
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2026 ∼ Homework 1 Solutions

1. Identify each of the following statements as true or false:

(a) The set of integers Z is not a �eld.

• True . Some elements, like 2 and 5, have no multiplicative inverse in Z.

(b) Every �eld has in�nitely many elements.

• False . There exist �elds with �nitely many elements, like Z/pZ.

(c) It is impossible to have 6 = 0 in a �eld F .

• False . There exist �elds where 6 = 0, like the �elds Z/2Z and Z/3Z.

(d) For any n× n matrices A and B, (A+B)2 = A2 + 2AB +B2.

• False . The correct formula would be (A+B)2 = A2 +AB +BA+B2, since matrix multiplication
is not commutative.

(e) For any n× n matrices A and B, (BA)T = BTAT .

• False . The correct formula would be (BA)T = ATBT .

(f) For any invertible n× n matrices A and B, (A+B)−1 = A−1 +B−1.

• False . In fact this formula is almost never correct (see problem 6c). An explicit counterexample is

A = B = In: then (A+B)−1 =
1

2
In while A−1 +B−1 = 2In.

(g) For any invertible n× n matrices A and B, (BA)−1 = A−1B−1.

• True . The inverse of a product is the product of the inverses in reverse order.

(h) If A and B are n× n matrices with det(A) = 2 and det(B) = 3, then det(AB) = 6.

• True . The determinant is multiplicative so det(AB) = det(A) det(B) = 6.

(i) If A is an n× n matrix with det(A) = 3, then det(2A) = 3n.

• False . Doubling a matrix doubles each row, so if there are n rows, the correct formula would be
det(2A) = 2n · 3.

(j) For any n× n matrix A, det(A) = −det(AT ).

• False . The determinant of a transpose equals the determinant of the original matrix, so det(A) =
det(AT ).

(k) For any n× n matrices A and B, det(AB) = det(B) det(A).

• True . The determinant is multiplicative so det(AB) = det(A) det(B) = det(B) det(A).

2. Find the general solution to each system of linear equations:

(a)

 −x− 3y + 5z = 9
3x+ 2y + 2z = 0
2x+ 2y + 3z = 4

.

• By row-reducing, the solution is (x, y, z) = (−2, 1, 2) .

(b)

{
x− 2y + 4z = 4
2x+ 4y + 8z = 0

}
.

• By row-reducing the solution is (x, y, z) = (2− 4z,−1, z) .
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(c)


a+ b+ c+ d = 2
a+ b+ c + e = 3
a+ b + d+ e = 4
a + c+ d+ e = 5

b+ c+ d+ e = 6

.

• By row-reducing, the solution is (a, b, c, d, e) = (−1, 0, 1, 2, 3) .

(d)

 x+ 3y + z = −4
−x− 6y + 8z = 10
2x+ 4y + 8z = 0

.

• By row-reducing, there is no solution .

(e)

{
a+ b+ c+ d+ e = 1

a+ 2b+ 3c+ 4d+ 5e = 6

}
.

• By row-reducing, the solution is (a, b, c, d, e) = (−4 + c+ 2d+ 3e, 5− 2c− 3d− 4e) .

3. Compute the following things:

(a) The reduced row-echelon forms of

 1 2 3
2 3 4
3 4 5

,


2 4 6 8
1 1 1 1
1 0 1 0
4 3 2 1

, and
 0 0 0 2 3

2 1 0 −1 −2
−4 −2 0 3 0

.

• Row-reducing yields the RREFs

 1 0 −1
0 1 2
0 0 0

,


1 0 0 −1
0 1 0 1
0 0 1 1
0 0 0 0

,
 1 1/2 0 0 0

0 0 0 1 0
0 0 0 0 1

.

(b) The determinants of

 −1 5 2
0 −3 7
2 8 1

 and


1 1 1 1
2 3 4 5
4 9 16 25
8 27 64 125

.
• The determinants are det(A) = 141 and det(B) = 12.

(c) The inverses of

 1 −2 1
−1 1 −1
1 −3 0

 and

 1 −3 −2
−3 7 8
2 −6 −5

.
• The inverses are

 −3 −3 1
−1 −1 0
2 1 −1

 and
1

2

 13 −3 −10
1 −1 −2
4 0 −2

 respectively.

4. Suppose that A and B are n× n matrices with entries from a �eld F .

(a) If AB is invertible, show that A and B are invertible.

• Notice that AB(AB)−1 = In, and so B(AB)−1 is a right inverse of the matrix A. This means A is
invertible.

• Likewise, (AB)−1AB = In, so (AB)−1A is a left inverse of the matrix B. This means B is invertible.

• Alternatively, since AB is invertible, det(AB) = det(A) det(B) is nonzero. This can only happen
when det(A) and det(B) are both nonzero, which is to say, when A and B are both invertible.

(b) If A is invertible, show that AT is invertible and that its inverse is (A−1)T .

• Since det(AT ) = det(A), if A is invertible then AT will also be invertible.

• Furthermore, by using the fact that ATBT = (BA)T with B = A−1, we see that AT (A−1)T =
(A−1A)T = (In)

T = In.
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• In the same way, (A−1)TAT = (AA−1)T = (In)
T = In, and so (A−1)T satis�es the inverse matrix

property for AT : this means (AT )−1 = (A−1)T .

5. Let F be a �eld of characteristic not 2 (i.e., in which 2 6= 0). A square matrix A with entries from F is called
symmetric if A = AT and skew-symmetric if A = −AT .

(a) For any n× n matrix B, show that B +BT is symmetric and B −BT is skew-symmetric.

• Observe that (B + BT )T = BT + (BT )T = BT + B so this matrix equals its transpose hence is
symmetric.

• Similarly, (B −BT )T = BT −B, so this matrix is −1 times its transpose hence is skew-symmetric.

(b) Show that any square matrix M can be written uniquely in the form M = S + T where S is symmetric
and T is skew-symmetric. [Make sure to prove that there is only one such decomposition!]

• If M = S + T then MT = ST + TT = S − T . Solving for S, T produces S =
1

2
(M + MT ) and

T =
1

2
(M −MT ), so this is the only possible solution. (Here we are using the fact that 2 6= 0, so we

can divide by 2.)

• By part (a), we see S =
1

2
(M +MT ) is symmetric and T =

1

2
(M −MT ) is skew-symmetric, so these

choices do work. Hence there is a unique decomposition as claimed.

(c) If A is a skew-symmetric n× n real matrix and n is odd, show that det(A) = 0.

• Taking the determinant of both sides of det(A) = det(−AT ) yields det(A) = (−1)n det(AT ) =
(−1)n det(A).

• Since n is odd, this gives det(A) = −det(A), meaning det(A) = 0 since 2 6= 0 (and thus 1 6= −1).
(d) If A and B are symmetric, prove that AB is symmetric if and only if A and B commute (i.e., AB = BA).

• We have (AB)T = BTAT = BA, and so we see AB = (AB)T if and only if AB = BA, as desired.

6. The goal of this problem is to prove a matrix inversion formula called the Woodbury matrix identity, and
then give an application.

(a) Suppose P and Q are n×n matrices such that In+QP is invertible. Show that In+PQ is also invertible
and that its inverse is M = In − P (In +QP )−1Q. [Hint: Multiply out M(In + PQ).]

• Let M = In − P (In + QP )−1Q. Then M(In + PQ) = (In + PQ) − P (In + QP )−1Q(In + PQ) =
(In+PQ)−P (In+QP )−1(Q+QPQ) = (In+PQ)−P (In+QP )−1(In+QP )Q = (In+PQ)−PQ = In
and therefore M is the inverse of In + PQ.

(b) Prove the Woodbury matrix identity: if A is an invertible n × n matrix, U is an n × k matrix, C is an
invertible k × k matrix, and V is a k × n matrix such that C−1 + V A−1U is invertible, then A+ UCV
is invertible and

(A+ UCV )−1 = A−1 −A−1U(C−1 + V A−1U)−1V A−1.

[Hint: Observe A+ UCV = A(In + PQ) where P = A−1U and Q = CV , then use (a).]

• Following the hint, �rst notice that A+ UCV = A(In +A−1UCV ) = A(In + PQ) where by setting
P = A−1U and Q = CV .

• Taking the inverse of both sides yields (A + UCV )−1 = (In + PQ)−1A−1, and now we can use the
identity from part (a).

• We need to check that In + QP = In + CV A−1U = C(C−1 + V A−1U) is invertible, which is true
because it is the product of the two invertible matrices C and C−1V A−1U .

• Then (a) yields that In+PQ = In+A−1UCV is invertible and its inverse is In−P (In+QP )−1Q =
In −A−1U(In + CV A−1U)−1CV .
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• To get the desired identity, we can observe that (In +CV A−1U)−1C = (C−1 +C−1CV A−1U)−1 =
(C−1 + V A−1U)−1, and then �nally plug in to get (A + UCV )−1 = (In + PQ)−1A−1 = [In −
A−1U(In +CV A−1U)−1CV ]A−1 = A−1 −A−1U(In +CV A−1U)−1CV ]A−1 = A−1 −A−1U(C−1 +
V A−1U)−1V A−1 as desired.

(c) Suppose A and C are invertible n × n matrices and A + C is also invertible. Show that (A + C)−1 =
A−1 − (A+AC−1A)−1.

• Apply the Woodbury matrix identity with U = V = In: this yields (A+C)−1 = A−1 −A−1(C−1 +
A−1)−1A−1 = A−1 − (AC−1A+A)−1 after combining the terms on the right.

7. [Challenge] Let Dn denote the value of the (n− 1)× (n− 1) determinant

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
1 4 1 1 · · · 1
1 1 5 1 · · · 1
1 1 1 6 · · · 1
...

...
...

...
. . .

...
1 1 1 1 · · · n+ 1

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Determine whether limn→∞
Dn

n!
exists. [Hint: Start by subtracting the �rst row from the other rows.]

• Subtract the �rst row from the other rows, yielding

∣∣∣∣∣∣∣∣∣∣∣∣∣

3 1 1 1 · · · 1
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

• Now subtract 1/3 of the second row, 1/4 of the third row, 1/5 of the fourth row, ... , 1/nth of the
(n− 1)st row, from the �rst row.

• This yields

∣∣∣∣∣∣∣∣∣∣∣∣∣

x 0 0 0 · · · 0
−2 3 0 0 · · · 0
−2 0 4 0 · · · 0
−2 0 0 5 · · · 0
...

...
...

...
. . .

...
−2 0 0 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣
where x = 3 +

2

3
+

2

4
+

2

5
+ · · ·+ 2

n− 1
.

• Now the matrix is lower triangular so its determinant is simply x · 3 · 4 · 5 · · · · · n.

• Then
Dn

n!
=

x

2
=

3

2
+

1

3
+

1

4
+

1

5
+ · · ·+ 1

n− 1
=
∑n−1

k=1

1

k
. As n→∞ this series is the harmonic series,

which diverges to ∞ .

• Remark: This was problem B5 from the 1992 Putnam.
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