

1. Answer the following true/false questions, where $T : V \rightarrow W$ is a linear transformation.

- (a) The vectors $\langle 1, 1 \rangle, \langle 4, 1 \rangle, \langle 2, 3 \rangle$ span \mathbb{R}^2 .
- (b) The vectors $\langle 1, 1 \rangle, \langle 4, 1 \rangle, \langle 2, 3 \rangle$ are linearly independent in \mathbb{R}^2 .
- (c) The set $\{1 - x, 3 - x^2, 4 - x^3\}$ spans $P_3(\mathbb{R})$.
- (d) The set $\{1 - x, 3 - x^2, 4 - x^3\}$ is linearly independent in $P_3(\mathbb{R})$.
- (e) If W is a subspace of V , then $\dim(W) \leq \dim(V)$.
- (f) Every finite-dimensional vector space has a finite basis.
- (g) The set of vectors in any vector space V forms a basis for V .
- (h) If $\dim(V) = 3$, then every set of at least 3 vectors spans V .
- (i) If $\dim(V) = 3$, then there is a linearly independent subset of V having exactly 3 elements.
- (j) If $\dim(V) = 3$, then no linearly independent subset of V can have exactly 2 elements.
- (k) The dimension of a vector space is always positive.
- (l) The vector $\mathbf{v} = e^{-x} - 2e^x$ is in the kernel of the map $T : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ with $T(f) = f'' - f$.
- (m) The vector $\mathbf{v} = \langle 2, 3, 4 \rangle$ is in the image of the map $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ with $T(a, b) = \langle a - b, a + b, a - b \rangle$.
- (n) The vector $\mathbf{v} = x^2$ is in the image of the map $T : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ with $T(f) = \int_0^x f(t) dt$.
- (o) If $T(\mathbf{v}) = T(\mathbf{w})$ implies $\mathbf{v} = \mathbf{w}$, then T is one-to-one.
- (p) If for any \mathbf{v} in V there exists \mathbf{w} in W with $T(\mathbf{v}) = \mathbf{w}$, then T is onto.
- (q) If for any \mathbf{w} in W there is a unique \mathbf{v} in V with $T(\mathbf{v}) = \mathbf{w}$, then T is an isomorphism.
- (r) There exists a linear $T : \mathbb{R}^5 \rightarrow \mathbb{R}^4$ whose nullity is 2 and whose rank is 2.
- (s) There exists a linear $T : \mathbb{R}^5 \rightarrow \mathbb{R}^4$ whose nullity is 4 and whose rank is 1.
- (t) There exists a linear $T : \mathbb{R}^5 \rightarrow \mathbb{R}^4$ that is onto but not one-to-one.
- (u) There exists a linear $T : \mathbb{R}^5 \rightarrow \mathbb{R}^4$ that is one-to-one but not onto.
- (v) If $\dim(\text{im}(T)) = \dim(W)$, then T is onto.
- (w) If V is isomorphic to W , then $\dim(V) = \dim(W)$.
- (x) If $S, T : V \rightarrow V$ then $[ST]_\alpha^\gamma = [S]_\alpha^\beta [T]_\beta^\gamma$ for any ordered bases α, β, γ of V .
- (y) If $T : V \rightarrow V$, then $[T^2 \mathbf{v}]_\beta = ([T]_\alpha^\beta)^2 [\mathbf{v}]_\alpha$ for any ordered bases α, β of V and $\mathbf{v} \in V$.
- (z) If $T : V \rightarrow V$ has an inverse T^{-1} , then $[T^{-1}]_\alpha^\beta = ([T]_\alpha^\beta)^{-1}$ for any ordered bases α, β of V .

2. An $n \times n$ matrix A is orthogonal when $A^T A = I_n$. If A is orthogonal, show that A^{-1} is also orthogonal.

3. Suppose A and B are $n \times n$ matrices such that B and ABA are invertible. Show that B is invertible.

4. Prove that $1 + \frac{1}{2} + \frac{1}{4} + \cdots + \frac{1}{2^n} = 2 - \frac{1}{2^n}$ for all positive integers n .

5. Prove that the n th power of $\begin{bmatrix} 3 & 2 \\ -2 & -1 \end{bmatrix}$ is $\begin{bmatrix} 2n+1 & 2n \\ -2n & 1-2n \end{bmatrix}$ for all positive integers n .

6. Suppose A is an invertible upper-triangular matrix. Show that A^{-1} is also upper-triangular. [Hint: Consider A as a product of elementary row matrices.]

7. Determine whether the given S is a subspace of the given vector space V and if so find its dimension:

- (a) $V = \mathbb{R}^4$, $S =$ the vectors $\langle a, b, c, d \rangle$ in \mathbb{R}^4 with $a + 2b + 3c + 4d = 5$.
- (b) $V = M_{3 \times 3}(\mathbb{R})$, $S =$ the 3×3 matrices with nonnegative real entries.
- (c) $V =$ twice-differentiable functions on $[0, 1]$, $S =$ the functions with $f''(x) + f(x) = 1$.
- (d) $V = \mathbb{C}^5$, $S =$ the vectors $\langle a, b, c, d, e \rangle$ with $e = a + b$ and $b = c = d$.
- (e) $V = P_3(\mathbb{C})$, $S =$ the polynomials with $p'(1) = 0$.

8. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a basis for the vector space V . Show $\{\mathbf{v}_3, \mathbf{v}_3 - \mathbf{v}_2, \mathbf{v}_3 - \mathbf{v}_2 - \mathbf{v}_1\}$ is also a basis for V .

9. Suppose that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ are two linearly-independent subsets of V .

- If $\text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \cap \text{span}(\mathbf{w}_1, \mathbf{w}_2) = \{\mathbf{0}\}$, prove that $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}_1, \mathbf{w}_2\}$ is linearly independent.
- If $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{w}_1, \mathbf{w}_2\}$ is linearly independent, prove that $\text{span}(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3) \cap \text{span}(\mathbf{w}_1, \mathbf{w}_2) = \{\mathbf{0}\}$.

10. Suppose that $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V and that for each i , \mathbf{v}_i is not contained in $\text{span}(\mathbf{v}_1, \dots, \mathbf{v}_{i-1}, \mathbf{v}_{i+1}, \dots, \mathbf{v}_n)$. Prove that S is a basis for V .

11. Prove that $\dim(\text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)) = \dim(\text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n, \mathbf{w}))$ if and only if \mathbf{w} is in $\text{span}(\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n)$.

12. Suppose that $\dim(V) = 3$, and that W_1 and W_2 are subspaces of V with $\dim(W_1) = \dim(W_2) = 2$. If $W_1 \neq W_2$, prove that $W_1 + W_2 = V$. (Recall $W_1 + W_2$ is the set of all vectors $\mathbf{w}_1 + \mathbf{w}_2$ where \mathbf{w}_1 is in W_1 and \mathbf{w}_2 is in W_2 .)

13. For each linear $T : V \rightarrow W$, find bases for the kernel and image of T and find $[T]_{\beta}^{\gamma}$ for the given β, γ :

- $V = \mathbb{R}^3, W = \mathbb{R}^2, T(a, b, c) = (a - b, b - c)$, with $\beta = \{\langle 1, 0, 0 \rangle, \langle 0, 1, 0 \rangle, \langle 0, 0, 1 \rangle\}$, $\gamma = \{\langle 1, 0 \rangle, \langle 0, 1 \rangle\}$.
- $V = P_2(\mathbb{C}), W = P_3(\mathbb{C}), T(p) = p(x) - xp'(x)$, with $\beta = \{1, x, x^2\}$, $\gamma = \{1, x, x^2, x^3\}$.
- $V = W = M_{2 \times 2}(\mathbb{R}), T(A) = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} A - A \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, with $\beta = \gamma = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$.

14. Determine whether there exists a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ with the given kernel and image: if there is, find an example, and if not explain why not:

- $\ker(T) = \{\langle a, a, a \rangle, a \in \mathbb{R}\}$ and $\text{im}(T) = \mathbb{R}^2$.
- $\ker(T) = \{\langle a, a, a \rangle, a \in \mathbb{R}\}$ and $\text{im}(T) = \{\langle c, 0 \rangle, c \in \mathbb{R}\}$.
- $\ker(T) = \{\langle a, b, a + b \rangle, a, b \in \mathbb{R}\}$ and $\text{im}(T) = \{\langle c, 0 \rangle, c \in \mathbb{R}\}$.

15. Suppose $T : V \rightarrow W$ is linear where V and W are finite-dimensional and $\dim V < \dim W$. Show that T is not onto.

16. Suppose $T : V \rightarrow W$ is a linear transformation where $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ is a basis of V . If $\{T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)\}$ is a basis of W , prove that T is an isomorphism.

17. Suppose V and W are finite-dimensional vector spaces and $T : V \rightarrow W$ is linear, β is an ordered basis of V , and γ is an ordered basis of W .

- If $[T]_{\beta}^{\gamma}$ is the identity matrix, show that T is an isomorphism.
- If T is an isomorphism, show β and γ can be chosen so that $[T]_{\beta}^{\gamma}$ is the identity matrix.

18. Suppose $T : V \rightarrow V$ is a linear transformation.

- If $\ker(T) = \ker(T^2)$, show that $\text{im}(T) \cap \ker(T) = \{\mathbf{0}\}$.
- If $\text{im}(T) = \text{im}(T^2)$ and V is finite-dimensional, show that $\text{im}(T) \cap \ker(T) = \{\mathbf{0}\}$.
- Show that the derivative map $D : \mathbb{R}[x] \rightarrow \mathbb{R}[x]$ has $\text{im}(D) = \text{im}(D^2)$, but also has $\text{im}(D) \cap \ker(D)$ containing a nonzero polynomial.
