E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2026 ~ Homework 2 Solutions

1. Identify each of the following statements as true or false:

(a) There is a system of linear equations over R having exactly two different solutions.

o . Over R the only possibilities are that there are no solutions, exactly 1 solution, or infinitely
many solutions.

(b) If Aisn xn and cis n x 1, then the matrix system Ax = ¢ always has a unique solution for x.
° . There is only a unique solution when A is invertible.
(c) Every vector space contains a zero vector.

° : this is one of the vector space axioms.

(d) In any vector space, av = aw implies that v = w.

. : for example we have 0 - v = 0-w for any v, w.

(e) In any vector space, av = v implies that o = 3.
° : for example we have 1-0=2-0.
(f) If U is a subspace of V and V is a subspace of W, then U is a subspace of W.
. : this follows from the subspace criterion (or even just the definition of subspace).

(g) The empty set is a subspace of any vector space.

° : subspaces are by definition not empty.
(h) The intersection of two subspaces is always a subspace.

. : the intersection of any collection of subspaces is a subspace.

(i) The union of two subspaces is always a subspace.

) : for example, the union of {(z,0)} and {(0,%)} in R? is not a subspace.
(j) The union of two subspaces is never a subspace.

. : for example if we take two subspaces W1 C W5 then Wy U Wy = W is still a subspace.

2. Determine whether or not each given set S is a subspace of the given vector space V. For each set that is not
a subspace, identify at least one part of the subspace criterion that fails.

(a) V =R*, S = the vectors {(a,b,c,d) in R* with 2a + 0b + 2¢ + 6d = 2026.

e This set ’is not a subspace | because it does not contain the zero vector. (It also fails the other two

parts of the subspace criterion.)
(b) V =R*, S = the vectors (a,b,c,d) in R* with abed = 0.

e This set ’is not a subspace‘ because it is not closed under addition, as for instance S contains
(1,1,0,0) and (0,0,1,1) but not their sum (1,1,1,1).
(¢) V =R*, S = the vectors (a,b,c,d) with d=a+b+cand a = c.
e This set because it contains the zero vector and is closed under addition and scalar
multiplication.
(d) V = differentiable functions on [0, 1], S = the functions with f'(x) = f(z).

e This set because it contains the zero function and is closed under addition and scalar

multiplication.




(e) V = real-valued functions on R, S = the functions with f(z) = f(1 — ) for all real =.

e This set because it contains the zero function and is closed under addition and scalar
multiplication.

(f) V = M3zx3(R), S = the 3 x 3 matrices with integer entries.

e This set ’is not a subspace ‘ because it is not closed under scalar multiplication (specifically, by non-

integer scalars).

(g) V = M3zx3(R), S = the 3 x 3 matrices with nonnegative real entries.

e This set ’is not a subspace‘ because it is not closed under scalar multiplication (specifically, by

negative scalars).
(h) V = P5(R), S = the polynomials in V divisible by x2.
e This set because it contains the zero polynomial and is closed under addition and
scalar multiplication.
(i) V = P3(C), S = the polynomials in V' with p(i) = 0.
e This set because it contains the zero polynomial and is closed under addition and
scalar multiplication.

(j) V = Msx2(Q), S = the matrices in V of determinant zero.

e This set ’ is not a subspace ‘ because it is not closed under addition. For example, S contains { 0 0 }

0
0 0 ) 1 0
0 1 ] but not their sum [ 0 1

(k) V = real-valued functions on R, S = the functions that are zero at every rational number.

e This set because it contains the zero function and is closed under addition and scalar

multiplication. (Note that V' contains lots of functions, such as the function that is 1 at = v/2 and
0 everywhere else.)

and [ ] . (Tt does satisfy the other two properties, however.)

3. Show the following things, by induction or otherwise:

(a) Provethat 1-2+2-34+---4+(n—1)-n=(n—1)n(n+ 1)/3 for all integers n > 2.

e Induction on n. The base case n = 2 follows as 1-2=1-2-3/3.

e For the inductive step, suppose 1-24+2-34+---+(n—1)-n=(n—1)n(n+1)/3. Then 1-2+2-3+
o+ (n=1Dn+nn+1)=(n—-1)nn+1)/3+n(n+1) =nn+1)[(n—-1)/3+1] =n(n+1)(n+2)/3,
as required.

. -1 4 |. 1—2n 4n ..
(b) Prove that the nth power of the matrix { 1 3 } is [ n 149n ] for each positive integer n.
e Induction on n. The base case n = 1 follows as 1=2n in = -1 for n = 1.
-n 1+2n -1 3
n n+1
. . -1 4 1—2n 4n -1 4
e For the inductive step, suppose { 1 3 = { n 1420 ] Then { 1 3 ]
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(c) Prove that a matrix with m rows can be put into row-echelon form using at most m(m —1)/2 elementary
row operations. [Hint: If a matrix has m + 1 rows, explain why it takes at most m row operations to
clear out the entries in the first column.]

e Induction on m. The base case m = 1 is trivial because any matrix with one row is already in
row-echelon form.

e For the inductive step, suppose that any matrix with m rows can be row-reduced using at most
m(m —1)/2 row operations, and let A have m + 1 rows. If A is the zero matrix we are already done.
Otherwise, ignoring any leading columns of all zeroes, assume the first column has a nonzero entry.

e If the top left entry is nonzero, we need at most m subtractions of a multiple of the first row from
the other rows to clear out the first column. Otherwise, if the top left entry is zero, we can use one
row swap to make it nonzero, and then we need at most m — 1 subtractions in order to clear out the
entries in the first column (since at least one entry is zero, we don’t need a subtraction in its row).
Either way, we need at most m row operations.

e At this point, we need only row-reduce the (m — 1) x (n — 1) submatrix in the bottom right,
which by hypothesis takes at most m(m — 1)/2 row operations. So in total, we require at most
m+m(m —1)/2 =m(m + 1)/2 row operations, as required.

4. The Fibonacci numbers are defined as follows: F} = F, =1 and forn > 2, F, = F,,_1 + F,,_>. Thus, F3 = 2,
F, =3, F5; =5, and so forth. By convention we also set Fjy = 0, satisfying the same recurrence.

(a) Prove that Fy + F5 + F5 + -+ - + Fa,_1 = Fb, for every positive integer n.
e Induction on n. For the base case n = 1, we have F; = 1 = F5 which is true.
e For the inductive step suppose that F} + F3 + F5 + --- + Fy,_1 = F5,. Then F} + F3 + F5+ --- +
Fopno1+ Fopy1 = [F1 + F5+ F5 + - - + Fop_1]| + Fony1 = Fop + Fopq1 = Foppo as required.

(b) Prove that the nth power of the matrix [ 11 ] is [ Foy1  Fy

for each positive integer n.
1 O Fn Fn—l :| P &

‘ B F, Fv | |11
e Induction on n. The base case n = 1 follows as [ F B } [ 1 0 ]

: . 1 11" [ F F 1 1] 1]
e For the inductive step, suppose [ 10 } = { F.F, } Then { } [ 10 ] [ 10 } =
11 Fn—i—l Fn _ Fn+1+Fn Fn+Fn 1 _ n+2 n+1
[ 10 } { F. Fo ] = [ Fos1 F, } = [ Fopi B, | 2 Teauired
(¢) Prove that F,,11F,_1 — F? = (—1)" for each positive integer n. [Hint: Use (b).]
: . A O . 1 11" [ Fun Fy,
e From determinant properties we have det [ 1 0 ] = (—=1)" but by (b) since [ 10 } = [ FF }

this immediately yields F,,,1F,_ 1 — F? = (—1)", as claimed.

(d) Let M, be the n x n matrix with 1s on the diagonal and directly below the diagonal, —1s directly above
the diagonal, and Os elsewhere. Prove that det(M,,) is the (n 4 1)st Fibonacci number F, 1.

e Strong induction on n. The base cases n = 1 and n = 2 follow by observing that M; = [1] so
det(M7) =1 = F» and that My = [ } _11 ] so det(Ms) = 2 = F3, as required.
e For the inductive step, suppose det(M,,_1) = F, and det(M,,_5) = F,_; and consider expanding

det(M,,) along the first row. Only the terms from the first and second entries contribute, since all
other entries in the first row are zero. Deleting the first row and column of M,, yields M,,_, while
deleting the first row and second column of M,, yields a matrix whose first column has a 1 and then
all zeroes, so its determinant is the same as the determinant obtained by deleting its first row and
column, which results in the matrix M,,_s.

e Thus via expansion by minors we see det(M,,) = 1-det(M,,—1)—(—1)-det(M,—2) = F,+F,_1 = F,41.




5. Suppose A is an m X n matrix with entries from the field F'.

(a) Show that the set of all vectors x € F™ such that Ax equals the zero vector (in F™) is a subspace of F™.

We simply check the subspace criterion:

For [S1], clearly A0 = 0.

For [S2], if Ax = Ay =0 then A(x+y)=Ax+ Ay =0+0=0.
e For [S3], if Ax = Ay = 0 then A(ax) = a(4x) = a0 =0.

(b) Deduce that the set of solutions to any homogeneous system of linear equations (i.e., in which all of the
constants are equal to zero) over F is an F-vector space.
e If we take A to be the coefficient matrix, then the variable vector x is a simultaneous solution to all
of the equations if and only if Ax = 0.
e So by part (a), the space of solutions is a subspace of F™ hence is a vector space.

6. If V is a vector space and Wy, W5 are two subspaces of V, their sum is defined to be the set Wy, + Wy =
{w1 +ws : wi € W; and wy € W5} of all sums of an element of W; with an element of Ws.

(a) Prove that Wi + W5 contains Wy and W5, and is a subspace of V.
e For the first part, for any wy in Wy and wsy in W5 we can write w; = wy + 0 and wy = 0 + wy .
Thus so w; and ws are both in W7 + W5, and so Wy + W5 contains W7 and Whs.
e For the other part, we check the subspace criterion.
e For [S1], 0 = 0+ 0 so Wy + W; contains 0.
e For [S2], suppose a; +b; and ag+bs are in Wi +Ws. Then a; +as is in Wi (by the subspace criterion
in 1) and by + by is in Wy (by the subspace criterion in W5). So since (a; + by) + (ag + by) =
(a1 + az2) + (by + bs) we conclude that (a; + by) + (az + bg) is in Wy + Wha.
e For [S3], suppose a + b is in W + Ws. Then ca is in Wy and cb is in W3 so c¢(a+b) = ca+ cb is
in W1 + WQ.
(b) Show that if W is a subspace of V' containing W; and W5, then W must contain W + W5. Deduce that
W1 + W5 is the smallest subspace containing both W; and Ws.
e Suppose W is a subspace of V' containing both W; and W5 and let a + b be any vector in W7 + Wa.
e Since a is in Wj and b is in W5, both a and b are in W. So by the subspace criterion in W, a+ b
isin W.
e Since a+ b was an arbitrary element of W7 + W5, we conclude that Wy + W5 is contained in W.

e Therefore, every subspace containing W; and Wy contains Wy 4+ Ws. Since Wy + Wy is itself a
subspace by (a), it is the smallest.




7. [Challenge| Let F' be a field and suppose 1, ..., z, are elements of F'. The goal of this problem is to evaluate

1 o 23 - Pt
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the famous Vandermonde determinant V(zq,...,2,) =
1 oz, 22 ... anl
(a) Show that if any of the x; are equal to one another, then V(z1,...,z,) = 0.

o If z; = x; then the ith and jth rows of the matrix are equal, so its determinant is zero.

n(n—1)

Show that as a polynomial in the variables x1,...,2,, V(z1,...,2,) has degree ) and is divisible

by x; — x; for any i # j. [Hint: Use (a) and the remainder theorem.]|

e For the degree, observe that when we expand the determinant by minors, each term will be a product

of one term from the first column, one from the second column, ... , and one from the last column,
so the resulting product will have degree 0 +1+4+2+---+(n—1) = @
e Now dividing V(z1,...,2,) by z; —z; (where we think of z; as the variable) leaves some remainder

term. When we set #; = x; then the remainder term vanishes by part (a), so the remainder must
be the zero polynomial.

Deduce that V(x1,...,2,) is divisible by the product H1<i<j<n($j — x;) and that this product is a
polynomial of degree nn-l) -
y g 5 -
e By (b) applied to all possible pairs (¢, j) with 1 <1 < j < n we see that z; —z; divides V(z1,...,z,).
Since these terms are all relatively prime, their product must divide V(z1,...,z,).

g) = n(nz_l)

unordered pair of values {z;,z;}, so the product of these terms has degree

since we may pick any
n(n—1)
—.

e Furthermore, the number of possible pairs (i) is simply (

Show in fact that V(z1,...,2s) = [[;<;cj<,(zj — 2i). [Hint: Compare degrees and coefficients of

0,.1 n—1 :
iy - -- a2~ on both sides.]

e By (b) and (c) we see that dividing V by the product yields a polynomial of degree 0 (in other words,
a constant). But since the coefficient of 292 ---27~! in V is equal to 1 (it comes from the product
of terms on the diagonal of the matrix) and the coefficient in the product is also equal to 1 (it comes

from the product of the all the first terms x; with j > ¢ in each pair), the constant must equal 1.
e Thus, V(21,...,2n) = [[1<icj<,(2; — 2:) as claimed.
Suppose that z1,...,x, € F are distinct and y,...,y, € F are arbitrary. Prove that there exists a

unique polynomial p(z) = ag +a1x+- - +a,_12" ! in Flx] of degree at most n — 1 such that p(z;) = y;
for each 1 < i < n. [Hint: Write down the corresponding system of linear equations.|

e We have the equations ag+ajx1+--- +an,1w7f71 =Yl e , QG0+ A1 TH + - —&—an,lxz_l = Yn, which
2 n—1
1 =z 2y -+ = ag Yo
1 @9 23 - ;1072171 ay Y1

in matrix form is . . ) . . =

w...
i
)

n an Yn

e The coefficient matrix is precisely the Vandermonde matrix we have been analyzing. By the formula
in part (d), its determinant is nonzero (as all of the z; are distinct) and therefore it is invertible, so
the system has a unique solution.

1 z, =«

e This means there is a unique solution to the system, which is to say, there is a unique polynomial
p(z) with the desired properties.




