
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2026 ∼ Midterm 1 Review Answers

1. (a) True: direct check

(b) False: can't have > 2 independent vectors

(c) False: need at least 4 to span

(d) True: polynomials have di�erent degrees

(e) True: extend a basis of W to a basis of V

(f) True: by de�nition of �nite-dimensional

(g) False: �all vectors in V � is not independent

(h) False: take {1, x, 0} in P2(R).
(i) True: for instance, a basis works

(j) False: take 2 vectors of a basis

(k) False: the zero space has dimension 0

(l) True: for f = e−x − 2ex notice f ′′ − f = 0

(m) False: cannot have a− b = 2, a− b = 4.

(n) True: T (2x) = x2

(o) True: this is the de�nition of one-to-one

(p) False: condition is backwards; onto means �for any
w ∈W , exists v ∈ V with T (v) = w�

(q) True: condition says T is a bijection

(r) False: nullity-rank forces domain to have dim 4

(s) True: T (a, b, c, d, e) = (a, 0, 0, 0)

(t) True: T (a, b, c, d, e) = (a, b, c, d)

(u) False: dim(imT ) ≤ 4 so dim(kerT ) ≥ 1

(v) False: this is only true if W is �nite-dimensional

(w) True: isomorphisms preserve dimension

(x) False: bases are in the wrong order for composition

(y) False: can't compose α→ β twice in a row

(z) False: inverse reverses the input and output bases.

2. If A is orthogonal then A−1 = AT so transposing gives (A−1)T = A = (A−1)−1 so A−1 is orthogonal.

3. Taking determinants we see det(B) is nonzero and det(ABA) = det(A)2 det(B) is nonzero, so det(A)2 hence det(A)
is nonzero, so A is invertible.

4. Induct on n. Base case n = 1 clear. Inductive step: If 1+ 1
2 +

1
4 + · · ·+

1
2n = 2− 1

2n , then 1+ 1
2 +

1
4 + · · ·+

1
2n + 1

2n+1 =
2− 1

2n + 1
2n+1 = 2− 1

2n+1 .

5. Induct on n. Base case n = 1 clear. Inductive step:

if An =

[
2n+ 1 2n
−2n 1− 2n

]
then An+1 =

[
3 2
−2 −1

] [
2n+ 1 2n
−2n 1− 2n

]
=

[
2n+ 3 2n+ 2
−2n− 2 −2n+ 1

]
as required.

6. Consider A as a product of elementary row matrices obtained by row-reducing A to In. Since A is upper-triangular
and must have nonzero diagonal entries, each row-reduction involves subtracting a multiple of a lower row from a
higher one, so the elementary matrices are all upper-triangular. Their product A−1 is then upper-triangular.

7. (a) Not a subspace (does not contain zero vector)

(b) Not a subspace (not closed under negative scalings)

(c) Not a subspace (does not contain zero vector)

(d) Subspace (satis�es [S1]-[S3]). Basis {〈1, 0, 0, 0, 1〉 , 〈0, 1, 1, 1, 1〉}.
(e) Subspace (kernel of T : V → C with T (p) = p′(1)). Basis {1, x2 − 2x, x3 − 3x}.

8. Span: Observe av1 + bv2 + cv3 = (c− b)v3 + (a− b)(v3 − v2) + (−a)(v3 − v2 − v1). Independence: If av3 + b(v3 −
v2) + c(v3 − v2 − v1) = 0 then (a+ b+ c)v3 − (b+ c)v2 − cv1 = 0 so a+ b+ c = b+ c = c = 0 so a = b = c = 0.

9. (a) If a1v1 + a2v2 + a3v3 + b1w1 + b2w2 = 0 then let x = a1v1 + a2v2 + a3v3 = −b1w1 − b2w2. Then x is in
span(v1,v2,v3) ∩ span(w1,w2) hence is zero. But then since {v1,v2,v3} and {w1,w2} are independent the
two expressions for x imply a1 = a2 = a3 = b1 = b2 = 0.

(b) If x ∈ span(v1,v2,v3) ∩ span(w1,w2) suppose x = a1v1 + a2v2 + a3v3 = b1w1 + b2w2. Subtracting, 0 =
a1v1 + a2v2 + a3v3− b1w1− b2w2: as {v1,v2,v3,w1,w2} is linearly independent this requires a1 = a2 = a3 =
b1 = b2 = 0 so then x = 0.
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10. Suppose S had a linear dependence a1v1 + a2v2 + · · · + anvn = 0 with ai 6= 0. Then solving for vi yields
vi = (−1/ai)(a1v1 + · · ·+ ai−1vi−1 + ai+1vi+1 + · · ·+ anvn), contradicting the hypothesis. So all coe�cients must
be zero, so S is linearly independent.

11. If w is in span(v1,v2, . . . ,vn) then span(v1,v2, . . . ,vn) = span(v1,v2, . . . ,vn,w) as proven in class, so the dimen-
sions are equal. Otherwise, if w is not in span(v1,v2, . . . ,vn) then span(v1,v2, . . . ,vn,w) is strictly larger than
span(v1,v2, . . . ,vn) so its dimension is also strictly larger.

12. IfW1 6=W2 thenW2 must contain some vector v not inW1 (otherwiseW2 ⊆W1 but since they both have dimension
2, they would be equal). Then W1 +W2 contains both W1 and v so its dimension is strictly larger than that of W1:
then since dim(V ) = 3 this means dim(W1 +W2) = 3 so W1 +W2 = V .

13. (a) Kernel basis {〈1, 1, 1〉}, image basis {〈1, 0〉 , 〈0, 1〉}, [T ]γβ =

[
1 −1 0
0 1 −1

]
.

(b) Kernel basis {x}, image basis {1, x2}, [T ]γβ =


1 0 0
0 0 0
0 0 −1
0 0 0

.

(c) Kernel basis

{[
1 0
0 1

]
,

[
0 1
0 0

]}
, image basis

{[
1 0
0 −1

]
,

[
0 1
0 0

]}
, [T ]γβ =


0 0 1 0
−1 0 0 1
0 0 0 0
0 0 −1 0

.
14. (a) Many examples, such as T (x, y, z) = (x− y, y − z).

(b) Impossible by nullity-rank since dim(kerT ) = 1 = dim(imT ).

(c) Many examples, such as T (x, y, z) = (x+ y − z, 0).

15. By the nullity-rank theorem, we have dim(imT ) ≤ dim(kerT )+dim(imT ) = dimV < dimW so im(T ) cannot equal
W hence T is not onto.

16. Solution 1: Let wi = T (vi). Since {w1, . . . ,wn} is a basis of W , by properties of linear transformations there exists
a linear transformation S :W → V with S(wi) = vi for each i. Then S and T are inverses on the bases {v1, . . . ,vn}
and {w1, . . . ,wn}: thus T has an inverse so it is an isomorphism.
Solution 2: Let β = {v1, . . . ,vn} and γ = {T (v1), . . . , T (vn)}. Then [T ]γβ is the identity matrix, which is invertible,
so T is an isomorphism.

17. (a) By properties of associated matrices, since [T ]γβ is invertible, the associated transformation is an isomorphism

with inverse transformation S :W → V having matrix [S]βγ = ([T ]γβ)
−1.

(b) Take any basis β = {v1, . . . ,vn} and let γ = {T (v1), . . . , T (vn)}: since T is an isomorphism, it maps a basis
of V to a basis of W , so γ is a basis of W . Then [T ]γβ = In directly by de�nition of the associated matrix.

18. (a) If ker(T ) = ker(T 2) let w ∈ im(T ) ∩ ker(T ). Then w = T (v) so then 0 = T (w) = T 2(v): thus v ∈ ker(T 2)
hence v ∈ ker(T ) and thus w = T (v) = 0.

(b) If im(T ) = im(T 2) then dim(V )−dim(im(T )) = dim(V )−im(T 2) hence by nullity-rank this yields dim(ker(T )) =
dim(ker(T 2)). But since ker(T ) ⊆ ker(T 2), since T (v) = 0 implies T 2(v) = T (0) = 0, and these spaces are
�nite-dimensional, we see ker(T ) = ker(T 2). Then by (a), im(T ) ∩ ker(T ) = {0}.

(c) The derivative map is onto so im(D) = im(D2) = R[x], but nonzero constants are also in im(D) ∩ ker(D).
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