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Bases and Dimension

Existence of Bases

Properties of Bases

Dimension

This material represents §1.5.1-§1.5.3 from the course notes.



Recall

Recall the notions of span and linear independence from last week:

Definition

The span of a set S of vectors is the set of all linear combinations
of (finitely many) vectors in S: namely, all w of the form
w = a1 · v1 + · · ·+ an · vn, for scalars a1, . . . , an and v1, . . . , vn ∈ S.

Definition

A set S of vectors is linearly independent when
a1 · v1 + · · ·+ an · vn = 0 implies a1 = · · · = an = 0 for any
(distinct) vectors v1, . . . , vn ∈ S.



Bases

Definition

A linearly independent set of vectors that spans V is called a basis
for V .

Having a basis allows us to describe all the elements of a vector
space in a particularly convenient way:

Proposition (Characterization of Bases)

The set of vectors v1, v2, . . . , vn forms a basis of the vector space
V if and only if every vector w in V can be written in the form
w = a1 · v1 + a2 · v2 + · · ·+ an · vn for unique scalars a1, a2, . . . , an.

One should think of the basis vectors v1, v2, . . . , vn, . . . as
“coordinate directions” and the coefficients a1, a2, . . . , an, . . . as
“coordinates”. (Even when the basis is infinite, only finitely many
of the basis vectors are needed to reach any vector.)



Bases from Spanning Sets, I

A basis for a vector space can be obtained from a spanning set:

Theorem (Spanning Sets and Bases)

If V is a vector space, then any set spanning V contains a basis of
V .

In the event that the spanning set is infinite, the argument is rather
delicate and technical (and requires the axiom of choice), and does
not give such good intuition. Thus, we will instead give the proof
of this theorem in the special case where the spanning set is finite.



Bases from Spanning Sets, II

Proof (finite spanning set case):

Suppose {v1, . . . , vn} spans V .

Start with an empty collection S0 of elements and now, for
each 1 ≤ k ≤ n, perform the following procedure:

1. Check whether the vector vk is contained in the span of
Sk−1.

2. If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}.
Otherwise, let Sk = Sk−1.

We claim that the set Sn, obtained at the end of this
procedure, is a basis for V .

We will show that each set Sk is linearly independent, and the
span of Sn is the same as the span of S ,



Bases from Spanning Sets, III

1. Start with S0 empty. Then for each k:

2. If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}.
Otherwise, let Sk = Sk−1.

Claim: The set Sk is linearly independent, for each 0 ≤ k ≤ n.

Base Case (k = 0): clearly, S0 is linearly independent.

Inductive Step: Suppose k ≥ 1 and Sk−1 is linearly
independent.

If vk is in the span of Sk−1, then Sk = Sk−1 is linearly
independent.

If vk is not in the span of Sk−1, then Sk = Sk−1 ∪ {vk} is
linearly independent by our proposition about span and linear
independence.



Bases from Spanning Sets, IV

1. Start with S0 empty. Then for each k:

2. If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}.
Otherwise, let Sk = Sk−1.

Claim: For Tk = {v1, . . . , vk}, we have span(Sk) = span(Tk) for
each 0 ≤ k ≤ n.

Base Case (k = 0): Trivial, as both S0 and T0 are empty.

Inductive Step: Suppose k ≥ 1 and span(Sk−1) = span(Tk−1)

If vk is in the span of Sk−1, then Sk−1 = Sk .

By hypothesis, span(Sk−1) = span(Tk−1) so vk is in the span
of Tk−1. By properties of span, span(Tk) = span(Tk−1), so
span(Tk) = span(Sk) as claimed.

If vk is not in the span of Sk−1, then in a similar way, since
span(Sk−1) = span(Tk−1), we have
span(Sk−1 ∪ {vk}) = span(Sk−1 ∪ {vk}), which is the same
as saying span(Sk) = span(Tk).



Bases from Spanning Sets, IV

1. Start with S0 empty. Then for each k:

2. If vk is not in the span of Sk−1, let Sk = Sk−1 ∪ {vk}.
Otherwise, let Sk = Sk−1.

Claim: For Tk = {v1, . . . , vk}, we have span(Sk) = span(Tk) for
each 0 ≤ k ≤ n.

Base Case (k = 0): Trivial, as both S0 and T0 are empty.

Inductive Step: Suppose k ≥ 1 and span(Sk−1) = span(Tk−1)

If vk is in the span of Sk−1, then Sk−1 = Sk .

By hypothesis, span(Sk−1) = span(Tk−1) so vk is in the span
of Tk−1. By properties of span, span(Tk) = span(Tk−1), so
span(Tk) = span(Sk) as claimed.

If vk is not in the span of Sk−1, then in a similar way, since
span(Sk−1) = span(Tk−1), we have
span(Sk−1 ∪ {vk}) = span(Sk−1 ∪ {vk}), which is the same
as saying span(Sk) = span(Tk).



Existence of Bases

Corollary

Every vector space V has a basis.

Proof: The set of all vectors in V spans V . By the previous result,
this spanning set contains a basis.

A basis for a vector space can also be obtained from a linearly
independent set:

Theorem (Building-Up Theorem)

Any linearly independent set of vectors can be extended to a basis.

As with the analogous theorem about spanning sets, proving this
theorem in general requires the axiom of choice. Thus, we will
instead give the proof of this theorem in the special case where the
vector space has a finite basis.
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The Replacement Theorem, I

The most convenient approach is using a preliminary result known
as the replacement theorem.

Theorem (Replacement Theorem)

Suppose that S = {v1, v2, . . . , vn} is a basis for V and
{w1,w2, . . . ,wm} is a linearly independent subset of V . Then
there is a reordering of the basis S, say {a1, a2, . . . , an} such that
for each 0 ≤ k ≤ m, the set {w1,w2, . . . ,wk , ak+1, ak+2, . . . , an}
is a basis for V .

Equivalently, the elements {w1,w2, . . . ,wm} can be used to
successively replace the elements of the basis, with each
replacement remaining a basis of V .

The proof of this theorem is not conceptually hard, but the actual
details are annoyingly cumbersome to write down.
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The Replacement Theorem, II

Theorem (Replacement Theorem)

Suppose S is a finite basis of V and {w1, . . . ,wm} is linearly
independent. Then there is an ordering {a1 . . . , an} of S such that
{w1, . . . ,wk , ak+1, . . . , an} is a basis of V for each 0 ≤ k ≤ n.

Proof:

We induct on k . The base case k = 0 is trivial, since it simply
claims that S = {a1 . . . , an} is a basis, which is given.

For the inductive step, suppose that
Bk = {w1,w2, . . . ,wk , ak+1, ak+2, . . . , an} is a basis for V .

We must show that we can remove one of the vectors ai and
reorder the others to produce a basis
Bk+1 = {w1,w2, . . . ,wk ,wk+1, a

′
k+2, . . . , a

′
n} for V .
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The Replacement Theorem, III

Given: Bk = {w1, . . . ,wk , ak+1, . . . , an} and S = {a1 . . . , an} are
bases and {w1,w2, . . . ,wk ,wk+1} is linearly independent.

Goal: Construct a basis Bk+1 = {w1, . . . ,wk ,wk+1, a
′
k+2, . . . , a

′
n}.

By hypothesis, since Bk spans V , we can write
wk+1 = c1 ·w1 + · · ·+ ckwk + dk+1ak+1 + · · ·+ dnan
for some scalars ci and di .

If all of the di were zero, then wk+1 would be a linear
combination of w1, . . . ,wk , contradicting the assumption that
{w1,w2, . . . ,wk+1} is linearly independent.

Thus, at least one di is not zero. Rearrange the vectors ai so
that dk+1 6= 0: then
wk+1 = c1w1 + · · ·+ ckwk + d ′k+1a

′
k+1 + · · ·+ d ′na

′
n.

We claim Bk+1 = {w1, . . . ,wk ,wk+1, a
′
k+2, . . . , a

′
n} is a basis

for V . (For convenience, drop the primes on the vectors.)
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The Replacement Theorem, IV

Given: Bk = {w1, . . . ,wk , ak+1, . . . , an} and S = {a1 . . . , an} are
bases and {w1,w2, . . . ,wk ,wk+1} is linearly independent, and
wk+1 = c1w1 + · · ·+ ckwk + dk+1ak+1 + · · ·+ dnan with dk+1 6= 0.

Goal: Show Bk+1 = {w1, . . . ,wk ,wk+1, ak+2, . . . , an} is a basis.

First, Bk+1 spans V .

Since dk+1 6= 0, we can solve for a′k+1 as a linear combination
of w1, . . . ,wk+1, a

′
k+2, . . . , a

′
n. (Write it down if you like!)

If x is any vector in V , since Bk spans V we can write
x = e1 ·w1 + · · ·+ ek ·wk + ek+1 · a′k+1 + · · ·+ en · a′n.

Plugging in the expression for a′k+1 in terms of
w1, . . . ,wk+1, a

′
k+2, . . . , a

′
n then shows that x is a linear

combination of w1, . . . ,wk+1, a
′
k+2, . . . , a

′
n.
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The Replacement Theorem, V

Given: Bk = {w1, . . . ,wk , ak+1, . . . , an} and S = {a1 . . . , an} are
bases and {w1,w2, . . . ,wk ,wk+1} is linearly independent, and
wk+1 = c1w1 + · · ·+ ckwk + dk+1ak+1 + · · ·+ dnan with dk+1 6= 0.

Goal: Show Bk+1 = {w1, . . . ,wk ,wk+1, ak+2, . . . , an} is a basis.

Second: Bk+1 is linearly independent.

Suppose we had a dependence
0 = f1w1 + · · ·+ fkwk + fk+1a

′
k+1 + · · ·+ fna′n.

Plug in the expression for a′k+1 in terms of
w1, . . . ,wk+1, a

′
k+2, . . . , a

′
n: all of the coefficients must be

zero because Bk is linearly independent. But the coefficient of
wk+1 is fk+1 times a nonzero scalar, so fk+1 = 0.

This implies 0 = f1w1 + · · ·+ fkwk + fk+2a
′
k+2 + · · ·+ fna′n,

and this is a dependence involving the vectors in Bk .

Since Bk is linearly independent, all coefficients are zero.
Thus f1 = f2 = · · · = fn = 0 so Bk+1 is linearly independent.
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Applications of the Replacement Theorem, I

Although the proof of the Replacement Theorem is cumbersome,
we obtain several useful corollaries.

Proposition (Corollaries of Replacement Theorem)

Let V be a vector space.

1. If has a basis with n elements, then any set of m > n vectors
of V is linearly dependent.

2. Any two bases of a vector space have the same number of
elements.

3. Any linearly independent set of vectors in V can be extended
to a basis.



Applications of the Replacement Theorem, II

1. If has a basis with n elements, then any set of m > n vectors
of V is linearly dependent.

Proof:

Suppose {w1,w2, . . . ,wm} is a linearly independent subset of
V and that V has a basis with n elements.

Apply the Replacement Theorem with the given basis of V : at
the nth step we have replaced all the elements of the original
basis with those in our new set, so by the conclusion of the
theorem we see that {w1, . . . ,wn} is a basis for V .

Then wn+1 is necessarily a linear combination of
{w1, . . . ,wn}, meaning that {w1, . . . ,wn,wn+1} is linearly
dependent, and so {w1,w2, . . . ,wm} is too. Contradiction.
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Applications of the Replacement Theorem, III

2. Any two bases of a vector space have the same number of
elements.

Proof:

If every basis is infinite1, we are already done. Else, V has
some finite basis: choose B to be a basis of minimal size2.

Suppose B has n elements, and consider any other basis B ′ of
V . By (1), if B ′ contains more than n vectors, it would be
linearly dependent (impossible). Thus, B ′ also has n elements,
so every basis of V has n elements.

1There are different infinite cardinalities, and with more effort one can prove
that even in the infinite case, the cardinalities of any two bases must actually
be the same.

2We view the size of a basis as either a nonnegative integer or ∞. A basis
of smallest size must exist by the well-ordering principle: any nonempty set of
nonnegative integers has a smallest element.
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Applications of the Replacement Theorem, IV

3. Any linearly independent set of vectors in V can be extended
to a basis.

Proof (finite basis case):

Let S be any set of linearly independent vectors and let B be
any finite basis of V .

Apply the Replacement Theorem to B and S : this produces a
new basis of V containing S .

This particular result is often called the Building-Up Theorem.
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Applications of the Replacement Theorem, V

We can also give a more constructive argument for extending a
linearly independent set to a basis, similar to the algorithm used to
reduce a spanning set to a basis.

Start with a linearly independent set S of vectors in V .

1. Check whether S spans V : if so, we are done.

2. If not, then there is an element v in V which is not in the
span of S . Append v to S : then by our properties of linear
independence, the new S will still be linearly independent.

3. Repeat the above two steps until S spans V .

If V possesses a basis of cardinality n, then this procedure will
always terminate in at most n steps, since any set of more than n
vectors would be linearly dependent. If V has an infinite basis,
then one instead needs to make a Zorn’s lemma argument to
justify that this procedure constructs a basis if continued “forever”.
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So You Really Want To Hear About Zorn’s Lemma, I

For completeness, we can give a brief sketch of the Zorn’s lemma
argument (for more details consult the challenge problem on
homework 3).

Zorn’s lemma3 states that if F is a nonempty partially-ordered
set4 in which every chain5 has an upper bound6, then F
contains a maximal element7.

3Zorn’s lemma is logically equivalent to the axiom of choice, which states
that the Cartesian product of any collection of nonempty sets is nonempty.

4A partial ordering on a set is a relation ≤ such that X ≤ X for all X , if
X ≤ Y and Y ≤ X then X = Y , and where X ≤ Y and Y ≤ Z imply X ≤ Z .

5A chain is a totally ordered subset of F , in which any two elements X and
Y are comparable, meaning that either X ≤ Y or Y ≤ X .

6An upper bound on a subset is an element U ∈ F such that X ≤ U for all
X in the subset.

7A maximal element is an element M ∈ F such that if M ≤ Y for some
Y ∈ F , then in fact Y = M: no element is “above” M.



So You Really Want To Hear About Zorn’s Lemma, II

Theorem

Every vector space V has a basis.

Proof (first half):

Let F be the set of all linearly-independent subsets of V ,
partially ordered under inclusion. Since the empty set is
linearly independent, F is nonempty.

If C is any chain of F , we claim U =
⋃

A∈C A is an upper
bound for C lying in F . Clearly U is a subset of V so we just
need to show it is linearly independent.

Any dependence could involve only finitely many vectors, each
of which is from some set in the chain. The maximum of
these sets in the chain contains all the vectors, so since this
set is linearly independent, we would get a contradiction.



So You Really Want To Hear About Zorn’s Lemma, III

Theorem

Every vector space V has a basis.

Proof (second half):

So now, by Zorn’s lemma, since every chain of F has an
upper bound, there exists some maximal element S of F .

This S is a linearly independent subset of V that is maximal
under inclusion with respect to being linearly independent.

If S didn’t span V , there would exist some w ∈ V with
w 6∈ span(S). But then S ∪ {w} would also be linearly
independent, contradicting the maximality of S .

Thus, S spans V and is linearly independent, so it is a basis.



Dimension, I

As we have just shown, any two bases of a vector space have the
same number of elements. This quantity (the cardinality of a
basis) is of fundamental importance:

Definition

If V is a vector space, the number of elements in any basis of V is
called the dimension of V and is denoted dim(V ).

If the dimension of V is a finite number, we say that V is
finite-dimensional; otherwise, we say V is infinite-dimensional.

Our results above assure us that the dimension of a vector space is
always well-defined: every vector space has a basis, and any other
basis will have the same number of elements.



Dimension, II

Examples:

1. The dimension of F n is n, since the n standard unit vectors ei
(with a 1 in the ith coordinate and 0s elsewhere) give a basis.

2. The dimension of Mm×n(F ) is mn, because the mn matrices
Ei ,j (with a 1 in the (i , j)-entry and 0s elsewhere) give a basis.

3. The dimension of F [x ] is ∞, because the (infinite list of)
polynomials 1, x , x2, x3, . . . , xn, . . . is a basis.

4. The dimension of Pn(F ) is n + 1, since the polynomials
1, x , x2, . . . , xn give a basis.

5. The dimension of the zero space is 0, because the empty set
(containing 0 elements) is a basis.
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5. The dimension of the zero space is 0, because the empty set
(containing 0 elements) is a basis.
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Dimension, III

There is a bit of subtlety in our notion of dimension, in that the
choice of scalar field matters. Contrast these two examples:

With scalar field R, the vector space C has dimension 2, since
{1, i} is a basis.

With scalar field C, the vector space C has dimension 1, since
{1} is a basis.

For this reason, one should indicate what the scalar field is when
discussing dimension. We will write dimF V for the dimension of V
as a vector space over the field F , when F is not already clear from
the context.
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Dimension, IV

Example: Find the dimension of the subspace of P4(R) consisting
of the polynomials with p(1) = 0. (The scalar field is R.)

The polynomials in P3(R) are of the form
p = ax4 + bx3 + cx2 + dx + e for real numbers a, b, c , d , e.

The condition p(0) = 0 yields a + b + c + d + e = 0 so that
e = −a− b − c − d .

So, the subspace consists of the polynomials of the form
ax4 + bx3 + cx2 + dx − a− b − c − d =
a(x4 − 1) + b(x3 − 1) + c(x2 − 1) + d(x − 1).

Thus, the set {x4 − 1, x3 − 1, x2 − 1, x − 1} spans this
subspace, but since it is also clearly linearly independent, it is
a basis. Then the subspace has dimension 4 .
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Dimension, V

Example: Find dimC(W ) where W is the vector space of complex
skew-symmetric 3× 3 matrices A (i.e., with AT = −A).

If A =

 a b c
d e f
g h i

 is skew-symmetric, then comparing AT to

−A yields a = e = i = 0, b = d , c = g , and h = f . Then

A = b

 0 1 0
−1 0 0
0 0 0

+ c

 0 0 1
0 0 0
−1 0 0

+ f

 0 0 0
0 0 1
0 −1 0

.

Since every matrix in the subspace can be uniquely decomposed as
a linear combination of these three matrices, they yield a basis.
The dimension is therefore 3 .
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Infinite-Dimensional Things, I

Some properties of vector spaces depend on whether the space is
finite-dimensional or infinite-dimensional.

In general, finite-dimensional vector spaces are better behaved
than infinite-dimensional vector spaces.

We will therefore usually focus our attention on
finite-dimensional spaces, since infinite-dimensional spaces can
have occasional counterintuitive properties. (You’ll get to see
some of these on the homework as we progress further.)



Infinite-Dimensional Things, II

Example: The dimension of the vector space of all real-valued
functions on the interval [0, 1] is ∞, because it contains the
linearly independent functions 1, x , x2, x3, . . . .

Notice that have not actually given a basis for this vector
space, although (per our earlier results) this vector space does
have a basis. There is a good reason we haven’t: it is not
possible to give a simple description of such a basis!

For instance, the functions fa(x) =

{
1 if x = a

0 if x 6= a
, for real

numbers a, does not form a basis for the space of real-valued
functions: although this infinite set is linearly independent, it
does not span the space, since (for example) the constant
function f (x) = 1 cannot be written as a finite linear
combination of these functions.
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Properties of Dimension, I

Here are some basic properties of dimension.

Proposition (Properties of Dimension)

Suppose V and W are vector spaces. Then the following hold:

1. If W is a subspace of V , then dim(W ) ≤ dim(V ).

2. If dim(V ) = n, any linearly independent set of vectors has at
most n elements.

3. If dim(V ) = n, any linearly independent set of n vectors is a
basis for V .

4. If dim(V ) = n, any spanning set of V has at least n elements.

5. If dim(V ) = n, any spanning set of V having exactly n
elements is a basis for V .

6. If dim(V ) = n and S is a set of n vectors, then S is a basis if
and only if it spans V if and only if it is linearly independent.



Properties of Dimension, II

1. If W is a subspace of V , then dim(W ) ≤ dim(V ).

Proof:

Choose any basis of W . It is a linearly independent set of
vectors in V , so it is contained in some basis of V by the
Building-Up Theorem.

2. If dim(V ) = n, then any linearly independent set of vectors
has at most n elements.

3. If dim(V ) = n, then any linearly independent set of n vectors
is a basis for V .

Proof: Both of these follow immediately from the Replacement
Theorem: at the end of the replacement, we have a basis of n
elements, and we have used all the vectors in our linearly
independent set.
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Properties of Dimension, III

4. If dim(V ) = n, then any spanning set of V has at least n
elements.

Proof:

As we showed, any spanning set contains a basis.

5. If dim(V ) = n, then any spanning set of V having exactly n
elements is a basis for V .

Proof: The spanning set contains a basis, but since the basis must
also have n elements, the basis is the entire spanning set.

6. If dim(V ) = n, a subset of V having exactly n vectors is a
basis if and only if it spans V if and only if it is linearly
independent.

Proof: Basis implies both of the others. By (3), span implies basis,
and by (5) linear independence implies basis. So all are equivalent.
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More Examples, I

Example: Determine whether 〈1, 2, 2, 1〉, 〈3,−1, 2, 0〉, 〈−3, 2, 1, 1〉
span R4.

No : since R4 is a 4-dimensional space, any spanning set
must contain at least 4 vectors.

Example: Determine whether 〈1, 2, 1〉, 〈1, 0, 3〉, 〈−3, 2, 1〉, 〈1, 1, 4〉
are linearly independent.

No : since R3 is a 3-dimensional space, any 4 vectors in R3

are automatically linearly dependent.

Any basis of F n must have exactly n vectors. Not all sets of n
vectors will give a basis, of course, so it would be nice if there were
some simple way to determine whether n vectors give a basis...
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More Examples, II

Proposition (Bases of F n)

The vectors v1, . . . , vk are a basis of F n if and only if k = n and
the matrix M with columns v1, . . . , vn is invertible.

From our analysis of determinants we know that M is invertible if
and only if det(M) 6= 0, so we simply need to compute a
determinant to decide whether a given set of n vectors forms a
basis.



More Examples, III

Claim: The vectors v1, . . . , vk are a basis of F n if and only if k = n
and the matrix M with columns v1, . . . , vn is invertible.

Since dim(F n) = n any basis must have n elements, so k = n.

For any vector w in F n, consider the problem of finding
scalars a1, · · · , an such that a1v1 + · · ·+ anvn = w.

This vector equation is the same as the matrix equation
Ma = w, where M is the matrix whose columns are the
vectors v1, . . . , vn, a is the column vector whose entries are
the scalars a1, . . . , an, and w is viewed as a column vector.

Then we have the following equivalences:
The vectors v1, . . . , vn give a basis of F n

⇐⇒ the scalars a1 . . . , an are unique
⇐⇒ the system Ma = w always has a unique solution for a
⇐⇒ the coefficient matrix M is invertible.
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More Examples, IV

Example: Determine whether the vectors 〈1, 2, 1〉, 〈2,−1, 2〉,
〈3, 3, 1〉 form a basis of R3.

By the proposition, we just need to find the determinant of

M =

 1 2 3
2 −1 3
1 2 1

 whose columns are the given vectors.

We compute

det(M) = 1

∣∣∣∣ −1 3
2 1

∣∣∣∣− 2

∣∣∣∣ 2 3
1 1

∣∣∣∣+ 3

∣∣∣∣ 2 −1
1 2

∣∣∣∣ = 10 which

is nonzero.

Thus, M is invertible, so these vectors do form a basis of R3 .
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Summary

We discussed the general existence of bases of vector spaces, and
how to construct them using a spanning set and a linearly
independent set.

We defined the dimension of a vector space and established some
basic properties of dimension.

We computed some examples of dimensions and characterized
bases of F n.

Next lecture: Bases for the row space, column space, and nullspace
of a matrix; linear transformations


