−v) + v.

[V5] Scalar multiplication is consistent with regular multiplication: α · (β · v) = (αβ) · v for any scalars α, β
and vector v.

[V6] Addition of scalars distributes: (α+ β) · v = α · v + β · v for any scalars α, β and vector v.

[V7] Addition of vectors distributes: α · (v +w) = α · v + α ·w for any scalar α and vectors v and w.

[V8] The scalar 1 acts like the identity on vectors: 1 · v = v for any vector v.

1The result of adding vectors v and w is denoted as v+w, and the result of scalar-multiplying v by α is denoted as α · v (or often
simply αv). The de�nition of �binary operation� means that v +w and α · v are also vectors in V .
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• We will primarily consider vector spaces where the collection of scalars (namely, the �eld F ) is either the
set of real numbers or the set of complex numbers: we refer to such vector spaces as real vector spaces or
complex vector spaces, respectively.

◦ However, all of the general theory of vector spaces will hold over any �eld. Some complications can arise
in certain kinds of �elds (such as the two-element �eld F2 = {0, 1} where 1 + 1 = 0) where adding 1 a
�nite number of times to itself yields 0; we will generally seek to gloss over such complications.

• Here are some examples of vector spaces:

• Example: The vectors in Rn are a real vector space, for any n > 0.

◦ For simplicity we will demonstrate all of the axioms for vectors in R2; there, the vectors are of the form
〈x, y〉 and scalar multiplication is de�ned as α · 〈x, y〉 = 〈αx, αy〉. (The dot here is not the dot product!)

◦ [V1]: We have 〈x1, y1〉+ 〈x2, y2〉 = 〈x1 + x2, y1 + y2〉 = 〈x2, y2〉+ 〈x1, y1〉.
◦ [V2]: We have (〈x1, y1〉+ 〈x2, y2〉)+〈x3, y3〉 = 〈x1 + x2 + x3, y1 + y2 + y3〉 = 〈x1, y1〉+(〈x2, y2〉+ 〈x3, y3〉).
◦ [V3]: The zero vector is 〈0, 0〉, and clearly 〈x, y〉+ 〈0, 0〉 = 〈x, y〉.
◦ [V4]: The additive inverse of 〈x, y〉 is 〈−x,−y〉, since 〈x, y〉+ 〈−x,−y〉 = 〈0, 0〉.
◦ [V5]: We have α1 · (α2 · 〈x, y〉) = 〈α1α2x, α1α2y〉 = (α1α2) · 〈x, y〉.
◦ [V6]: We have (α1 + α2) · 〈x, y〉 = 〈(α1 + α2)x, (α1 + α2)y〉 = α1 · 〈x, y〉+ α2 · 〈x, y〉.
◦ [V7]: We have α · (〈x1, y1〉+ 〈x2, y2〉) = 〈α(x1 + x2), α(y1 + y2)〉 = α · 〈x1, y1〉+ α · 〈x2, y2〉.
◦ [V8]: Finally, we have 1 · 〈x, y〉 = 〈x, y〉.

• Example: The set Mm×n(F ) of m× n matrices, for any �xed m and n, forms a vector space over F .

◦ The various algebraic properties we know about matrix addition give [V1] and [V2] along with [V5], [V6],
[V7], and [V8].

◦ The �zero vector� in this vector space is the zero matrix (all entries zero), and [V3] and [V4] follow easily.

◦ Note of course that in some cases we can also multiply matrices by other matrices. However, the
requirements for being a vector space don't care that we can multiply matrices by other matrices! (All
we need to be able to do is add them and multiply them by scalars.)

• Example: The complex numbers are a real vector space under normal addition and multiplication.

◦ The axioms all follow from the standard properties of complex numbers: the �zero vector� is 0 = 0 + 0i,
and the additive inverse of a+ bi is −a− bi.
◦ Again, note that the complex numbers have more structure to them, because we can also multiply
two complex numbers, and the multiplication is also commutative, associative, and distributive over
addition. However, the requirements for being a vector space don't care that the complex numbers have
these additional properties.

• Example: If F is any �eld and S is any set, the collection of all functions from S to F is a vector space over
F , where we de�ne the sum of two functions as (f + g)(x) = f(x)+ g(x) for every x, and scalar multiplication
via (α · f)(x) = α f(x).

◦ To illustrate: if f(x) = x and g(x) = x2, then f + g is the function with (f + g)(x) = x+ x2, and 2f is
the function with (2f)(x) = 2x.

◦ The axioms follow from the properties of functions and the properties of the �eld F : we simply verify
that each axiom holds at every value x in S. The �zero vector� in this space is the zero function; namely,
the function 0 which has 0(x) = 0 for every x.

◦ For example (to demonstrate a few of the axioms), for any value x in S and any functions f and g,

∗ [V1]: (f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x).

∗ [V6]: α · (f + g)(x) = α f(x) + α g(x) = (αf)(x) + (αg)(x).

∗ [V8]: (1 · f)(x) = 1 · f(x) = f(x).
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• Example: If F is any �eld, the space F [x] of polynomials in x with coe�cients in F is a vector space over F .

◦ This follows in the same way as the veri�cation for general functions.

• Example: If F is any �eld, the zero space with a single element 0, with 0+ 0 = 0 and α · 0 = 0 for every α,
is a vector space over F .

◦ All of the axioms in this case eventually boil down to 0 = 0.

◦ This space is rather boring: since it only contains one element, there's really not much to say about it.

• Purely for ease of notation, it will be useful to de�ne subtraction:

• De�nition: The di�erence of two vectors v,w in a vector space V is de�ned to be v −w = v + (−w).

◦ The di�erence has the fundamental property we would expect: by axioms [V2] and [V3], we can write
(v −w) +w = (v + (−w)) +w = v + ((−w) +w) = v + 0 = v.

• There are many simple algebraic properties that can be derived from the axioms which (therefore) hold in
every vector space.

• Theorem (Basic Properties of Vector Spaces): In any vector space V , the following are true:

1. Addition has a cancellation law: for any vector v, if a+ v = b+ v then a = b.

◦ Proof: By [V1]-[V4] we have (a+ v) + (−v) = a+ (v + (−v)) = a+ 0 = a.

◦ Similarly we also have (b+ v) + (−v) = b+ (v + (−v)) = b+ 0 = b.

◦ Finally, since a+ v = b+ v then a = (a+ v) + (−v) = (b+ v) + (−v) = b so a = b.

2. The zero vector is unique: if a+ v = v for some vector v, then a = 0.

◦ Proof: By [V3], v = 0+ v, so we have a+ v = 0+ v. Then by property (1) we conclude a = 0.

3. The additive inverse is unique: for any vector v, if a+ v = 0 then a = −v.
◦ Proof: By [V4], 0 = (−v) + v, so a+ v = (−v) + v. Then by property (1) we conclude a = −v.

4. The scalar 0 times any vector gives the zero vector: 0 · v = 0 for any vector v.

◦ Proof: By [V6] and [V8] we have v = 1 · v = (0 + 1) · v = 0 · v + 1 · v = 0 · v + v.

◦ Thus, by [V3], we have 0+ v = 0 · v + v so by property (1) we conclude 0 = 0 · v.
5. Any scalar times the zero vector is the zero vector: α · 0 = 0 for any scalar α.

◦ Proof: By [V5] and [V8] we have α · 0 = α · (0+ 0) = α · 0+ α · 0.
◦ Thus, by [V3], we have 0+α ·0 = α · (0+0) = α ·0+α ·0, so by property (1) we conclude 0 = α ·0.

6. The scalar −1 times any vector gives the additive inverse: (−1) · v = −v for any vector v.

◦ Proof: By property (4) and [V6]-[V8] we have v+(−1) ·v = 1 ·v+(−1) ·v = (1+(−1)) ·v = 0 ·v = 0.

◦ But now by property (3), since v + (−1) · v = 0, we see that (−1) · v = −v.
7. The additive inverse of the additive inverse is the original vector: −(−v) = v for any vector v.

◦ Proof: By property (6) twice and [V7]-[V8], −(−v) = (−1) · (−v) = (−1) · [(−1) · v] = (−1)2 · v =
1 · v = v.

8. The only scalar multiples equal to the zero vector are the trivial ones: if α · v = 0, then either α = 0 or
v = 0.

◦ Proof: If α = 0 then we are done. Otherwise, if α 6= 0, then since α is an element of a �eld, it has a
multiplicative inverse α−1.

◦ Then by property (5) and [V5], [V8], we have 0 = α−1 · 0 = α−1 · (α · v) = (α−1α) · v = 1 · v = v.

9. The additive inverse is obtained by subtraction from the zero vector: −v = 0− v for any vector v.

◦ Proof: By the de�nition of subtraction and [V3], 0− v = 0+ (−v) = −v.
10. Negation distributes over addition: −(v +w) = (−v) + (−w) = −v −w.
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◦ Proof: By property (6) and [V7], −(v+w) = (−1) · (v+w) = (−1) · v+ (−1) ·w = (−v) + (−w).

◦ Also, by the de�nition of subtraction, −v −w = (−v) + (−w). So all three quantities are equal.

11. Any sum of vectors can be associated or rearranged in any order without changing the sum.

◦ (Outline): Induct on the number of terms. The base cases follow from the axioms [V1] and [V2].

◦ The precise details of this argument are technical and we will omit them. However, this result allows
us to freely rearrange sums of vectors.

• The results above are useful, and at the very least they suggest that the notation for vector spaces is sensible:
for example, the scalar multiple (−1) · v is in fact the same as the additive inverse −v, as the notation very
strongly suggests should be true. However, we do not seem to have gotten very far.

◦ It might seem that the axioms we have imposed do not really impose much structure aside from rather
simple properties like the ones listed above: after all, each individual axiom does not say very much on
its own.

◦ But in fact, we will show that the axioms taken collectively force V to have a very strong and regular
structure. In particular, we will be able to describe all of the elements of any vector space in a precise
and simple way.

1.2 Subspaces

• De�nition: A subspaceW of a vector space V is a subset of the vector space V which, under the same addition
and scalar multiplication operations as V , is itself a vector space.

• Any vector space automatically has two subspaces: the entire space V , and the �trivial� subspace consisting
only of the zero vector.

◦ These examples are rather uninteresting, since we already know V is a vector space, and the subspace
consisting only of the zero vector has very little structure.

• Example: Show that the set of diagonal 2× 2 matrices is a subspace of the vector space of all 2× 2 matrices.

◦ To do this directly from the de�nition, we need to verify that all of the vector space axioms hold for the

matrices of the form

[
a 0
0 b

]
for some a, b.

◦ First we need to check that the addition operation and scalar multiplication operations actually make

sense: we see that

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
a+ c 0
0 b+ d

]
is also a diagonal matrix, and p ·

[
a 0
0 b

]
=[

pa 0
0 pb

]
is a diagonal matrix too, so the sum and scalar multiplication operations are well-de�ned.

◦ Then we have to check the axioms, which is rather tedious. Here are some of the veri�cations:

◦ [V1] Addition is commutative:

[
a 0
0 b

]
+

[
c 0
0 d

]
=

[
c 0
0 d

]
+

[
a 0
0 b

]
.

◦ [V3] The zero element is the zero matrix, since

[
a 0
0 b

]
+

[
0 0
0 0

]
=

[
a 0
0 b

]
.

◦ [V4] The additive inverse of

[
a 0
0 b

]
is

[
−a 0
0 −b

]
since

[
a 0
0 b

]
+

[
−a 0
0 −b

]
=

[
0 0
0 0

]
.

◦ [V5] Scalar multiplication is consistent: p · q ·
[
a 0
0 b

]
=

[
pqa 0
0 pqb

]
= pq ·

[
a 0
0 b

]
.

• It is very tedious to verify all of the axioms for a subspace, and much of the work seems to be redundant. In
fact, we can clean up the repetitive nature of these veri�cations:

• Theorem (Subspace Criterion): A subset W of a vector space V is a subspace of V if and only if W has the
following three properties:
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[S1] W contains the zero vector of V .

[S2] W is closed under addition: for any w1 and w2 in W , the vector w1 +w2 is also in W .

[S3] W is closed under scalar multiplication: for any scalar α and w in W , the vector α ·w is also in W .

◦ Proof: Each of these conditions is necessary for W to be a subspace: the de�nition of binary operation
requires [S2] and [S3] to hold, because when we add or scalar-multiply elements of W , we must obtain a
result that is in W . For [S1], W must contain a zero vector 0W : then we can write 0W + 0W = 0W =
0V + 0W by [V3] in V and [V3] in W respectively, so by cancellation we get 0W = 0V meaning that W
contains the zero vector of V .

◦ Now suppose each of [S1]-[S3] holds for W . Since all of the operations are therefore de�ned, axioms
[V1]-[V2] and [V5]-[V8] will hold in W because they hold in V . Axiom [V3] for W follows from [S1] since
0W = 0V as noted above. Finally, for [V4], for any vector w in W , by our basic properties we know that
(−1) ·w = −w, so since (−1) ·w is in W by [S3], we see that −w is in W .

• Very often, if we want to check that something is a vector space, it is often much easier to verify that it is
a subspace of something else we already know is a vector space via the subspace criterion. In order to show
that a subset is not a subspace, it is su�cient to �nd a single example in which any one of the three criteria
fails.

• Example: Determine whether the set of vectors of the form 〈t, t, t〉 forms a subspace of R3.

◦ We check the parts of the subspace criterion.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: We have 〈t1, t1, t1〉 + 〈t2, t2, t2〉 = 〈t1 + t2, t1 + t2, t1 + t2〉, which is again of the same form if we
take t = t1 + t2.

◦ [S3]: We have α · 〈t1, t1, t1〉 = 〈αt1, αt1, αt1〉, which is again of the same form if we take t = αt1.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of n × n matrices of trace zero is a subspace of the space of all n × n
matrices.

◦ [S1]: The zero matrix has trace zero.

◦ [S2]: Since tr(A+B) = tr(A) + tr(B), we see that if A and B have trace zero then so does A+B.

◦ [S3]: Since tr(αA) = αtr(A), we see that if A has trace zero then so does αA.

◦ All three parts are satis�ed, so this subset is a subspace .

• Example: Determine whether the set of vectors of the form
〈
t, t2

〉
forms a subspace of R2.

◦ [S1]: The zero vector is of this form: take t = 0.

◦ [S2]: For this criterion we try to write
〈
t1, t

2
1

〉
+
〈
t2, t

2
2

〉
=
〈
t1 + t2, t

2
1 + t22

〉
, but this does not have the

correct form, because in general t21 + t22 6= (t1 + t2)
2. (These quantities are only equal if 2t1t2 = 0.)

◦ From here we can �nd a speci�c counterexample: the vectors 〈1, 1〉 and 〈2, 4〉 are in the subset, but their

sum 〈3, 5〉 is not. Thus, this subset is not a subspace .

◦ Note that all we actually needed to do here was �nd a single counterexample, of which there are many.
Had we noticed earlier that 〈1, 1〉 and 〈2, 4〉 were in the subset but their sum 〈3, 5〉 was not, that would
have been su�cient to conclude that the given set was not a subspace.

• Example: Determine whether the set of vectors of the form 〈x, y, z〉 where x, y, z ≥ 0 forms a subspace of R2.

◦ It is not a subspace : the vector 〈1, 1, 1〉 is in the subset, but the scalar multiple −1 · 〈1, 1, 1〉 =

〈−1,−1,−1〉 is not.

• There are a few more general subspaces that serve as important examples.
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• Example: For any interval [a, b], show that the collection of continuous functions on [a, b] is a subspace of the
space of all functions on [a, b], as is the set of n-times di�erentiable functions on [a, b] for any positive integer
n.

◦ We show each of these sets is a subspace of the collection of all (real-valued) functions on the interval
[a, b], which we already know is a vector space.

◦ For the �rst statement, observe that the zero function is continuous, that the sum of two continuous
functions is continuous, and that any scalar multiple of a continuous function is continuous.

◦ The second statement follows in the same way: the zero function is also n-times di�erentiable, as is the
sum of two n-times di�erentiable functions and any scalar multiple of an n-times di�erentiable function.

• Example: Show that the real-valued solutions to the (homogeneous, linear) di�erential equation y′′+6y′+5y =
0 form a vector space.

◦ We show this by verifying that the solutions form a subspace of the space of real-valued functions.

◦ [S1]: The zero function is a solution.

◦ [S2]: If y1 and y2 are solutions, then y′′1 + 6y′1 + 5y1 = 0 and y′′2 + 6y′2 + 5y2 = 0, so adding and using
properties of derivatives shows that (y1+ y2)

′′+6(y1+ y2)
′+5(y1+ y2) = 0, so y1+ y2 is also a solution.

◦ [S3]: If α is a scalar and y1 is a solution, then scaling y′′1 + 6y′1 + 5y1 = 0 by α and using properties of
derivatives shows that (αy1)

′′ + 6(αy1)
′ + 5(αy1) = 0, so αy1 is also a solution.

◦ Note that we did not need to know how to solve the di�erential equation to show that the solutions
formed a vector space! (But for completeness, the general solution is y = Ae−x + Be−5x for arbitrary
constants A and B.)

• We can use the subspace criterion to show, for instance, that the intersection of subspaces is also a subspace:

• Proposition (Intersection of Subspaces): If V is a vector space, the intersection of any collection of subspaces
of V is also a subspace of V .

◦ Proof: Let S be a collection of subspaces of V and take I =
⋂

W∈S W to be the intersection of the
subspaces in S. By the subspace criterion, the zero vector of V is in each subspace in S, so it also is
contained in I.

◦ Now let w1 and w2 be any vectors in I, and α be any scalar. By the de�nition of I, the vectors w1 and
w2 are in each subspace W in S.

◦ So by the subspace criterion, w1 +w2 and α ·w1 are also in each subspace W in S: but this means both
w1 +w2 and α ·w1 are in I.

◦ Thus, I satis�es each component of the subspace criterion, so it is a subspace of V .

◦ Remark: Unlike the intersection of subspaces, the union of two subspaces will not generally be a subspace.

• Our goal now is to describe in more detail the internal structure of the elements and subspaces of an arbitrary
vector space.

◦ In some of our examples, we saw that the subspaces could all be written down in terms of one or more
parameters. We now develop this idea further.

1.3 Linear Combinations and Span

• De�nition: Given a set v1,v2, . . . ,vn of vectors in a vector space V , we say a vectorw in V is a linear combination
of v1,v2, . . . ,vn if there exist scalars a1, · · · , an such that w = a1 · v1 + a2 · v2 + · · ·+ an · vn.

◦ Example: In R2, the vector 〈1, 1〉 is a linear combination of 〈1, 0〉 and 〈0, 1〉, because 〈1, 1〉 = 1 · 〈1, 0〉+
1 · 〈0, 1〉.
◦ Example: In R4, the vector 〈4, 0, 5, 9〉 is a linear combination of 〈1, 0, 0, 1〉, 〈0, 1, 0, 0〉, and 〈1, 1, 1, 2〉,
because 〈4, 0, 5, 9〉 = 1 · 〈1,−1, 2, 3〉 − 2 · 〈0, 1, 0, 0〉+ 3 · 〈1, 1, 1, 2〉.
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◦ Non-Example: In R3, the vector 〈0, 0, 1〉 is not a linear combination of 〈1, 1, 0〉 and 〈0, 1, 1〉 because there
exist no scalars a1 and a2 for which a1 · 〈1, 1, 0〉 + a2 · 〈0, 1, 1〉 = 〈0, 0, 1〉: this would require a common
solution to the three equations a1 = 0, a1 + a2 = 0, and a2 = 1, and this system has no solution.

• De�nition: We de�ne the span of a �nite set of vectors {v1,v2, . . . ,vn} in V , denoted span(v1,v2, . . . ,vn),
to be the set of all vectors which are linear combinations of v1,v2, . . . ,vn. In other words, the span is the
set of vectors of the form a1 · v1 + · · ·+ an · vn, for scalars a1, . . . , an. For an in�nite collection of vectors, we
de�ne the span to be the set of all linear combinations of �nitely many of the vectors.

◦ Note: For technical reasons, we de�ne the span of the empty set to be the zero vector.

• Example: The span of the vectors 〈1, 0, 0〉 and 〈0, 1, 0〉 in R3 is the set of vectors of the form a · 〈1, 0, 0〉+ b ·
〈0, 1, 0〉 = 〈a, b, 0〉.

◦ Equivalently, the span of these vectors is the set of vectors whose z-coordinate is zero, which (geometri-
cally) forms the plane z = 0.

• Example: The span of the polynomials {1, x, x2, x3} is the set of polynomials of degree at most 3.

• Example: Determine whether the vectors 〈2, 3, 3〉 and 〈4,−1, 3〉 are in span(v,w), where v = 〈1,−1, 2〉 and
w = 〈2, 1,−1〉.

◦ For 〈2, 3, 3〉 we must determine whether it is possible to write 〈2, 3, 3〉 = a · 〈1,−1, 2〉 + b · 〈2, 1,−1〉 for
some a and b.

◦ Equivalently, we want to solve the system 2 = a+ 2b, 3 = −a+ b, 3 = 2a− b.
◦ Adding the �rst two equations yields 5 = 3b so that b = 5/3. The second equation then yields a =
−4/3. However, this does not satisfy the third equation. So there are no such a and b, meaning that

〈2, 3, 3〉 is not in the span .

◦ Similarly, for 〈4,−1, 3〉 we want to solve 〈4,−1, 3〉 = c·〈1,−1, 2〉+d·〈2, 1,−1〉, or 4 = c+2d, −1 = −c+d,
3 = 2c− d.
◦ Using a similar procedure as above shows that d = 1, c = 2 is a solution: thus, we have 〈4,−1, 3〉 =
2 · 〈1,−1, 2〉+ 1 · 〈2, 1,−1〉, meaning that 〈4,−1, 3〉 is in the span .

• Here are some basic properties of the span:

• Proposition (Properties of Span): Let V be a vector space.

1. For any set S of vectors in V , the set span(S) is a subspace of V .

◦ Proof: We check the subspace criterion. If S is empty, then by de�nition span(S) = {0} and {0} is
a subspace of V .

◦ Now assume S is not empty. Let v be any vector in S: then 0 · v = 0 is in span(S).

◦ The span is closed under addition because we can write the sum of any two linear combinations as
another linear combination: (a1 · v1 + · · ·+ an · vn) + (b1 · v1 + · · ·+ bn · vn) = (a1 + b1) · v1 + · · ·+
(an + bn) · vn.

◦ Finally, we can write any scalar multiple of a linear combination as a linear combination: α · (a1v1+
· · ·+ anvn) = (αa1) · v1 + · · ·+ (αan) · vn.

2. For any vectors v1, . . . ,vn in V , if W is any subspace of V that contains v1, . . . ,vn, then W contains
span(v1, . . . ,vn).

◦ Proof: Consider any element w in span(v1,v2, . . . ,vn): by de�nition, we can write w = a1 · v1 +
· · ·+ an · vn for some scalars a1, · · · , an.
◦ Because W is a subspace, it is closed under scalar multiplication, so each of a1 · v1, · · · , an · vn lies
in W .

◦ Furthermore, also because W is a subspace, it is closed under addition. Thus, the sum a1 ·v1+ · · ·+
an · vn lies in W .

◦ Thus, every element of the span lies in W , as claimed.
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3. For any set of vectors S, their span is the smallest subspace of V containing all of the vectors in S.

◦ Proof: The span span(S) is a subspace by (1), and by (2) any subspace containing all of the vectors
in S must contain span(S).

4. If S and T are two sets of vectors in V with S ⊆ T , then span(S) is a subspace of span(T ).

◦ Proof: Since the span is always a subspace, we know that span(T ) is a subspace of V containing all
the vectors in S.

◦ But by (3), span(S) is the smallest subspace of V containing all the vectors in S, and thus span(S) ⊆
span(T ); since both of these are vector spaces, that means span(S) is a subspace of span(T ).

5. If S is any set of vectors in V and T = S ∪ {w} for some vector w in V , then span(T ) = span(S) if and
only if w is in span(S).

◦ Proof: By (4), since T contains S, span(T ) contains span(S).

◦ If span(T ) = span(S), then since w is in T hence in span(T ), so w is in span(S).

◦ Conversely, if w is in span(S), then we can eliminate w from any linear combination of vectors in T
to obtain a linear combination of vectors only in S.

◦ Explicitly: suppose w = a1 · v1 + · · · + an · vn where v1, . . . ,vn are in S. Then any x in span(T )
is some linear combination x = c ·w + b1 · v1 + · · ·+ bn · vn + bn+1 · vn+1 + · · ·+ bm · vm for some
v1, . . . ,vm in S.

◦ But then x = (b1 + ca1) · v1 + · · ·+ (bn + can) · vn + bn+1 · vn+1 + · · ·+ bm · vm can be written as a
linear combination only involving vectors in S, so x is in span(S). Thus, span(S) = span(T ).

6. If S and T are any subsets of V with span(S) = span(T ) and w is any vector in V , then span(S∪{w}) =
span(T ∪ {w}).
◦ Proof: By hypothesis, every vector in S lies in span(S) = span(T ), and since span(T ) is contained
in span(T ∪ {w}) by (4), every vector in S is contained in span(T ∪ {w}).
◦ Since w is also in span(T ∪{w}), that means S ∪{w} is contained in span(T ∪{w}). But now since

span(T ∪ {w}) is a subspace of V , it contains span(S ∪ {w}) by (3).

◦ Therefore, span(S ∪ {w}) ⊆ span(T ∪ {w}). By the same argument with S and T interchanged,
span(T ∪{w}) ⊆ span(S∪{w}). Therefore, we must have equality: span(S∪{w}) = span(T ∪{w}).

• Sets whose span is the entire space have a special name:

• De�nition: Given a set S of vectors in a vector space V , if span(S) = V then we say that S is a spanning set (or
generating set) for V .

◦ Spanning sets are very useful because they allow us to describe every vector in V in terms of the vectors
in S.

◦ Explicitly, every vector in V is a linear combination of the vectors in S, which is to say, every vector w
in V can be written in the form w = a1 · v1 + · · ·+ an · vn for some scalars a1, . . . , an and some vectors
v1,v2, . . . ,vn in S.

• Example: Show that the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
span the vector space of 2× 2 matrices of

trace zero.

◦ Recall that we showed earlier that the space of matrices of trace zero is a vector space (since it is a
subspace of the vector space of all 2× 2 matrices).

◦ A 2× 2 matrix

[
a b
c d

]
has trace zero when a+ d = 0, or equivalently when d = −a.

◦ So any matrix of trace zero has the form

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

◦ Since any matrix of trace zero is therefore a linear combination of the matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,[

0 0
1 0

]
, we conclude that they are a spanning set.
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• Example: Show that the matrices

[
1 0
1 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
also span the vector space of 2×2 matrices

of trace zero.

◦ We can write

[
a b
c −a

]
= a

[
1 0
1 −1

]
+ b

[
0 1
0 0

]
+ (c− a)

[
0 0
1 0

]
.

◦ This set of matrices is di�erent from the spanning set in the previous example, which underlines an
important point: any given vector space may have many di�erent spanning sets.

• Example: Determine whether the polynomials 1, 1 + x2, x4, 1 + x2 + x4 span the space W of polynomials
with complex coe�cients having degree at most 4 and satisfying p(x) = p(−x).

◦ It is straightforward to verify that this set of polynomials is a subspace of the polynomials with complex
coe�cients.

◦ A polynomial of degree at most 4 has the form p(x) = a+ bx+ cx2+dx3+ex4, and having p(x) = p(−x)
requires a− bx+ cx2 − dx3 + ex4 = a+ bx+ cx2 + dx3 + ex4, or equivalently b = d = 0.

◦ Thus, the desired polynomials are those of the form p(x) = a+ cx2 + ex4 for arbitrary complex numbers
a, c, and e.

◦ Since we can write a+ cx2+ ex4 = (a− c) ·1+ c · (1+x2)+ e ·x4+0 · (1+x2+x4), the given polynomials

do span W .

◦ Note that we could also have written a+ cx2+ex4 = (a− c) ·1+(c−e) · (1+x2)+0 ·x4+e · (1+x2+x4),
so the polynomials in W can be written as a linear combination of the vectors in the spanning set in
more than one way. (In fact, they can be written as a linear combination in in�nitely many ways.)

◦ This example illustrates another important point: if span(S) = V , it is possible that any given vector in
V can be written as a linear combination of vectors in S in many di�erent ways.

• Example: Determine whether the vectors 〈1, 2〉, 〈2, 4〉, 〈3, 1〉 span R2.

◦ For any vector 〈p, q〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q〉 =
a · 〈1, 2〉+ b · 〈2, 4〉+ c · 〈3, 1〉.
◦ Equivalently, we want to check whether the system p = a+2b+3c, q = 2a+4b+ c has solutions for any
p, q.

◦ Row-reducing the associated coe�cient matrix gives[
1 2 3
2 4 1

∣∣∣∣ pq
]

R2−2R1−→
[

1 2 3
0 0 −5

∣∣∣∣ p
q − 2p

]
and since this system is non-contradictory, there is always a solution: indeed, there are in�nitely many.

(One solution is c =
2

5
p− 1

5
q, b = 0, a = −1

5
p+

3

5
q.)

◦ Since there is always a solution for any p, q, we conclude that these vectors do span R2 .

• Example: Determine whether the vectors 〈1,−1, 3〉, 〈2, 2,−1〉, 〈3, 4, 7〉 span R3.

◦ For any vector 〈p, q, r〉, we want to determine whether there exist some scalars a, b, c such that 〈p, q, r〉 =
a · 〈1,−1, 3〉+ b · 〈2, 2,−1〉+ c · 〈3, 1, 2〉.

◦ Row-reducing the associated coe�cient matrix gives 1 1 −1
−1 0 2
3 1 −5

∣∣∣∣∣∣
p
q
r

 R2+R1−→
R3−3R1

 1 1 −1
0 1 1
0 −2 −2

∣∣∣∣∣∣
p

q + p
r − 3p

 R3+2R2−→

 1 1 −1
0 1 1
0 0 0

∣∣∣∣∣∣
p

q + p
r + 2q − p

 .
◦ Now, if r + 2q − p 6= 0, the last row will be a contradictory equation. This can certainly occur: for
example, we could take r = 1 and p = q = 0.

◦ Since there is no way to write an arbitrary vector in R3 as a linear combination of the given vectors, we

conclude that these vectors do not span R3 .
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1.4 Linear Independence and Linear Dependence

• De�nition: We say a �nite set of vectors v1, . . . ,vn is linearly independent if a1 ·v1+ · · ·+an ·vn = 0 implies
a1 = · · · = an = 0. Otherwise, we say the collection is linearly dependent. (The empty set of vectors is by
de�nition linearly independent.)

◦ In other words, v1, . . . ,vn are linearly independent precisely when the only way to form the zero vector as
a linear combination of v1, . . . ,vn is to have all the scalars equal to zero (the �trivial� linear combination).
If there is a nontrivial linear combination giving the zero vector, then v1, . . . ,vn are linearly dependent.

◦ Note: For an in�nite set of vectors, we say it is linearly independent if every �nite subset is linearly
independent, per the de�nition above. Otherwise, if some �nite subset displays a dependence, we say
the in�nite set is dependent.

• Example: The matrices

[
2 3
2 −4

]
,

[
−1 −1
−1 2

]
, and

[
0 3
0 0

]
are linearly dependent, because 3·

[
2 3
2 −4

]
+

6 ·
[
−1 −1
−1 2

]
+ (−1) ·

[
0 3
0 0

]
=

[
0 0
0 0

]
.

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈0, 2, 1〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈0, 2, 1〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a = 0, a+ 2b = 0, b = 0, which has only the solution a = b = 0.

◦ Thus, by de�nition, these vectors are linearly independent .

• Example: Determine whether the vectors 〈1, 1, 0〉, 〈2, 2, 0〉 in R3 are linearly dependent or linearly independent.

◦ Suppose that we had scalars a and b with a · 〈1, 1, 0〉+ b · 〈2, 2, 0〉 = 〈0, 0, 0〉.
◦ Comparing the two sides requires a+ 2b = 0, a+ 2b = 0, 0 = 0, which has (for example) the nontrivial
solution a = 1, b = −2.
◦ Thus, we see that we can write 2 · 〈1, 1, 0〉 + (−1) · 〈2, 2, 0〉 = 〈0, 0, 0〉, and this is a nontrivial linear

combination giving the zero vector meaning that these vectors are linearly dependent .

• Here are a few basic properties of linear dependence and independence that follow from the de�nition:

• Proposition (Properties of Linear Independence): Let V be a vector space.

1. Any set containing the zero vector is linearly dependent.

◦ Proof: Choose zero coe�cients for the other vectors, and a nonzero coe�cient for the zero vector.

2. Any set containing a linearly dependent set is linearly dependent.

◦ Proof: Any dependence in the smaller set gives a dependence in the larger set by taking zero
coe�cients for the additional vectors.

3. Any subset of a linearly independent set is linearly independent.

◦ Proof: This is the contrapositive of (2). Equivalently, any linear dependence in the smaller set would
also give a linear dependence in the larger set.

4. For any nonzero vector v, the set {v} is linearly independent.

◦ Proof: Suppose that we had a linear dependence a · v = 0. If a 6= 0 then scalar-multiplying by 1/a
(note that the coe�cients are from a �eld, so nonzero scalars have a multiplicative inverse) would
yield v = 0, contrary to hypothesis.

◦ Thus we must have a = 0, and so {v} is linearly independent.

5. The set {v1,v2} is linearly dependent if and only if one vector is a scalar multiple of the other.

◦ Proof: If v1 = α · v2 then we can write 1 · v1 + (−α) · v2 = 0, and similarly if v2 = α · v1 then we
can write (−α) · v1 + 1 · v2 = 0. In either case the vectors are linearly dependent.
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◦ Conversely, suppose the vectors are linearly dependent, say with a · v1 + b · v2 = 0 where a, b are
not both zero. If a 6= 0 then we can write v1 = (−b/a) · v2, and if b 6= 0 then we can write
v2 = (−a/b) · v1. At least one of these cases must occur, so one of the vectors is a scalar multiple of
the other as claimed.

• It is more a delicate problem to determine whether a larger set of vectors is linearly independent. Typically,
answering this question will reduce to determining whether a set of linear equations has a solution.

• Example: Determine whether the vectors 〈1, 0, 2, 2〉, 〈2,−2, 3, 0〉, 〈0, 3, 1, 3〉, and 〈0, 4, 1, 2〉 in R4 are linearly
dependent or linearly independent.

◦ We search for scalars a,b,c,d with a · 〈1, 0, 2, 2〉+ b · 〈2,−2, 3, 0〉+ c · 〈0, 3, 1, 3〉+ d · 〈0, 4, 1, 2〉 = 〈0, 0, 0, 0〉.
◦ This is equivalent to saying a+ 2b = 0, −2b+ 3c+ 4d = 0, 2a+ 3b+ c+ d = 0, and 2a+ 3c+ 2d = 0.

◦ To search for solutions we can convert this system into matrix form and then row-reduce it:
1 2 0 0
0 −2 3 4
2 3 1 1
2 0 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 R3−2R1−→
R4−2R1


1 2 0 0
0 −2 3 4
0 −1 1 1
0 −4 3 2

∣∣∣∣∣∣∣∣
0
0
0
0

 −→ · · · −→


1 0 0 −2
0 1 0 1
0 0 1 2
0 0 0 0

∣∣∣∣∣∣∣∣
0
0
0
0


from which we can obtain a nonzero solution d = 1, c = −2, b = −1, a = 2.

◦ Thus, 2 · 〈1, 0, 2, 2〉+(−1) · 〈2,−2, 0, 3〉+(−2) · 〈0, 3, 3, 1〉+1 · 〈0, 4, 2, 1〉 = 〈0, 0, 0, 0〉. This is a nontrivial

linear combination giving the zero vector, so these vectors are linearly dependent .

• The terminology of �linear dependence� arises from the fact that if a set of vectors is linearly dependent, one
of the vectors is necessarily a linear combination of the others (i.e., it �depends� on the others):

• Proposition (Dependence and Linear Combinations): A set S of vectors is linearly dependent if and only if
one of the vectors is a linear combination of (some of) the others.

◦ To avoid trivialities, we remark here that if S = {0} then the result is still correct, since the set of linear
combinations (i.e., the span) of the empty set is the zero vector.

◦ Proof: If v is a linear combination of other vectors in S, say v = a1 · v1 + a2 · v2 + · · ·+ an · vn, then we
have a nontrivial linear combination yielding the zero vector, namely (−1) ·v+a1 ·v1+ · · ·+an ·vn = 0.

◦ Conversely, suppose there is a nontrivial linear combination of vectors in S giving the zero vector, say,
b1 ·v1+b2 ·v2+ · · ·+bn ·vn = 0. Since the linear combination is nontrivial, at least one of the coe�cients
is nonzero, say, bi.

◦ Then bi ·vi = (−b1) ·v1+ · · ·+(−bi−1) ·vi−1+(−bi+1) ·vi+1+ · · ·+(−bn) ·vn, and by scalar-multiplying

both sides by
1

bi
(which exists because bi 6= 0 by assumption) we see vi = (−b1

bi
) · v1 + · · · + (−bi−1

bi
) ·

vi−1 + (−bi+1

bi
) · vi+1 + · · ·+ (−bn

bi
) · vn.

◦ Thus, one of the vectors is a linear combination of the others, as claimed.

• Example: Write one of the linearly dependent vectors 〈1,−1〉, 〈2, 2〉, 〈2, 1〉 as a linear combination of the
others.

◦ If we search for a linear dependence, we require a · 〈1,−1〉+ b · 〈2, 2〉+ c · 〈2, 1〉 = 〈0, 0〉.
◦ By row-reducing the appropriate matrix we can �nd the solution 2 · 〈1,−1〉+3 · 〈2, 2〉− 4 · 〈2, 1〉 = 〈0, 0〉.

◦ By rearranging we can then write 〈1,−1〉 = −3

2
· 〈2, 2〉+ 2 · 〈2, 1〉 . (Of course, this is not the only

possible answer: any of the vectors can be written as a linear combination of the other two, since all of
the coe�cients in the linear dependence are nonzero.)

• Linear independence and span are related in a number of ways, such as the following:
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• Proposition (Independence and Span): Let S be a linearly independent subset of the vector space V , and v
be any vector of V not in S. Then the set S ∪ {v} is linearly dependent if and only if v is in span(S).

◦ Proof: If v is in span(S), then one vector (namely v) in S∪{v} can be written as a linear combination of
the other vectors (namely, the vectors in S). So by our earlier proposition, S∪{v} is linearly dependent.

◦ Conversely, suppose that S ∪ {v} is linearly dependent, and consider a nontrivial dependence. If the
coe�cient of v is zero, then we would obtain a nontrivial dependence among the vectors in S (impossible,
since S is linearly independent), so the coe�cient of v is not zero: say, a · v + b1 · v1 + · · ·+ bn · vn = 0
with a 6= 0 and for some v1,v2, . . . ,vn in S.

◦ Then v = (−b1
a
) · v1 + · · ·+ (−bn

a
) · vn is a linear combination of the vectors in S, so v is in span(S).

• We can also characterize linear independence using the span:

• Proposition (Characterization of Linear Independence): A set S of vectors is linearly independent if and only
if every vector w in span(S) may be uniquely written as a sum w = a1 · v1 + · · ·+ an · vn for unique scalars
a1, a2, . . . , an and unique vectors v1,v2, . . . ,vn in S.

◦ Proof: First suppose the decomposition is always unique: then for any v1,v2, . . . ,vn in S, a1 ·v1 + · · ·+
an · vn = 0 implies a1 = · · · = an = 0, because 0 · v1 + · · · + 0 · vn = 0 is by assumption the only
decomposition of 0. So we see that the vectors are linearly independent.

◦ Now suppose that we had two ways of decomposing a vector w, say as w = a1 · v1 + · · ·+ an · vn and as
w = b1 · v1 + · · ·+ bn · vn.

◦ By subtracting, we obtain (a1 − b1) · v1 + · · ·+ (an − bn) · vn = w −w = 0.

◦ But now because v1, . . . ,vn are linearly independent, we see that all of the scalar coe�cients a1 −
b1, · · · , an − bn are zero. But this says a1 = b1, a2 = b2, . . . , an = bn, which is to say that the two
decompositions are actually the same.

1.5 Bases and Dimension

• We will now combine the ideas of a spanning set and a linearly independent set, and use the resulting objects
to study the structure of vector spaces.

1.5.1 De�nition and Basic Properties of Bases

• De�nition: A linearly independent set of vectors that spans V is called a basis for V .

◦ Terminology Note: The plural form of the (singular) word �basis� is �bases�.

• Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉 form a basis for R3.

◦ The vectors certainly span R3, since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+b · 〈0, 1, 0〉+c · 〈0, 0, 1〉
as a linear combination of these vectors.

◦ Furthermore, the vectors are linearly independent, because a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉 = 〈a, b, c〉
is the zero vector only when a = b = c = 0.

◦ Thus, these three vectors are a linearly independent spanning set for R3, so they form a basis.

• A particular vector space can have several di�erent bases:

• Example: Show that the vectors 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 also form a basis for R3.

◦ Solving the system of linear equations determined by x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈a, b, c〉 for
x, y, z will yield the solution x = −3a− b+ 5c, y = a− c, z = 2a+ b− 3c.

◦ Therefore, 〈a, b, c〉 = (−3a− b+ 5c) · 〈1, 1, 1〉+ (a− c) · 〈2,−1, 1〉+ (2a+ b− 3c) · 〈1, 2, 1〉, so these three
vectors span R3.
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◦ Furthermore, solving the system x · 〈1, 1, 1〉+ y · 〈2,−1, 1〉+ z · 〈1, 2, 1〉 = 〈0, 0, 0〉 yields only the solution
x = y = z = 0, so these three vectors are also linearly independent.

◦ So 〈1, 1, 1〉, 〈2,−1, 1〉, 〈1, 2, 1〉 are a linearly independent spanning set for R3, meaning that they form a
basis.

• Example: Find a basis for the vector space of 2× 3 (real) matrices.

◦ A general 2× 3 matrix has the form

[
a b c
d e f

]
= a

[
1 0 0
0 0 0

]
+ b

[
0 1 0
0 0 0

]
+ c

[
0 0 1
0 0 0

]
+

d

[
0 0 0
1 0 0

]
+ e

[
0 0 0
0 1 0

]
+ f

[
0 0 0
0 0 1

]
.

◦ This decomposition suggests that we can take the set of six matrices[
1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

]
,

[
0 0 1
0 0 0

]
,

[
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

]
,

[
0 0 0
0 0 1

]
as a basis.

◦ Indeed, they certainly span the space of all 2×3 matrices, and they are also linearly independent, because
the only linear combination giving the zero matrix is the one with a = b = c = d = e = f = 0.

• Non-Example: Show that the vectors 〈1, 1, 0〉 and 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors are linearly independent, since neither is a scalar multiple of the other.

◦ However, they do not span R3 since, for example, it is not possible to obtain the vector 〈1, 0, 0〉 as a
linear combination of 〈1, 1, 0〉 and 〈1, 1, 1〉.
◦ Explicitly, since a · 〈1, 1, 0〉+ b · 〈1, 1, 1〉 = 〈a+ b, a+ b, b〉, there are no possible a, b for which this vector
can equal 〈1, 0, 0〉, since this would require a+ b = 1 and a+ b = 0 simultaneously.

• Non-Example: Show that the vectors 〈1, 0, 0〉, 〈0, 1, 0〉, 〈0, 0, 1〉, 〈1, 1, 1〉 are not a basis for R3.

◦ These vectors do span R3, since we can write any vector 〈a, b, c〉 = a · 〈1, 0, 0〉+ b · 〈0, 1, 0〉+ c · 〈0, 0, 1〉+
0 · 〈1, 1, 1〉.

◦ However, these vectors are not linearly independent, since we have the explicit linear dependence 1 ·
〈1, 0, 0〉+ 1 · 〈0, 1, 0〉+ 1 · 〈0, 0, 1〉+ (−1) · 〈1, 1, 1〉 = 〈0, 0, 0〉.

• Having a basis allows us to describe all the elements of a vector space in a particularly convenient way:

• Proposition (Characterization of Bases): The set of vectors v1,v2, . . . ,vn forms a basis of the vector space V
if and only if every vector w in V can be written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for unique

scalars a1, a2, . . . , an.

◦ In particular, this proposition says that if we have a basis v1,v2, . . . ,vn for V , then we can describe all
of the other vectors in V in a particularly simple way (as a linear combination of v1,v2, . . . ,vn) that is
unique. A useful way to interpret this idea is to think of the basis vectors v1,v2, . . . ,vn as �coordinate
directions� and the coe�cients a1, a2, . . . , an as �coordinates�.

◦ Proof: Suppose v1,v2, . . . ,vn is a basis of V . Then by de�nition, the vectors v1,v2, . . . ,vn span the
vector space V : every vector w in V can be written in the form w = a1 · v1 + a2 · v2 + · · ·+ an · vn for
some scalars a1, a2, . . . , an.

◦ Furthermore, since the vectors v1,v2, . . . ,vn are linearly independent, by our earlier proposition every
vector w in their span (which is to say, every vector in V ) can be uniquely written in the form w =
a1 · v1 + a2 · v2 + · · ·+ an · vn, as claimed.

◦ Conversely, suppose every vector w in V can be uniquely written in the form w = a1 ·v1+a2 ·v2+ · · ·+
an · vn. Then by de�nition, the vectors v1,v2, . . . ,vn span V .

◦ Furthermore, by our earlier proposition, because every vector in span(v1,v2, . . . ,vn) can be uniquely
written as a linear combination of v1,v2, . . . ,vn, the vectors v1,v2, . . . ,vn are linearly independent:
thus, they are a linearly independent spanning set for V , so they form a basis.

• If we have a good description of the elements of a vector space, we can often extract a basis by direct analysis.
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• Example: Find a basis for the space W of real polynomials p(x) of degree ≤ 3 such that p(1) = 0.

◦ Notice that W is a subspace of the vector space V of all polynomials with real coe�cients, as it satis�es
the subspace criterion. (We omit the veri�cation.)

◦ A polynomial of degree ≤ 3 has the form p(x) = ax3 + bx2 + cx+ d for constants a, b, c, d.

◦ Since p(1) = a+ b+ c+ d, the condition p(1) = 0 gives a+ b+ c+ d = 0, so d = −a− b− c.
◦ Thus, we can write p(x) = ax3+ bx2+ cx+(−a− b− c) = a(x3−1)+ b(x2−1)+ c(x−1), and conversely,
any such polynomial has p(1) = 0.

◦ Since every polynomial in W can be uniquely written as a(x3 − 1) + b(x2 − 1) + c(x − 1), we conclude

that the set {x3 − 1, x2 − 1, x− 1} is a basis of W .

1.5.2 Existence and Construction of Bases

• A basis for a vector space can be obtained from a spanning set:

• Theorem (Spanning Sets and Bases): If V is a vector space, then any set spanning V contains a basis of V .

◦ In the event that the spanning set is in�nite, the argument is rather delicate and technical (and requires
the axiom of choice), so to illustrate the ideas, we will focus on the situation of a �nite spanning set
consisting of the vectors v1,v2, . . . ,vn.

◦ Proof (�nite spanning set case): Suppose {v1, . . . ,vn} spans V . We construct an explicit subset that is
a basis for V .

◦ Start with an empty collection S0 of elements. Now, for each 1 ≤ k ≤ n, perform the following procedure:

1. Check whether the vector vk is contained in the span of Sk−1. (Note that the span of the empty set
is the zero vector.)

2. If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}. Otherwise, let Sk = Sk−1.

◦ We claim that the set Sn is a basis for V . Roughly speaking, the idea is that the collection of elements
which we have not thrown away will still be a generating set (since removing a dependent element will
not change the span), but the collection will also now be linearly independent (since we threw away
elements which were dependent).

◦ To show that Sn is linearly independent, we use induction on k to show that Sk is linearly independent
for each 0 ≤ k ≤ n.
∗ For the base case we take k = 0: clearly, S0 (the empty set) is linearly independent.

∗ For the inductive step, suppose k ≥ 1 and that Sk−1 is linearly independent.

∗ If vk is in the span of Sk−1, then Sk = Sk−1 is linearly independent.

∗ If vk is not in the span of Sk−1, then Sk = Sk−1 ∪ {vk} is linearly independent by our proposition
about span and linear independence.

∗ In both cases, Sk is linearly independent, so by induction, Sn is linearly independent.

◦ To show that Sn spans V , let Tk = {v1, . . . ,vk}. We use induction on k to show that span(Sk) = span(Tk)
for each 0 ≤ k ≤ n.
∗ For the base case we take k = 0: clearly, span(S0) = span(T0), since both S0 and T0 are empty.

∗ For the inductive step, suppose k ≥ 1 and that span(Sk−1) = span(Tk−1).

∗ If vk is in the span of Sk−1, then Sk−1 = Sk so span(Sk−1) = span(Sk). By the inductive hypothesis,
the span of Sk−1 is the same as the span of Tk−1, so vk is in the span of Tk−1. But now by one of our
propositions about span, we see that span(Tk) = span(Tk−1), so span(Tk) = span(Sk) as claimed.

∗ If vk is not in the span of Sk−1, then by our proposition on spans and adjoining a vector, since
span(Sk−1) = span(Tk−1), we have span(Sk−1 ∪ {vk}) = span(Sk−1 ∪ {vk}), which is the same as
saying span(Sk) = span(Tk).

∗ In both cases, span(Sk) = span(Tk), so by induction, span(Sn) = span(Tn) = span(v1, . . . ,vn) = V .

• By removing elements from a spanning set, we can construct a basis for a vector space.
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◦ Without a doubt, the existence of bases is the most useful fact about vector spaces. Vector spaces in the
abstract are very hard to think about, but a vector space with a basis is something very concrete, since
the existence of a basis allows us to describe all the vectors in a precise and regular form.

• Theorem (Bases of Vector Spaces): Every vector space V with a �nite spanning set has a basis.

◦ Proof: Let S be a �nite spanning set for V . Then since S spans V , it contains a basis for V by the result
above.

• The above procedure allows us to construct a basis for a vector space by �dropping down� by removing linearly
dependent vectors from a spanning set. We can also construct bases for vector spaces by �building up� from
a linearly independent set.

• Theorem (Replacement Theorem): Suppose that S = {v1,v2, . . . ,vn} is a basis for V and {w1,w2, . . . ,wm}
is a linearly independent subset of V . Then there is a reordering of the basis S, say {a1,a2, . . . ,an} such
that for each 1 ≤ k ≤ m, the set {w1,w2, . . . ,wk,ak+1,ak+2, . . . ,an} is a basis for V . Equivalently, the
elements {w1,w2, . . . ,wm} can be used to successively replace the elements of the basis, with each replacement
remaining a basis of V .

◦ Proof: We prove the result by induction on k. For the base case k = 0, there is nothing to prove.

◦ For the inductive step, suppose that Bk = {w1,w2, . . . ,wk,ak+1,ak+2, . . . ,an} is a basis for V : we
must show that we can remove one of the vectors ai and reorder the others to produce a basis Bk+1 =
{w1,w2, . . . ,wk,wk+1,a

′
k+2, . . . ,a

′
n} for V .

◦ By hypothesis, since Bk spans V , we can write wk+1 = c1 ·w1 + · · ·+ ck ·wk + dk+1 · ak+1 + · · ·+ dn · an
for some scalars ci and di.

◦ If all of the di were zero, then wk+1 would be a linear combination of w1, . . . ,wk, contradicting the
assumption that {w1,w2, . . . ,wm} is a linearly independent set of vectors.

◦ Thus, at least one di is not zero. Rearrange the vectors ai so that dk+1 6= 0: then wk+1 = c1 ·w1 + · · ·+
ck ·wk + d′k+1 · a′k+1 + · · ·+ d′n · a′n.
◦ We claim now that Bk+1 = {w1,w2, . . . ,wk,wk+1,a

′
k+2, . . . ,a

′
n} is a basis for V .

◦ To see that Bk+1 spans V , since dk+1 6= 0, we can solve for a′k+1 as a linear combination of the vectors
w1, . . . ,wk+1,a

′
k+2, . . . ,a

′
n. (The exact expression is cumbersome, and the only fact we require is to note

that the coe�cient of wk+1 is not zero.)

◦ If x is any vector in V , since Bk spans V we can write x = e1 ·w1+ · · ·+ek ·wk+ek+1 ·a′k+1+ · · ·+en ·a′n.
◦ Plugging in the expression for a′k+1 in terms of w1, . . . ,wk+1,a

′
k+2, . . . ,a

′
n then shows that x is a linear

combination of w1, . . . ,wk+1,a
′
k+2, . . . ,a

′
n.

◦ To see that Bk+1 is linearly independent, suppose we had a dependence 0 = f1 · w1 + · · · + fk · wk +
fk+1 · a′k+1 + · · ·+ fn · a′n.
◦ Now plug in the expression for a′k+1 in terms of w1, . . . ,wk+1,a

′
k+2, . . . ,a

′
n: all of the coe�cients must

be zero because Bk is linearly independent. But the coe�cient of wk+1 is fk+1 times a nonzero scalar,
so fk+1 = 0.

◦ But this implies 0 = f1 · w1 + · · · + fk · wk + fk+2 · a′k+2 + · · · + fn · a′n, and this is a dependence
involving the vectors in Bk. Since Bk is (again) linearly independent, all of the coe�cients are zero.
Thus f1 = f2 = · · · = fn = 0, and so Bk+1 is linearly independent.

◦ Finally, since we have shown Bk+1 is linearly independent and spans V , it is a basis for V . By induction,
we have the desired result for all 1 ≤ k ≤ m.

• Although the proof of the Replacement Theorem is cumbersome, we obtain several useful corollaries.

• Corollary: Suppose V has a basis with n elements. If m > n, then any set of m vectors of V is linearly
dependent.

◦ Proof: Suppose otherwise, so that {w1,w2, . . . ,wm} is a linearly independent subset of V .
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◦ Apply the Replacement Theorem with the given basis of V : at the nth step we have replaced all the
elements of the original basis with those in our new set, so by the conclusion of the theorem we see that
{w1, . . . ,wn} is a basis for V .

◦ Then wn+1 is necessarily a linear combination of {w1, . . . ,wn}, meaning that {w1, . . . ,wn,wn+1} is
linearly dependent. Thus {w1,w2, . . . ,wm} is linearly dependent.

• Corollary: Any two bases of a vector space have the same number of elements.

◦ Proof: If every basis is in�nite, we are already done, so now suppose that V has some �nite basis, and
choose B to be a basis of minimal size2.

◦ Suppose B has n elements, and consider any other basis B′ of V . By the previous corollary, if B′ contains
more than n vectors, it would be linearly dependent (impossible). Thus, B′ also has n elements, so every
basis of V has n elements.

• Theorem (Building-Up Theorem): If V has a �nite basis, then given any linearly independent set of vectors
in V , there exists a basis of V containing those vectors. In short, any linearly independent set of vectors can
be extended to a basis.

◦ Proof (�nite basis case): Let S be a set of linearly independent vectors and let B be any �nite basis of
V . Apply the Replacement Theorem to B and S: this produces a new basis of V containing S.

◦ Remark: Although we appealed to the Replacement Theorem here, we can also give a slightly di�erent,
more constructive argument like the one we gave for obtaining a basis from a spanning set.

1. Start with a linearly independent set S of vectors in V . If S spans V , then we are done.

2. If S does not span V , there is an element v in V which is not in the span of S. Put v in S: then by
hypothesis, the new S will still be linearly independent.

3. Repeat the above two steps until S spans V .

◦ If V possesses a basis of cardinality n, then this procedure will always terminate in at most n steps, since
any set of more than n vectors would be linearly dependent.

• For completeness, we also include the details of the argument that a general vector space has a basis using
Zorn's lemma, which is the version of the axiom of choice typically used in algebra.

◦ Zorn's lemma states that if F is a nonempty partially-ordered set in which every chain (i.e., a totally
ordered subset of F , in which any two elements X and Y are comparable, meaning that either X ≤ Y
or Y ≤ X) has an upper bound (i.e., an element U ∈ F such that X ≤ U for all X in the chain), then F
contains a maximal element (i.e., an element M ∈ F such that if M ≤ Y for some Y ∈ F , then in fact
Y =M).

• Theorem (Bases of Arbitrary Vector Spaces): If V is an arbitrary vector space, then V has a basis.

◦ Proof: Let F be the set of all linearly-independent subsets of V , partially ordered under inclusion. Since
the empty set is linearly independent, F is nonempty.

◦ If C is any chain of F , we claim that U =
⋃

A∈C A is an upper bound for C lying in F . Clearly A ⊆ U
for all A ∈ C, so we need only check that U is linearly independent. So suppose that we had a linear
dependence a1v1 + · · ·+ akvk = 0 for v1, . . . ,vk in U and scalars a1, . . . , ak.

◦ By de�nition of U , each vi lies in some subset Ai ∈ C. Since C is a chain, by a trivial induction we see
that one of the Ai must contain all of the others, hence contains all of the vectors vi. Then since this
subset Ai is linearly independent, we must have a1 = · · · = ak = 0, and so U is linearly independent.

◦ By Zorn's lemma, since every chain of F has an upper bound, there exists some maximal element S of
F : this S is a linearly independent subset of V that is maximal under inclusion with respect to being
linearly independent.

2The size of a basis is either a nonnegative integer or ∞. The fact that a basis of smallest size must exist follows from an axiom (the
well-ordering principle) that any nonempty set of nonnegative integers has a smallest element.
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◦ We claim that S also spans V hence is a basis: if S failed to span V , then there would exist some w ∈ V
with w 6∈ span(S). But then the set S ∪ {w} would also be linearly independent, contradicting the
maximality of S. Hence span(S) = V and so S is a basis of V , as desired.

◦ Remark: In fact, it has been proven that the statement �every vector space has a basis� is actually
equivalent to the axiom of choice (under the Zermelo-Frankel axioms of set theory), so in fact appealing
to the axiom of choice, or equivalently Zorn's lemma, is necessary here!

◦ Remark: This argument is the Zorn's-lemma reformulation of the �building-up� method of constructing
a basis starting from a linearly independent set. It is also possible to reformulate the �dropping-down�
method of constructing a basis starting from a spanning set (we omit the details).

1.5.3 Dimension

• De�nition: If V is a vector space, the number of elements in any basis of V is called the dimension of V and
is denoted dim(V ). If the dimension of V is a �nite number, we say that V is �nite-dimensional; otherwise,
we say V is in�nite-dimensional.

◦ Our results above assure us that the dimension of a vector space is always well-de�ned: every vector
space has a basis, and any other basis will have the same number of elements.

• Here are a few examples:

◦ Example: The dimension of Rn is n, since the n standard unit vectors form a basis. (This at least
suggests that the term �dimension� is reasonable, since it is the same as our usual notion of dimension.)

◦ Example: The dimension of the vector space of m×n matrices is mn, because there is a basis consisting
of the mn matrices Ei,j , where Ei,j is the matrix with a 1 in the (i, j)-entry and 0s elsewhere.

◦ Example: The dimension of the vector space of all polynomials is ∞, because the (in�nite list of)
polynomials 1, x, x2, x3, · · · are a basis for the space.

◦ Example: The dimension of the zero space is 0, because the empty set (containing 0 elements) is a basis.

◦ Example: Over the �eld of real numbers, the vector space of complex numbers has dimension 2, since
the set {1, i} forms a basis.

◦ Example: Over the �eld of complex numbers, the vector space of complex numbers has dimension 1,
since the set {1} forms a basis.

• As the last two examples indicate, the dimension of a vector space depends on the �eld we are using.

◦ To avoid ambiguities, it is best to indicate which �eld we are using when we discuss dimensions: we
often do this by writing a subscript to indicate the �eld, so that dimF V denotes the dimension of V as
a vector space over the �eld F .

◦ Thus, dimR(C) = 2 while dimC(C) = 1.

◦ When the �eld is implied by context (or not relevant to the discussion) we will omit it.

• Here are a few basic properties of dimension that follow from our previous results:

• Proposition (Properties of Dimension): Suppose V and W are vector spaces. Then the following hold:

1. If W is a subspace of V , then dim(W ) ≤ dim(V ).

◦ Proof: Choose any basis of W . It is a linearly independent set of vectors in V , so it is contained in
some basis of V by the Building-Up Theorem.

2. If dim(V ) = n, then any linearly independent set of vectors has at most n elements.

◦ Proof: This result was a corollary to the Replacement Theorem.

3. If dim(V ) = n, then any linearly independent set of n vectors is a basis for V .

◦ Proof: This follows immediately from the Replacement Theorem.

4. If dim(V ) = n, then any spanning set of V has at least n elements.
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◦ Proof: As we showed, any spanning set contains a basis.

5. If dim(V ) = n, then any spanning set of V having exactly n elements is a basis for V .

◦ Proof: The spanning set contains a basis, but since the basis must also have n elements, the basis is
the entire spanning set.

6. If dim(V ) = n, a subset of V having exactly n vectors is a basis if and only if it spans V if and only if it
is linearly independent.

◦ Proof: This follows by combining the results of (3) and (5) above.

• The simplest way to �nd the dimension of a vector space is to write down an explicit basis:

• Example: Find the dimension of the complex vector space of 3× 3 matrices A satisfying AT = −A.

◦ If A =

 a b c
d e f
g h i

 is such a matrix, then AT = −A requires

 a d g
b e h
c f i

 = −

 a b c
d e f
g h i

, so that

a = e = i = 0, b = d, c = g, and h = f .

◦ Thus, A =

 0 b c
−b 0 f
−c −f 0

 = b ·

 0 1 0
−1 0 0
0 0 0

+ c ·

 0 0 1
0 0 0
−1 0 0

+ f ·

 0 0 0
0 0 1
0 −1 0

.
◦ Thus, the three matrices

 0 1 0
−1 0 0
0 0 0

 ,
 0 0 1

0 0 0
−1 0 0

 ,
 0 0 0

0 0 1
0 −1 0

 form a basis for the space,

so the dimension is 3 .

• In general, �nite-dimensional vector spaces are much better behaved than in�nite-dimensional vector spaces.
We will therefore usually focus our attention on �nite-dimensional spaces, since in�nite-dimensional spaces
can have occasional counterintuitive properties. For example:

• Example: The dimension of the vector space of all real-valued functions on the interval [0, 1] is ∞, because it
contains the in�nite-dimensional vector space of polynomials.

◦ We have not actually written down a basis for the vector space of all real-valued functions on the interval
[0, 1], although (per our earlier results) this vector space does have a basis.

◦ There is a good reason for this: it is not possible to give a simple description of such a basis.

◦ The set of functions fa(x) =

{
1 if x = a

0 if x 6= a
, for real numbers a, does not form a basis for the space of

real-valued functions: although this in�nite set of vectors is linearly independent, it does not span the
space, since (for example) the constant function f(x) = 1 cannot be written as a �nite linear combination
of these functions.

1.5.4 Finding Bases for Rn, Row Spaces, Column Spaces, and Nullspaces

• The fact that every vector space has a basis is extremely useful. We will now discuss some practical methods
for constructing bases for particular vector spaces that often arise in computational applications of linear
algebra.

◦ Our results provide two di�erent methods for constructing a basis for a given vector space.

◦ One way is to �build up� a linearly independent set of vectors into a basis by adding new vectors one at
a time (choosing a vector not in the span of the previous vectors) until a basis is obtained.

◦ Another way is to �reduce down� a spanning set by removing linearly dependent vectors one at a time
(�nding and removing a vector that is a linear combination of the others) until a basis is obtained.

• Proposition (Bases, Span, Dependence): If V is an n-dimensional vector space, then any set of fewer than
n vectors cannot span V , and any set of more than n vectors is linearly dependent. Furthermore, a set of
exactly n vectors is a basis if and only if it spans V , if and only if it is linearly independent.
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◦ Proof: We showed all of these results earlier.

• Example: Determine whether the vectors 〈1, 2, 2, 1〉, 〈3,−1, 2, 0〉, 〈−3, 2, 1, 1〉 span R4.

◦ They do not span : since R4 is a 4-dimensional space, any spanning set must contain at least 4 vectors.

• Example: Determine whether the vectors 〈1, 2, 1〉, 〈1, 0, 3〉, 〈−3, 2, 1〉, 〈1, 1, 4〉 are linearly independent.

◦ They are not linearly independent : since R3 is a 3-dimensional space, any 4 vectors in R3 are automat-

ically linearly dependent.

• We can also characterize bases of Rn:

• Theorem (Bases of Rn): A collection of k vectors v1, . . . ,vk in Rn is a basis if and only if k = n and the n×n
matrix M , whose columns are the vectors v1, . . . ,vn, is an invertible matrix.

◦ Remark: The statement that B is invertible is equivalent to saying that det(M) 6= 0. This gives a rapid
computational method for determining whether a given set of vectors forms a basis.

◦ Proof: Since Rn has a basis with n elements, any basis must have n elements by our earlier results, so
k = n.

◦ Now suppose v1, . . . ,vn are vectors in Rn. For any vector w in Rn, consider the problem of �nding
scalars a1, · · · , an such that a1 · v1 + · · ·+ an · vn = w.

◦ This vector equation is the same as the matrix equationMa = w, whereM is the matrix whose columns
are the vectors v1, . . . ,vn, a is the column vector whose entries are the scalars a1, . . . , an, and w is
thought of as a column vector.

◦ By our earlier results, v1, . . . ,vn is a basis of Rn precisely when the scalars a1 . . . , an are unique. In turn
this is equivalent to the statement that Ma = w has a unique solution a for any w.

◦ From our study of matrix equations, this equation has a unique solution precisely whenM is an invertible
matrix, as claimed.

• Example: Determine whether the vectors 〈1, 2, 1〉, 〈2,−1, 2〉, 〈3, 3, 1〉 form a basis of R3.

◦ By the theorem, we only need to determine whether the matrix M =

 1 2 3
2 −1 3
1 2 1

 is invertible.

◦ We compute det(M) = 1

∣∣∣∣ −1 3
2 1

∣∣∣∣− 2

∣∣∣∣ 2 3
1 1

∣∣∣∣+ 3

∣∣∣∣ 2 −1
1 2

∣∣∣∣ = 10 which is nonzero.

◦ Thus, M is invertible, so these vectors do form a basis of R3 .

• Associated to any matrix M are three spaces that often arise when doing matrix algebra and studying the
solutions to systems of linear equations.

• De�nition: If M is an m × n matrix, the row space of M is the subspace of Rn spanned by the rows of M ,
the column space of M is the subspace of Rm spanned by the columns of M , and the nullspace of M is the
set of vectors x in Rn for which Mx = 0.

◦ By de�nition the row space and column spaces are subspaces of Rn and Rm respectively, since the span
of any set is a subspace. It is also easy to see that the nullspace is a subspace of Rm via the subspace
criterion.

• We have already studied in detail the procedure for solving a matrix equation Mx = 0, which requires
row-reducing the matrix M . It turns out that we can obtain a basis for the row and column spaces from a
row-echelon form of M as well:

• Theorem (Bases for Row and Column Spaces): If M is an m × n matrix, let E be any row-echelon form of
M . If r is the number of pivots in E, then the row space and column space are both r-dimensional and the
nullspace is (n − r)-dimensional. Furthermore, a basis for the row space is given by the nonzero rows of E,
while a basis for the column space is given by the columns of M that correspond to the pivotal columns of E.
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◦ For the column space, we also remark that another option would be to row-reduce the transpose matrix
MT , since the columns of M are the rows of MT . This will produce a basis that is easier to work with,
but it is not actually necessary to perform the extra calculations.

◦ Proof: First consider the row space, which by de�nition is spanned by the rows of M .

◦ Observe that each elementary row operation does not change the span of the rows of M : for any
vectors vi and vj , we have span(vi,vj) = span(vj ,vi), span(cv) = span(v) for any nonzero c, and
span(vi,vj) = span(vi + cvj ,vj) for any c.

◦ So we may put M into a row-echelon form E without altering the span. Now we claim that the nonzero
rows r1, . . . , rr of E are linearly independent. Ultimately, this is because of the presence of the pivot
elements: if a1 · r1 + · · · + ar · rr = 0 then each of the vectors r1, ... , rr will have a leading coe�cient
in an entry that is zero in all of the subsequent vectors, so the only solution to the associated system of
linear equations is a1 = · · · = ar = 0.

◦ Now consider the column space. Observe �rst that the set of solutions x to the matrix equation Mx = 0
is the same as the set of solutions to the equation Ex = 0, by our analysis of row-operations.

◦ Now if we write x =

 a1
...
an

 and expand out each matrix product in terms of the columns of M and E,

we will see that Mx = a1 · c1 + · · ·+ an · cn and Ex = a1 · e1 + · · ·+ an · en where the ci are the columns
of M and the ei are the columns of E.

◦ Combining these two observations shows that, for any scalars a1, . . . , an, we have a1 ·c1+ · · ·+an ·cn = 0
if and only if a1 · e1 + · · ·+ an · en = 0.

◦ What this means is that any linear dependence between the columns of M gives a linear dependence
between the corresponding columns of E (with the same coe�cients), and vice versa. So it is enough
to determine a basis for the column space of E: then a basis for the column space of M is simply the
corresponding columns in M .

◦ All that remains is to observe that the set of pivotal columns for E forms a basis for the column space of
E: the pivotal columns are linearly independent by the same argument given above for rows, and every
other column lies in their span (speci�cally, any column lies in the span of the pivotal columns to its left,
since each row has a pivotal element).

◦ Finally, the statement about the dimensions of the row and column spaces follows immediately from
our descriptions, and the statement about the dimension of the nullspace follows by observing that the
matrix equation Mx = 0 has r bound variables and n− r free variables.

• Example: Find bases for the row space, the column space, and the nullspace of M =

 1 0 2 1
0 1 −1 2
1 1 1 3

, as
well as the dimension of each space.

◦ First, row-reduce M :

 1 0 2 1
0 1 −1 2
1 1 1 3

 R3−R1−→

 1 0 2 1
0 1 −1 2
0 1 −1 2

 R3−R2−→

 1 0 2 1
0 1 −1 2
0 0 0 0

 .
◦ The row space has a basis given by the nonzero rows 〈1, 0, 2, 1〉 , 〈0, 1,−1, 2〉 .

◦ Since columns 1 and 2 have pivots, those columns

 1
0
1

 ,
 0

1
1

 of M give a basis for the column

space.

◦ For the nullspace, there are two free variables corresponding to columns 3 and 4. Solving the correspond-
ing system (with variables x1, x2, x3, x4 and free parameters a, b) yields the solution set 〈x1, x2, x3, x4〉 =
〈−2a− b, a− 2b, a, b〉 = a 〈−2, 1, 1, 0〉+ b 〈−1,−2, 0, 1〉.

◦ Thus, a basis for the nullspace is given by 〈−2, 1, 1, 0〉 , 〈−1,−2, 0, 1〉 .

◦ The row space, column space, and nullspace all have dimension 2 .
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• Example: Find bases for the row space, column space, and nullspace of M =

 1 −1 0 2 1
−2 2 0 −3 1
1 −1 0 3 8

.
◦ First, row-reduceM :

 1 −1 0 2 1
−2 2 0 −3 1
1 −1 0 3 8

 R2+2R1−→
R3−R1

 1 −1 0 2 1
0 0 0 1 3
0 0 0 2 7

 R3−2R2−→

 1 −1 0 2 1
0 0 0 1 3
0 0 0 0 1

 .
◦ The row space has a basis given by the rows 〈1,−1, 0, 2, 1〉 , 〈0, 0, 0, 1, 3〉 , 〈0, 0, 0, 0, 1〉 .

◦ Since there are pivots in columns 1, 4, and 5, the column space has a basis

 1
−2
1

 ,
 2
−3
3

 ,
 1

1
8

 .

◦ For the nullspace, solving the linear systemMx = 0 (with variables x1, x2, x3, x4, x5 and free parameters
a, b) yields the solution set 〈x1, x2, x3, x4, x5〉 = 〈a, a, b, 0, 0〉 = a 〈1, 1, 0, 0, 0〉 + b 〈0, 0, 1, 0, 0〉, so the

nullspace has a basis 〈1, 1, 0, 0, 0〉 , 〈0, 0, 1, 0, 0〉 .

• As particular applications, we can use these ideas to give algorithms for reducing a spanning set to a basis
and for building a basis from a linearly independent set.

◦ To reduce a spanning set to a basis, we write down the associated matrix (whose columns are the elements
of the spanning set) and then row-reduce it: the columns corresponding to pivotal columns will then be
a basis for the column space.

◦ To build a linearly independent set S into a basis, we �rst �nd additional vectors so that the resulting
set spans the space, and then (listing the vectors in S �rst) reduce this spanning set to a basis using the
procedure above.

◦ Note that using either of these procedures will require us to have chosen a particular basis for the space
already (since we need to work with the coe�cient vectors for the elements of our spanning set).

• Example: If S = {〈1, 0, 1, 2〉 , 〈3, 0, 3, 6〉 , 〈2, 1, 2, 1〉 , 〈3, 1, 3, 3〉}, �nd a subset of S that is a basis for span(S).

◦ We simply row-reduce the matrix whose columns are the vectors in S:
1 3 2 3
0 0 1 1
1 3 2 3
2 6 1 3

 R3−R1−→
R4−2R2


1 3 2 3
0 0 1 1
0 0 0 0
0 0 −3 −3

 R4+3R2−→


1 3 2 3
0 0 1 1
0 0 0 0
0 0 0 0

 .
◦ Since the �rst and third columns are pivotal, we conclude that the vectors 〈1, 0, 1, 2〉 , 〈2, 1, 2, 1〉 are a

basis for the column space, which is the same as span(S).

• Example: Extend the set S = {1− 2x2, 2 + x} to a basis for the vector space V of polynomials of degree ≤ 3
with real coe�cients.

◦ We extend S to a spanning set, and then reduce the result to a basis: the easiest way to do this is simply
to append some other basis to S. Let us append the standard basis {1, x, x2, x3}: we therefore want to
reduce S′ = {1− 2x2, 2 + x, 1, x, x2, x3} to a basis.

◦ To do this, row-reduce the matrix whose columns are the coe�cient vectors of the elements of S′:
1 2 1 0 0 0
0 1 0 1 0 0
−2 0 0 0 1 0
0 0 0 0 0 1

 R3+2R1−→


1 2 1 0 0 0
0 1 0 1 0 0
0 4 2 0 1 0
0 0 0 0 0 1

 R3−4R2−→


1 2 1 0 0 0
0 1 0 1 0 0
0 0 2 −4 1 0
0 0 0 0 0 1


◦ Since columns 1, 2, 3, and 6 are pivotal, we conclude that {1− 2x2, 2 + x, 1, x3} is a basis for V .

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2026. You may not reproduce or distribute this
material without my express permission.
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