
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2026 ∼ Homework 2 Solutions

1. Identify each of the following statements as true or false:

(a) There is a system of linear equations over R having exactly two di�erent solutions.

• False . Over R the only possibilities are that there are no solutions, exactly 1 solution, or in�nitely
many solutions.

(b) If A is n× n and c is n× 1, then the matrix system Ax = c always has a unique solution for x.

• False . There is only a unique solution when A is invertible.

(c) Every vector space contains a zero vector.

• True : this is one of the vector space axioms.

(d) In any vector space, αv = αw implies that v = w.

• False : for example we have 0 · v = 0 ·w for any v,w.

(e) In any vector space, αv = βv implies that α = β.

• False : for example we have 1 · 0 = 2 · 0.
(f) If U is a subspace of V and V is a subspace of W , then U is a subspace of W .

• True : this follows from the subspace criterion (or even just the de�nition of subspace).

(g) The empty set is a subspace of any vector space.

• False : subspaces are by de�nition not empty.

(h) The intersection of two subspaces is always a subspace.

• True : the intersection of any collection of subspaces is a subspace.

(i) The union of two subspaces is always a subspace.

• False : for example, the union of {〈x, 0〉} and {〈0, y〉} in R2 is not a subspace.

(j) The union of two subspaces is never a subspace.

• False : for example if we take two subspaces W1 ⊆W2 then W1 ∪W2 =W2 is still a subspace.

2. Determine whether or not each given set S is a subspace of the given vector space V . For each set that is not
a subspace, identify at least one part of the subspace criterion that fails.

(a) V = R4, S = the vectors 〈a, b, c, d〉 in R4 with 2a+ 0b+ 2c+ 6d = 2026.

• This set is not a subspace because it does not contain the zero vector. (It also fails the other two

parts of the subspace criterion.)

(b) V = R4, S = the vectors 〈a, b, c, d〉 in R4 with abcd = 0.

• This set is not a subspace because it is not closed under addition, as for instance S contains

(1, 1, 0, 0) and (0, 0, 1, 1) but not their sum (1, 1, 1, 1).

(c) V = R4, S = the vectors 〈a, b, c, d〉 with d = a+ b+ c and a = c.

• This set is a subspace because it contains the zero vector and is closed under addition and scalar

multiplication.

(d) V = di�erentiable functions on [0, 1], S = the functions with f ′(x) = f(x).

• This set is a subspace because it contains the zero function and is closed under addition and scalar

multiplication.
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(e) V = real-valued functions on R, S = the functions with f(x) = f(1− x) for all real x.

• This set is a subspace because it contains the zero function and is closed under addition and scalar

multiplication.

(f) V =M3×3(R), S = the 3× 3 matrices with integer entries.

• This set is not a subspace because it is not closed under scalar multiplication (speci�cally, by non-

integer scalars).

(g) V =M3×3(R), S = the 3× 3 matrices with nonnegative real entries.

• This set is not a subspace because it is not closed under scalar multiplication (speci�cally, by

negative scalars).

(h) V = P5(R), S = the polynomials in V divisible by x2.

• This set is a subspace because it contains the zero polynomial and is closed under addition and

scalar multiplication.

(i) V = P3(C), S = the polynomials in V with p(i) = 0.

• This set is a subspace because it contains the zero polynomial and is closed under addition and

scalar multiplication.

(j) V =M2×2(Q), S = the matrices in V of determinant zero.

• This set is not a subspace because it is not closed under addition. For example, S contains

[
1 0
0 0

]
and

[
0 0
0 1

]
but not their sum

[
1 0
0 1

]
. (It does satisfy the other two properties, however.)

(k) V = real-valued functions on R, S = the functions that are zero at every rational number.

• This set is a subspace because it contains the zero function and is closed under addition and scalar

multiplication. (Note that V contains lots of functions, such as the function that is 1 at x =
√
2 and

0 everywhere else.)

3. Show the following things, by induction or otherwise:

(a) Prove that 1 · 2 + 2 · 3 + · · ·+ (n− 1) · n = (n− 1)n(n+ 1)/3 for all integers n ≥ 2.

• Induction on n. The base case n = 2 follows as 1 · 2 = 1 · 2 · 3/3.
• For the inductive step, suppose 1 · 2+ 2 · 3+ · · ·+(n− 1) ·n = (n− 1)n(n+1)/3. Then 1 · 2+ 2 · 3+
· · ·+(n−1)n+n(n+1) = (n−1)n(n+1)/3+n(n+1) = n(n+1)[(n−1)/3+1] = n(n+1)(n+2)/3,
as required.

(b) Prove that the nth power of the matrix

[
−1 4
−1 3

]
is

[
1− 2n 4n
−n 1 + 2n

]
for each positive integer n.

• Induction on n. The base case n = 1 follows as

[
1− 2n 4n
−n 1 + 2n

]
=

[
−1 4
−1 3

]
for n = 1.

• For the inductive step, suppose

[
−1 4
−1 3

]n
=

[
1− 2n 4n
−n 1 + 2n

]
. Then

[
−1 4
−1 3

]n+1

=

[
−1 4
−1 3

] [
−1 4
−1 3

]n
=

[
−1 4
−1 3

] [
1− 2n 4n
−n 1 + 2n

]
=

[
1− 2(n+ 1) 4(n+ 1)
−(n+ 1) 1 + 2(n+ 1)

]
.
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(c) Prove that a matrix with m rows can be put into row-echelon form using at most m(m−1)/2 elementary
row operations. [Hint: If a matrix has m + 1 rows, explain why it takes at most m row operations to
clear out the entries in the �rst column.]

• Induction on m. The base case m = 1 is trivial because any matrix with one row is already in
row-echelon form.

• For the inductive step, suppose that any matrix with m rows can be row-reduced using at most
m(m− 1)/2 row operations, and let A have m+1 rows. If A is the zero matrix we are already done.
Otherwise, ignoring any leading columns of all zeroes, assume the �rst column has a nonzero entry.

• If the top left entry is nonzero, we need at most m subtractions of a multiple of the �rst row from
the other rows to clear out the �rst column. Otherwise, if the top left entry is zero, we can use one
row swap to make it nonzero, and then we need at most m− 1 subtractions in order to clear out the
entries in the �rst column (since at least one entry is zero, we don't need a subtraction in its row).
Either way, we need at most m row operations.

• At this point, we need only row-reduce the (m − 1) × (n − 1) submatrix in the bottom right,
which by hypothesis takes at most m(m − 1)/2 row operations. So in total, we require at most
m+m(m− 1)/2 = m(m+ 1)/2 row operations, as required.

4. The Fibonacci numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2. Thus, F3 = 2,
F4 = 3, F5 = 5, and so forth. By convention we also set F0 = 0, satisfying the same recurrence.

(a) Prove that F1 + F3 + F5 + · · ·+ F2n−1 = F2n for every positive integer n.

• Induction on n. For the base case n = 1, we have F1 = 1 = F2 which is true.

• For the inductive step suppose that F1 + F3 + F5 + · · ·+ F2n−1 = F2n. Then F1 + F3 + F5 + · · ·+
F2n−1 + F2n+1 = [F1 + F3 + F5 + · · ·+ F2n−1] + F2n+1 = F2n + F2n+1 = F2n+2 as required.

(b) Prove that the nth power of the matrix

[
1 1
1 0

]
is

[
Fn+1 Fn

Fn Fn−1

]
for each positive integer n.

• Induction on n. The base case n = 1 follows as

[
F2 F1

F1 F0

]
=

[
1 1
1 0

]
.

• For the inductive step, suppose

[
1 1
1 0

]n
=

[
Fn+1 Fn

Fn Fn−1

]
. Then

[
1 1
1 0

]n+1

=

[
1 1
1 0

] [
1 1
1 0

]n
=[

1 1
1 0

] [
Fn+1 Fn

Fn Fn−1

]
=

[
Fn+1 + Fn Fn + Fn−1
Fn+1 Fn

]
=

[
Fn+2 Fn+1

Fn+1 Fn

]
as required.

(c) Prove that Fn+1Fn−1 − F 2
n = (−1)n for each positive integer n. [Hint: Use (b).]

• From determinant properties we have det

[
1 1
1 0

]n
= (−1)n but by (b) since

[
1 1
1 0

]n
=

[
Fn+1 Fn

Fn Fn−1

]
this immediately yields Fn+1Fn−1 − F 2

n = (−1)n, as claimed.

(d) Let Mn be the n×n matrix with 1s on the diagonal and directly below the diagonal, −1s directly above
the diagonal, and 0s elsewhere. Prove that det(Mn) is the (n+ 1)st Fibonacci number Fn+1.

• Strong induction on n. The base cases n = 1 and n = 2 follow by observing that M1 = [1] so

det(M1) = 1 = F2 and that M2 =

[
1 −1
1 1

]
so det(M2) = 2 = F3, as required.

• For the inductive step, suppose det(Mn−1) = Fn and det(Mn−2) = Fn−1 and consider expanding
det(Mn) along the �rst row. Only the terms from the �rst and second entries contribute, since all
other entries in the �rst row are zero. Deleting the �rst row and column of Mn yields Mn−1, while
deleting the �rst row and second column of Mn yields a matrix whose �rst column has a 1 and then
all zeroes, so its determinant is the same as the determinant obtained by deleting its �rst row and
column, which results in the matrix Mn−2.

• Thus via expansion by minors we see det(Mn) = 1·det(Mn−1)−(−1)·det(Mn−2) = Fn+Fn−1 = Fn+1.
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5. Suppose A is an m× n matrix with entries from the �eld F .

(a) Show that the set of all vectors x ∈ Fn such that Ax equals the zero vector (in Fm) is a subspace of Fn.

• We simply check the subspace criterion:

• For [S1], clearly A0 = 0.

• For [S2], if Ax = Ay = 0 then A(x+ y) = Ax+Ay = 0+ 0 = 0.

• For [S3], if Ax = Ay = 0 then A(αx) = α(Ax) = α0 = 0.

(b) Deduce that the set of solutions to any homogeneous system of linear equations (i.e., in which all of the
constants are equal to zero) over F is an F -vector space.

• If we take A to be the coe�cient matrix, then the variable vector x is a simultaneous solution to all
of the equations if and only if Ax = 0.

• So by part (a), the space of solutions is a subspace of Fm hence is a vector space.

6. If V is a vector space and W1, W2 are two subspaces of V , their sum is de�ned to be the set W1 +W2 =
{w1 +w2 : w1 ∈W1 and w2 ∈W2} of all sums of an element of W1 with an element of W2.

(a) Prove that W1 +W2 contains W1 and W2, and is a subspace of V .

• For the �rst part, for any w1 in W1 and w2 in W2 we can write w1 = w1 + 0 and w2 = 0 +w2 .
Thus so w1 and w2 are both in W1 +W2, and so W1 +W2 contains W1 and W2.

• For the other part, we check the subspace criterion.

• For [S1], 0 = 0+ 0 so W1 +W2 contains 0.

• For [S2], suppose a1+b1 and a2+b2 are inW1+W2. Then a1+a2 is inW1 (by the subspace criterion
in W1) and b1 + b2 is in W2 (by the subspace criterion in W2). So since (a1 + b1) + (a2 + b2) =
(a1 + a2) + (b1 + b2) we conclude that (a1 + b1) + (a2 + b2) is in W1 +W2.

• For [S3], suppose a+ b is in W1 +W2. Then ca is in W1 and cb is in W2 so c(a+ b) = ca+ cb is
in W1 +W2.

(b) Show that if W is a subspace of V containing W1 and W2, then W must contain W1 +W2. Deduce that
W1 +W2 is the smallest subspace containing both W1 and W2.

• Suppose W is a subspace of V containing both W1 and W2 and let a+b be any vector in W1 +W2.

• Since a is in W1 and b is in W2, both a and b are in W . So by the subspace criterion in W , a+ b
is in W .

• Since a+ b was an arbitrary element of W1 +W2, we conclude that W1 +W2 is contained in W .

• Therefore, every subspace containing W1 and W2 contains W1 + W2. Since W1 + W2 is itself a
subspace by (a), it is the smallest.
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7. [Challenge] Let F be a �eld and suppose x1, . . . , xn are elements of F . The goal of this problem is to evaluate

the famous Vandermonde determinant V (x1, . . . , xn) =

∣∣∣∣∣∣∣∣∣
1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

. . .
...

1 xn x2n · · · xn−1n

∣∣∣∣∣∣∣∣∣.
(a) Show that if any of the xi are equal to one another, then V (x1, . . . , xn) = 0.

• If xi = xj then the ith and jth rows of the matrix are equal, so its determinant is zero.

(b) Show that as a polynomial in the variables x1, . . . , xn, V (x1, . . . , xn) has degree
n(n−1)

2 and is divisible
by xj − xi for any i 6= j. [Hint: Use (a) and the remainder theorem.]

• For the degree, observe that when we expand the determinant by minors, each term will be a product
of one term from the �rst column, one from the second column, ... , and one from the last column,

so the resulting product will have degree 0 + 1 + 2 + · · ·+ (n− 1) = n(n−1)
2 .

• Now dividing V (x1, . . . , xn) by xi− xj (where we think of xi as the variable) leaves some remainder
term. When we set xi = xj then the remainder term vanishes by part (a), so the remainder must
be the zero polynomial.

(c) Deduce that V (x1, . . . , xn) is divisible by the product
∏

1≤i<j≤n(xj − xi) and that this product is a

polynomial of degree n(n−1)
2 .

• By (b) applied to all possible pairs (i, j) with 1 ≤ i < j ≤ n we see that xj−xi divides V (x1, . . . , xn).
Since these terms are all relatively prime, their product must divide V (x1, . . . , xn).

• Furthermore, the number of possible pairs (i, j) is simply
(
n
2

)
= n(n−1)

2 since we may pick any

unordered pair of values {xi, xj}, so the product of these terms has degree n(n−1)
2 .

(d) Show in fact that V (x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi). [Hint: Compare degrees and coe�cients of

x01x
1
2 · · ·xn−1n on both sides.]

• By (b) and (c) we see that dividing V by the product yields a polynomial of degree 0 (in other words,
a constant). But since the coe�cient of x01x

1
2 · · ·xn−1n in V is equal to 1 (it comes from the product

of terms on the diagonal of the matrix) and the coe�cient in the product is also equal to 1 (it comes
from the product of the all the �rst terms xj with j > i in each pair), the constant must equal 1.

• Thus, V (x1, . . . , xn) =
∏

1≤i<j≤n(xj − xi) as claimed.

(e) Suppose that x1, . . . , xn ∈ F are distinct and y1, . . . , yn ∈ F are arbitrary. Prove that there exists a
unique polynomial p(x) = a0+a1x+ · · ·+an−1xn−1 in F [x] of degree at most n− 1 such that p(xi) = yi
for each 1 ≤ i ≤ n. [Hint: Write down the corresponding system of linear equations.]

• We have the equations a0+a1x1+ · · ·+an−1xn−11 = y1, ... , a0+a1xn+ · · ·+an−1xn−1n = yn, which

in matrix form is


1 x1 x21 · · · xn−11

1 x2 x22 · · · xn−12
...

...
...

. . .
...

1 xn x2n · · · xn−1n



a0
a1
...
an

 =


y0
y1
...
yn

.
• The coe�cient matrix is precisely the Vandermonde matrix we have been analyzing. By the formula
in part (d), its determinant is nonzero (as all of the xi are distinct) and therefore it is invertible, so
the system has a unique solution.

• This means there is a unique solution to the system, which is to say, there is a unique polynomial
p(x) with the desired properties.
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