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1 The Integers

One of the most foundational objects in mathematics is the integers, as they are used the basis and reference point
for many other topics in mathematics. Our goal in this chapter is to de�ne the integers axiomatically and to develop
some basic properties of primes and divisibility. We then introduce the general notion of a commutative ring with
1 along with some other number systems, in order to contrast their properties with those of the integers.

1.1 The Integers, Axiomatically

• We are all at least a little bit familiar with the integers Z, consisting of the positive integers Z+ (1, 2, 3, 4,
. . . ), along with their negatives (−1, −2, −3, −4, . . . ) and zero (0).

◦ There are two natural binary arithmetic operations de�ned on the integers, namely addition (+) and
multiplication (·), along with the unary operation of negation (−).
◦ But it is not so easy to prove things about the integers without a solid set of properties to work from.

1.1.1 De�nition of the Integers

• �De�nition�: The integers are a set Z along with two (closed) binary1 operations + and ·, obeying the following
properties2:

[I1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any integers a, b, c.

1The de�nition of a binary operation means that for any two integers a and b, the symbols a+ b and a · b are always de�ned and are
integers. Some authors list these properties explicitly as part of their list of axioms.

2To be a proper de�nition, we would also need to establish that there actually is a set with operations obeying these properties,
which turns out to be rather di�cult. But there are various constructions for Z using set theory, which we will not detail here.
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[I2] The operation + is commutative: a+ b = b+ a for any integers a, b.

[I3] There is an additive identity 0 satisfying a+ 0 = a for all integers a.

[I4] Every integer a has an additive inverse −a satisfying (−a) + a = 0.

[I5] The operation · is associative: a · (b · c) = (a · b) · c for any integers a, b, c.

[I6] The operation · is commutative: a · b = b · a for any integers a, b.

[I7] There is a multiplicative identity 1 6= 0 satisfying 1 · a = a for all integers a.

[I8] The operation · distributes over +: a · (b+ c) = a · b+ a · c for any integers a, b, c.

Furthermore, there is a subset of Z, namely the positive integers Z+, such that

[N1] For every a ∈ Z, precisely one of the following holds: a ∈ Z+, a = 0, or (−a) ∈ Z+.

[N2] The set Z+ is closed under + and ·: for any a, b ∈ Z+, both a+ b and a · b are in Z+.

[N3] Every nonempty subset S of Z+ contains a smallest element: that is, an element x ∈ S such that if
y ∈ S, then either y = x or y − x ∈ Z+.

• Remark: The axiom [N3] is called the well-ordering axiom. It is the axiom that di�erentiates the integers
from other number systems such as the rational numbers or the real numbers, both of which obey all of the
other axioms.

1.1.2 Basic Arithmetic

• Using the axioms for Z, we can establish all of the properties of basic arithmetic. Doing this is not especially
di�cult once the basic idea is identi�ed (namely, invoking the axioms judiciously, along with some case
analysis). Here are some examples:

• Proposition (Basic Arithmetic): Inside the integers Z, the following properties hold:

1. The additive and multiplicative identities are unique.

◦ Proof: Suppose we had two additive identities 0A and 0B . Then by axioms [I2] and [I3], we may
write 0A = 0A + 0B = 0B + 0A = 0B , and therefore 0A = 0B .

◦ In a similar way, if we had two multiplicative identities 1A and 1B , then by axioms [I6] and [I7], we
may write 1A = 1A · 1B = 1B · 1A = 1B , and therefore 1A = 1B .

2. Addition possesses a cancellation law: if a+ b = a+ c, then b = c.

◦ Proof: By axioms [I1], [I3], and [I4], we have b = 0 + b = [(−a) + a] + b = (−a) + (a + b) =
(−a) + (a+ c) = [(−a) + a] + c = 0 + c = c.

3. Additive inverses are unique.

◦ Proof: Suppose a had two additive inverses b and c. Then we would have a+ b = 0 = a+ c by [I2]
and [I4], and therefore by the cancellation law (2) we would have b = c.

4. For all a ∈ Z, 0 · a = 0, (−1) · a = −a, and −(−a) = a.

◦ Proof: For any element a, by [I3] and [I8] we have 0 · a+ 0 = 0 · a = (0 + 0) · a = 0 · a+ 0 · a. Then
by the cancellation law (2), we obtain 0 = 0 · a.
◦ For the second statement, by the above along with [I3], [I7], and [I8] we have 0 = 0·a = [1+(−1)]·a =
1 · a+ (−1) · a = a+ (−1) · a. Then by the uniqueness of additive inverses (3), we see (−1) · a = −a.
◦ For the last statement, observe that by de�nition, −(−a) is the element which when added to −a
yields 0. But since a+ (−a) = 0 = (−a) + a by de�nition and [I2], by the uniqueness of the additive
inverse (3) we conclude −(−a) = a.

5. For any a and b, −(a+ b) = (−a) + (−b), (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
◦ Proof: For the �rst statement, observe that by [I1]-[I4], we have [a+ b] + [(−a) + (−b)] = [a+ [b+
(−b)]] + (−a) = (a+ 0) + (−a) = a+ (−a) = 0, and so by the uniqueness of the additive inverse (3)
we see −(a+ b) = (−a) + (−b).
◦ For the second statement, by (4) and [I6] we have (−a) ·b = [(−1) ·a] ·b = (−1) ·(a ·b) = −(a ·b). The
other part of the second statement and the third statement follow by essentially the same argument.
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6. For any a and b, b · a = a+ (b− 1) · a. Thus, 2 · a = a+ a, 3 · a = a+ (a+ a), and so forth.

◦ Proof: We have b · a = [1 + (b− 1)] · a = 1 · a+ (b− 1) · a = a+ (b− 1) · a by [I7] and [I8].

◦ The second statement follows from this along with the observation that 1 · a = a.

7. The multiplicative identity 1 ∈ Z+.

◦ Proof: By [N1], one of the following things holds: either 1 ∈ Z+ (in which case we are done), or
1 = 0 (this is impossible because by [I7], 1 6= 0), or −1 ∈ Z+.

◦ If −1 ∈ Z+, then by [N2], we would see that (−1) · (−1) ∈ Z+, and by (6) we have (−1) · (−1) = 1,
so we would have 1 ∈ Z+. In all cases 1 ∈ Z+ so we are done.

8. If ab = 0, then a = 0 or b = 0.

◦ Proof: If a, b ∈ Z+ then ab ∈ Z+ and so ab 6= 0. If a,−b ∈ Z+ or −a, b ∈ Z+ then −(ab) ∈ Z+ by
(5) and (4), and if −a,−b ∈ Z+ then ab ∈ Z+ also by (5) and (4).

◦ Thus, the only case in which ab = 0 is the case where a = 0 or b = 0, as claimed.

• It is quite tedious to write every proof using only properties of the axioms, so from this point forward we will
revert to using more standard notation and language.

◦ However, it is worthwhile noting that we could (if we wanted to) always reduce every proof down to a
series of statements each of which is an application of one of the axioms.

◦ From this viewpoint, our intermediate results (our propositions, lemmas, theorems, and so forth) consist
of a sequence of applications of the axioms that we can invoke in any situation where the hypotheses
apply, and that yield the claimed result.

◦ In this way, we can �build up� from the axiomatic foundation, by �rst proving very basic properties, and
then using those results to prove more complicated properties, and so forth, until we have established
substantial results.

◦ As a practical matter, most mathematicians do not dwell much on foundational questions, and instead
take for granted all of the basic properties of numbers and arithmetic that we will examine closely.

◦ But, at least in principle, every mathematical proof can be reduced down to a sequence of axiomatic
calculations. This idea is actually the foundation of automated theorem provers, which are computer
programs that can construct and verify mathematical proofs down to the axiomatic level.

◦ We cluster these statements together to make them more readable and (vastly!) more understandable to
human readers.

• We can also de�ne some other basic arithmetic properties of the integers:

• De�nition: We can de�ne the binary operation of subtraction in terms of addition and negation by setting
a− b = a+ (−b).

◦ Notice that this operation is well-de�ned (i.e., the de�nition makes sense and there is no ambiguity),
because −b is unique as we showed above.

• De�nition: We de�ne the order relation < (less than) by saying a < b if and only if b−a ∈ Z+. We also de�ne
b > a (greater than) to mean the same thing, and likewise write a ≤ b to mean a < b or a = b, and a ≥ b to
mean a > b or a = b.

◦ The axioms [N1] and [N2] ensure that these symbols all behave in the way we expect inequality symbols
to behave.

◦ Explicitly, [N1] implies that for any integers a and b, exactly one of a < b, a = b, or b < a holds, because
the integer b− a is either positive, zero, or negative (respectively).

◦ Also, [N2] implies that for any a, b, c with a < b and b < c, then a < c, because if b − a and c − b are
positive, then their sum (c− b) + (b− a) = c− a is also positive.

◦ Finally, [N2] also implies that for any a, b, c with a < b and 0 < c, then ac < bc, since b− a and c− 0 = c
are positive and thus have positive product.
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• A seemingly obvious, yet bizarrely important, property of the integers is the following result:

• Proposition: There are no integers between 0 and 1.

◦ Observe that this proposition must rely on the well-ordering axiom, because all of the other axioms also
apply to the rational and real numbers (which certainly do have elements between 0 and 1).

◦ Proof: Let S = {r ∈ Z : 0 < r < 1} be the set of all integers between 0 and 1. If S is empty, we are
done, so assume S 6= ∅.
◦ By the well-ordering axiom [N3], S has a minimal element r.

◦ Now observe that since 0 < r < 1, we have 0 < r2 < r < 1 by appropriate uses of [N1] and [N2].

◦ But this is a contradiction, because r2 is then a positive integer less than r, but r was assumed to be
minimal.

◦ Therefore, S cannot be nonempty, so S = ∅ as claimed.

1.1.3 Induction

• By using the well-ordering axiom, we can establish the validity of �proof by induction�:

• Proposition (Proof by Induction): If S is a set of positive integers such that 1 ∈ S, and n ∈ S implies
(n+ 1) ∈ S, then S = Z+ is the set of all positive integers.

◦ Proof: Let T = Z+\S, the positive integers not in S. If T is empty, we are done, so assume T 6= ∅.
◦ By the well-ordering axiom [N3], T has a minimal element r.

◦ Since r is positive, there are three possibilities: 0 < r < 1, r = 1, or 1 < r.

◦ Since there are no positive integers between 0 and 1, we cannot have 0 < r < 1.

◦ Furthermore, since 1 ∈ S, we cannot have r = 1.

◦ The only remaining possibility is that 1 < r. But then 0 < r − 1, so r − 1 is a positive integer.

◦ Since r − 1 < r and r is the minimal element of T , we see that r − 1 ∈ S.
◦ But then the hypotheses on S imply r ∈ S, which is a contradiction since we assumed r ∈ T .
◦ Hence T = ∅, so S = Z+ as claimed.

• Now we can invoke the result of the proposition to give a concrete procedure for mathematical induction.

◦ Explicitly, suppose P (n) is a proposition such that the �base case� P (1) holds, and also such that the
�inductive step� holds: namely, P (n) implies P (n+ 1) for all n ≥ 1.

◦ Then we claim that P (k) is true for every positive integer k.

◦ To show this fact, let S be the set of positive integers k such that P (k) is true.

◦ By hypothesis, 1 ∈ S, and n ∈ S implies (n+ 1) ∈ S.
◦ Therefore, by our proposition, we conclude that S is the set of all positive integers, which is to say, P (k)
is true for all positive integers k.

• Mathematical induction is a useful tool for proving certain kinds of results, typically, results that hold for all
positive integers.

◦ A useful analogy for understanding the inductive principle is of climbing a ladder: if we can get on the
�rst rung of the ladder, and we can always climb from one rung to the next, then we can eventually
climb to any rung of the ladder (no matter how high).

◦ We often refer to the step of showing that P (1) is true as the base case, and the step of showing that
P (n) implies P (n+ 1) for every n ≥ 1 as the inductive step.

◦ Induction arguments are useful because they can convert di�cult direct proofs into (often) comparatively
routine exercises.
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◦ The base case is usually an easy example where the result is obvious or almost obvious, while the inductive
step gives a clear hypothesis to start with and an equally clear goal to reach. Generally, most of the
work in the proof goes into the proof of the inductive step.

• Example: Prove that 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1 for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that 20 = 21 − 1 which is clearly true.

◦ For the inductive step, we are given that 20 + 21 + 22 + · · · + 2n−1 = 2n − 1 and must show that
20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1.

◦ By the inductive hypothesis, we can write

20 + 21 + 22 + · · ·+ 2n = [20 + 21 + 22 + · · ·+ 2n−1] + 2n

= [2n − 1] + 2n = 2n+1 − 1

and therefore we see 20 + 21 + 22 + · · ·+ 2n = 2n+1 − 1, as required.

◦ By induction, 20 + 21 + 22 + · · ·+ 2n−1 = 2n − 1 for every positive integer n.

• Example: Prove that 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

◦ We prove this by induction on n.

◦ For the base case n = 1, we must show that 1 = 1 which is clearly true.

◦ For the inductive step, we are given that 1+ 3+ 5+ · · ·+ (2n− 1) = n2 and must show that 1+ 3+ 5+
· · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2.

◦ By the inductive hypothesis, we can write

1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = [1 + 3 + 5 + · · ·+ (2n− 1)] + (2n+ 1)

= n2 + 2n+ 1 = (n+ 1)2

and therefore we see 1 + 3 + 5 + · · ·+ (2n− 1) + (2n+ 1) = (n+ 1)2, as required.

◦ By induction, 1 + 3 + 5 + · · ·+ (2n− 1) = n2 for every positive integer n.

• There are various modi�cations to this �basic� form of induction. The procedure for any induction problem
is essentially the same, however: we establish a base case, and prove an inductive step.

◦ We often want to start at a di�erent base case than n = 1: frequently, we instead start at n = 0 or n = 2.

◦ As long as we establish the appropriate base case and inductive step, the inductive principle still works.

◦ If, for example, our base case is n = 3, then we would prove P (3) is true and that P (n) implies P (n+1),
with the conclusion being that P (k) is true for all integers k ≥ 3.

• Example: Show that 4n > 2n+2 + 3n for all integers n ≥ 3.

◦ We prove this by induction on n.

◦ For the base case n = 3, we must show that 43 > 25 + 33, which is to say 64 > 59, which is clearly true.

◦ For the inductive step, we suppose that 4n > 2n+2 + 3n and must show that 4n+1 > 2n+3 + 3n+1.

◦ Using the induction hypothesis we see 4n+1 = 4 · 4n > 4(2n+2 +3n) > 2 · 2n+2 +3 · 3n = 2n+3 +3n+1, as
desired.

◦ Remark: Here, the statement is not true for n = 2 (since 42 = 16 while 24 + 32 = 25): that is why we
need to start the argument at n = 3.

• Another �avor of induction is called �complete induction� or �strong induction�: rather than assuming the
immediately previous case, we assume all of the previous cases: the inductive step is now that P (1), P (2),
..., P (n) collectively imply P (n+ 1).
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◦ It may seem like we are assuming extra information, but in fact strong induction and regular induction
are logically equivalent.

◦ The reason is that we can view any strong-induction proof as a regular-induction proof with a slightly
di�erent hypothesis.

◦ Explicitly, if we de�ne Q(n) to be the proposition that all of the statements P (1), P (2), ... , P (n) are
true, then a strong-induction proof of the proposition P (n) is the same as a standard-induction proof of
the proposition Q(n).

◦ Thus, it is always allowable to assume the strong induction hypothesis when writing an induction proof
(although in practice, one typically only does so when it is actually necessary).

• Example: Prove that every positive integer can be written as the sum of one or more distinct powers of 2.

◦ We will show this by (strong) induction on the integer, n.

◦ We take the base case n = 1: clearly, n = 20 = 1 has the required property, as claimed.

◦ For the inductive step, suppose that n ≥ 2 and the result holds for any positive integer less than n.

◦ If n is even, then n/2 is a positive integer with n/2 < n, so by the inductive hypothesis, n/2 can be
written as the sum of one or more distinct powers of 2, say, n/2 = 2a1 + · · ·+ 2ad .

◦ Then doubling all of the terms in this sum yields n = 2a1+1 + · · ·+2ad+1 so n is also the sum of distinct
powers of 2, as required.

◦ If n is odd, then (n − 1)/2 is a positive integer with (n − 1)/2 < n, so by the inductive hypothesis,
(n− 1)/2 can be written as the sum of one or more distinct powers of 2, say, (n− 1)/2 = 2a1 + · · ·+2ad .

◦ Then doubling all of the terms and adding 1 yields n = 20 + 2a1+1 + · · ·+ 2ad+1 so n is also the sum of
distinct powers of 2, as required.

• In some situations, it may be necessary to have multiple base cases depending on the structure of the argument:

• Example: Let a0 = 2, a1 = 5, and, for n ≥ 2, let an = 5an−1 − 6an−2. Prove that an = 2n + 3n for all n ≥ 0.

◦ We prove this result by strong induction on n.

◦ For n = 0 and n = 1, the result is obvious, since a0 = 2 = 20 + 30 and a1 = 5 = 21 + 31.

◦ Now suppose n ≥ 2. By the strong induction hypothesis and the fact that n ≥ 2, we have an−1 =
2n−1 + 3n−1 and an−2 = 2n−2 + 3n−2, and we want to show that an = 2n + 3n.

◦ By the recursion and the induction hypotheses,

an = 5an−1 − 6an−2

= 5(2n−1 + 3n−1)− 6(2n−2 + 3n−2)

= 4 · 2n−2 + 9 · 3n−2 = 2n + 3n

and therefore an = 2n + 3n as claimed. By (strong) induction, we conclude that an = 2n + 3n for all
integers n ≥ 0.

• In some cases the exact nature of the cases being used in the inductive step can be non-obvious, so it is
important to be very careful, as the following (famously incorrect) argument shows:

• Incorrect Proposition: All horses are the same color.

◦ Proof: We show this result by strong induction on n, the number of horses. The base case n = 1 is
obvious, since any one horse is the same color as itself.

◦ For the inductive step, suppose it is known that any n − 1 horses are the same color, and we are given
n horses.

◦ Then the �rst n− 1 horses are the same color by the inductive hypothesis, and the last n− 1 horses are
also the same color also by the inductive hypothesis.

◦ Therefore, every horse is the same color as the middle n − 2 horses, as required, so all n horses are the
same color.
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◦ Hence by induction, the result holds for every positive integer n.

◦ Remark: Of course, the result is false, but the mistake is reasonably well-hidden: in the proof of the
inductive step, it is implicitly assumed that n− 2 is positive so that n ≥ 3, but since only the base case
n = 1 was actually established, the proof is missing an argument for what happens with n = 2. (Of
course, the result is not true for n = 2!)

• As a �nal remark, we note that it is also possible to phrase induction arguments as �smallest counterexample�
or �in�nite descent� arguments.

◦ The general idea is to work to show that P (n) is true for all positive integers n by contradiction.

◦ If P (n) is not true for all positive integers n, then by the well-ordering axiom there must exist a minimal
positive integer k such that P (k) is false: this would be a �minimal counterexample�.

◦ If one can then prove that the existence of such a counterexample would imply the existence of a
smaller counterexample (i.e., some smaller positive integer k′ such that P (k′) is false), this would yield
a contradiction.

◦ Notice of course that the structure of this argument is equivalent to proof by induction (since both
arguments invoke the well-ordering axiom as a way of showing that a set is equal to Z+).

◦ In certain cases it can be easier to identify salient features of the induction argument by phrasing the
problem in terms of smallest counterexamples. However, standard proof by induction tends to be more
straightforward since it is a direct proof rather than a proof by contradiction.

1.2 Divisibility and the Euclidean Algorithm

• We have constructed three of the operations of standard arithmetic: +, −, and ·. We now discuss division.

◦ One caveat with division is that, unlike addition, subtraction, and multiplication, the quotient of one
integer by another (even if it is de�ned) need not be an integer.

◦ Thus, instead of discussing division, we start by discussing divisibility.

1.2.1 Divisibility and Division With Remainder

• De�nition: If a 6= 0, we say that a divides b, written a|b, if there exists an integer k with b = ka. If a|b, we
also say that b is divisible by a.

◦ Examples: 2|4 since 4 = 2 ·2, (−7)|7 since 7 = (−1) · (−7), 13|1001 since 1001 = 77 ·13, 6|0 since 0 = 0 ·6,
and 0|0 since 0 = 2019 · 0.
◦ If a does not divide b, we sometimes write a - b. For example, 2 - 3 since there is no integer k with 3 = 2k.

◦ In the particular case of divisibility by 2, we say n is even if 2|n. We will show (carefully) later that 2 - n
is equivalent to saying that 2|(n− 1), which we take as the de�nition of odd.

• There are a number of basic properties of divisibility that follow from the de�nition and properties of arith-
metic:

• Proposition (Properties of Divisibility): For any integers a, b, c,m, x, y, the following hold:

1. If a|b, then a|bc for any c.
2. If a|b and b|c, then a|c.
3. If a|b and a|c, then a|(xb+ yc) for any x and y.

4. If a|b and b|a, then a = b or a = −b.
5. If a|b, and a, b > 0, then a ≤ b.
6. For any m 6= 0, a|b is equivalent to (ma)|(mb).

◦ Proof: Each of these follows essentially directly from the de�nition of divisibility and the basic
properties of arithmetic.
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◦ For example, (2) follows because a|b and b|c imply that there exist integers k and l such that b = ka
and c = lb, and thus c = lb = (lk)a: hence c is an integer times a, so a|c.
◦ Likewise, (5) follows because if a|b and a, b are positive, then b = ka for some positive integer k.
Since this means 1 ≤ k because there are no integers between 0 and 1, we have a ≤ ka = b, and so
a ≤ b.

• If 0 < b < a and b does not divide a, we can still attempt to divide a by b to obtain a quotient and remainder:
this is a less-explicit version of the long-division algorithm familiar from elementary school. Formally:

• Theorem (Division With Remainder): If a is any integer and b is a positive integer, then there exist unique
integers q and r such that a = qb+ r with 0 ≤ r < b. Furthermore, r = 0 if and only if b|a.

◦ Proof: First, we show that q and r exist using induction on a.

◦ For the base cases with 0 ≤ a < b, we take q = 0 and r = a: then a = r = qb + r and 0 ≤ r < b as
required.

◦ For the inductive step, let a ≥ b and suppose that any nonnegative integer less than a can be written as
q′b+ r′ for some 0 ≤ r′ < b.

◦ Then by de�nition, a − b is a nonnegative integer less than a, so it is of the form q′b + r′ for some
0 ≤ r < b.

◦ Then a − b = q′b + r′ so a = (q′ + 1)b + r′, and so we may take q = q′ + 1 and r = r′. Therefore the
result holds for all nonnegative integers a by induction.

◦ For negative integers a, by the above we may write −a = q′b+ r′ for some q′, r′ with 0 ≤ r′ < b. If r′ = 0
then a = (−q′)b+ 0 so we can take q = −q′ and r = 0, while if r′ > 0 then a = (1− q′)b+ (b− r′) so we
may take q = 1− q′ and r = b− r′.
◦ For uniqueness, suppose qb+ r = a = q′b+ r′ with 0 ≤ r, r′ < b. Then −b < r− r′ < b, but we can write
r − r′ = b(q′ − q), so dividing through by b yields −1 < q′ − q < 1. But since q′ − q is an integer and
there are no integers between 0 and 1 (or −1 and 0), it must be the case that q′ = q and r′ = r.

◦ Finally, for the second statement, if r = 0 then a = qb so b|a. Conversely if b|a then a = kb for some k;
then the uniqueness of q and r implies that we must have q = k and r = 0.

1.2.2 Greatest Common Divisors and Least Common Multiples

• We now discuss the idea of common divisors.

• De�nition: If d|a and d|b, then d is a common divisor of a and b. If a and b are not both zero, then there are
only a �nite number of common divisors: the greatest one is called the greatest common divisor, or gcd, and
denoted by gcd(a, b).

◦ Warning: Many authors use the notation (a, b) to denote the gcd of a and b; this stems from the notation
used for ideals in ring theory. We will always write gcd(a, b) explicitly, since otherwise it is easy to
confuse the gcd with an ordered pair (a, b).

◦ Example: The positive divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30. The positive divisors of 42 are 1, 2, 3,
6, 7, 14, 21, 42. The common (positive) divisors are 1, 2, 3, and 6, and so gcd(30, 42) = 6.

• Theorem (GCD as Linear Combination): If a and b are integers, not both zero, and d = gcd(a, b), then there
exist integers x and y with d = ax+ by: in fact, the gcd is the smallest positive such linear combination.

◦ This theorem says that the greatest common divisor of two integers is an integral linear combination of
those integers.

◦ Proof: Without loss of generality assume a 6= 0, and let S = {as+ bt : s, t ∈ Z} ∩ Z+.

◦ Clearly S 6= ∅ since one of a and −a is in S, so now let l = ax+ by be the minimal element of S.

◦ We claim that l|b. To see this, apply the division algorithm to write b = ql + r for some 0 ≤ r < l.

◦ Observe that r = b− ql = b− q(ax+ by) = a(−qx) + b(1− qy) is a linear combination of a and b. It is
not negative, but it also cannot be positive because otherwise it would necessarily be less than l, and l
is minimal.

8



◦ Hence r = 0, so l|b. By a symmetric argument, l|a, and so l is a common divisor of a and b, whence
l ≤ d.
◦ But now since d|a and d|b we can wrote a = dka and b = dkb for some integers ka and kb, and then
l = ax+ by = dkax+ dkby = d(kax+ kby).

◦ Therefore d|l, so in particular d ≤ l since both are positive. Since l ≤ d as well, we conclude l = d.

• Corollary: If l|a and l|b, then l divides gcd(a, b). In other words, the gcd of a and b is divisible by every other
common divisor.

◦ Proof: Since l|a and l|b, l divides any linear combination of a and b: in particular, it divides the gcd.

• As an example: we saw above that the gcd of 30 and 42 is 6, and indeed we can see that 3 · 30 − 2 · 42 = 6.
The other common divisors are 1, 2, and 3, and indeed they all divide 6.

• As another example: because 6 · 24 − 11 · 13 = 1, we see that 24 and 13 have greatest common divisor 1,
since their gcd must divide any linear combination. Having a gcd of 1 occurs often enough that we give this
situation a name:

• De�nition: If gcd(a, b) = 1, we say a and b are relatively prime.

◦ Examples: 24 and 13 are relatively prime. 2 and 5 are relatively prime. 15 and 16 are relatively prime.

◦ Non-Example: 30 and 69 are not relatively prime, since they have the common divisor 3.

• Using all of the results we have shown above, we can collect a number of useful facts about greatest common
divisors:

• Proposition (Properties of GCDs): If m, a, b, d are integers, then the following hold:

1. If m > 0, then m · gcd(a, b) = gcd(ma,mb).

◦ Proof: As shown above, gcd(ma,mb) is the smallest positive element of the set S = {max+mby :
x, y ∈ Z}, while gcd(a, b) is the smallest positive element of the set T = {ax+ by : x, y ∈ Z}.
◦ But clearly, multiplying all of the elements of T by m yields the set S, and since this operation
preserves the identity of the smallest positive element, we must have gcd(ma,mb) = m · gcd(a, b), as
claimed.

2. If d > 0 divides both a and b, then gcd(a/d, b/d) = gcd(a, b)/d.

◦ Proof: Applying (1) to a/d and b/d withm = d yields d·gcd(a/d, b/d) = gcd(a, b), which is equivalent
to the given statement.

3. There exist integers x and y with ax+ by = 1 if and only if gcd(a, b) = 1.

◦ Proof: If gcd(a, b) = 1 then we showed above that there exist integers x and y with ax+ by = 1.

◦ For the other direction, any common divisor of a and b must divide ax+ by = 1: hence the gcd must
divide 1, which leaves only the possibility that it equals 1.

4. If a and b are both relatively prime to m, then so is ab.

◦ Proof: By the linear combination property of the gcd, there exist x1, y1, x2, y2 with ax1 +my1 = 1
and bx2 +my2 = 1.

◦ Multiplying these two equations together and rearranging the results yields ab(x1x2) +m(y1bx2 +
y2ax1 +my1y2) = 1, and this implies that ab and m are relatively prime.

5. For any integer x, gcd(a, b) = gcd(a, b+ ax).

◦ Proof 1: Suppose d|a and d|b. Then d|a and d|(b+ax), so d is also a common divisor of a and b+ax.
Conversely, if d|a and d|(b+ ax), then d|a and d|[(b+ ax)− x · a], which is to say, d|a and d|b, so d
is a common divisor of a and b. Therefore a, b and a, b+ ax have the same set of common divisors,
hence have the same gcd.

◦ Proof 2: Observe that the set of integral linear combinations of a and b is the same as the set of
integral linear combinations of a and b + ax. Since the gcd is the smallest positive integral linear
combination, we see immediately that gcd(a, b) = gcd(a, b+ ax).
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6. If a|bc and a and b are are relatively prime, then a|c.
◦ Proof 1: By (1), we have gcd(ac, bc) = c · gcd(a, b) = c. Since a|bc and a|ac, we see that a is a
common divisor of ac and bc, and therefore divides the gcd, which is c. Thus a|c as claimed.

◦ Proof 2: Since a and b are relatively prime, by (3) there exist integers x and y with ax + by = 1.
Multiplying both sides by c yields acx+ bcy = c: but now note that a divides both acx and bcy, so
a must also divide their sum c.

• Dual to the notion of the greatest common divisor is the notion of the least common multiple:

• De�nition: If a|l and b|l, l is a common multiple of a and b. The smallest positive common multiple a and b
is called the least common multiple of a and b and is denoted lcm(a, b).

◦ Example: The least common multiple of 4 and 5 is 20, and the least common multiple of 4 and 6 is 12.

◦ The least common multiple is often mentioned in elementary school in the context of adding fractions
(for �nding the �least common denominator�).

• The least common multiple has fewer nice properties than the gcd, but there are still a few useful facts:

• Proposition (Properties of LCMs): If m, a, b are any positive integers, then the following hold:

1. We have m · lcm(a, b) = lcm(ma,mb).

◦ Proof: Since ma divides lcm(ma,mb), we can write lcm(ma,mb) = mk for some integer k.

◦ Then ma|mk and mb|mk, so a and b both divide k, whence k ≥ l, where l = lcm(ma,mb).

◦ On the other hand, certainly ma and mb divide ml, so ml ≥ mk. We must therefore have l = k, so
m · lcm(a, b) = lcm(ma,mb) as claimed.

2. If a and b are positive integers, then gcd(a, b) · lcm(a, b) = ab.

◦ Proof: First suppose a and b are relatively prime, and let l be a common multiple. Since a|l we can
write l = ak for some integer k: then since b|ak and gcd(a, b) = 1, we conclude by properties of
divisibility that b|k, meaning that k ≥ b and thus l ≥ ab. But clearly ab is a common multiple of a
and b, so it is the least common multiple.

◦ In the general case, let d = gcd(a, b). Then gcd(a/d, b/d) = 1, so by (1) we see that lcm(a/d, b/d) =
ab/d2. Then gcd(a, b) · lcm(a, b) = d · d lcm(a/d, b/d) = ab, as desired.

1.2.3 The Euclidean Algorithm

• Although we have identi�ed various properties of the gcd, we have not yet described a convenient procedure
for actually computing the gcd other than by writing down lists of common divisors. (Nor have we described
how to compute the gcd as a linear combination of the original integers.) Both questions turn out to have a
nice answer:

• Theorem (Euclidean Algorithm): Given integers 0 < b < a, repeatedly apply the division algorithm as follows,
until a remainder of zero is obtained:

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rk−1 = qk+1rk + rk+1

rk = qk+2rk+1.

Then gcd(a, b) is equal to the last nonzero remainder, rk+1. Furthermore, by successively solving for the
remainders and plugging in the previous equations, rk+1 can be explicitly written as a linear combination of
a and b.
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◦ Proof: First observe that the algorithm will eventually terminate, because b > r1 > r2 > · · · ≥ 0, and the
well-ordering axiom dictates that we cannot have an in�nite decreasing sequence of nonnegative integers.

◦ We now claim that gcd(a, b) = gcd(b, r1): this follows because gcd(b, r1) = gcd(b, a − q1b) = gcd(b, a)
from the gcd properties we proved earlier.

◦ Now by an easy induction, we claim that gcd(rj , rj+1) = gcd(a, b) for each 0 ≤ j ≤ k, where we set
r0 = b and r−1 = a. The base case j = 0 follows from gcd(a, b) = gcd(b, r1) above, and the inductive
step follows by applying the same argument to see gcd(rj , rj+1) = gcd(rj+1, rj+2).

◦ We conclude that gcd(a, b) = gcd(rk+1, rk) = rk+1 since rk+1 divides rk. Hence, gcd(a, b) is the last
nonzero remainder as claimed.

◦ The correctness of the algorithm for computing the gcd also follows by an easy induction: explicitly,
we show by induction on j that there exist integers xj and yj such that (−1)j+1rj = xja + yjb for all
integers j with 0 ≤ j ≤ k + 1.

◦ The base cases j = 0 and j = 1 follow by writing r0 = b and r1 = a− q1b so we may take x0 = 0, y0 = 1,
x1 = 1, and y1 = q1.

◦ The inductive step follows by writing rj−1 = qj+1rj + rj+1, so rearranging yields rj+1 = rj−1− qj+1rj =
(−1)j(xj−1a− yj−1b)− qj+1(−1)j+1(xja+ yjb) = (−1)j+2[(qj+1xj +xj−1)a+(qj+1yj + yj−1)b] and thus
can we take xj+1 = qj+1xj + xj−1 and yj+1 = qj+1yj + yj−1.

◦ By induction, we eventually obtain an expression gcd(a, b) = rk+1 = (−1)k+2[xk+1a+yk+1b] as required.

• Example: Find the gcd of 133 and 98 using the Euclidean algorithm, and write the gcd explicitly as a linear
combination of 133 and 98.

◦ First, we use the Euclidean algorithm:

133 = 1 · 98 + 35

98 = 2 · 35 + 28

35 = 1 · 28 + 7

28 = 4 · 7

and so the gcd is 7 .

◦ For the linear combination, we solve for the remainders:

35 = 133− 1 · 98 = = 1 · 133− 1 · 98
28 = 98− 2 · 35 = 98− 2 · (133− 1 · 98) = −2 · 133 + 3 · 98
7 = 35− 1 · 28 = (1 · 133− 1 · 98)− 1 · (−2 · 133 + 3 · 98) = 3 · 133− 4 · 98

so we obtain 7 = 3 · 133− 4 · 98 .

• In the example above, we could simply have written down all the divisors of each number, and computed the
gcd by comparing those lists. However, if the numbers are large, this procedure becomes very ine�cient in
comparison to the Euclidean algorithm.

• Example: Find the gcd of 44773 and 8537 using the Euclidean algorithm, and use the results to write the gcd
as an explicit linear combination.

◦ Applying the Euclidean algorithm to a = 44773 and b = 8537 yields

44773 = 5 · 8537 + 2088

8537 = 4 · 2088 + 185

2088 = 11 · 185 + 53

185 = 3 · 53 + 26

53 = 2 · 26 + 1

26 = 26 · 1
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◦ Hence the gcd is 1 . For the linear combination, we solve for the remainders:

2088 = = 1 · 44773− 5 · 8537
185 = 8537− 4 · 2088 = −4 · 44773 + 21 · 8537
53 = 2088− 11 · 185 = 45 · 44773− 236 · 8537
26 = 185− 3 · 53 = −139 · 44773 + 729 · 8537
1 = 53− 2 · 26 = 323 · 44773− 1694 · 8537

and therefore we can take s = 323 and t = −1694 .

• We can e�ciently work out the values of the sequences xj and yj used in the proof of the Eucldean algorithm
using a table: with starting values x−1 = 1, x0 = 0, y−1 = 0, y0 = 1, and recurrences xj+1 = qj+1xj + xj−1
and yj+1 = qj+1yj + yj−1, we need only have the quotients qj already available.

◦ Here, for instance, is the table resulting from the calculation in the example above with 44773 and 8537:

j −1 0 1 2 3 4 5
qj 5 4 11 3 2

xj = qjxj−1 + xj−2 1 0 1 4 45 139 323
yj = qjyj−1 + yj−2 0 1 5 21 236 729 1694
44773xj − 8537yj 44773 −8357 2088 −185 53 −26 1

◦ From the last column we can see that 323 · 44773 − 1694 · 8537 = 1 = gcd(44773, 8537), agreeing with
the equivalent calculation we did above.

1.3 Primes and Unique Factorization

• Now that we have examined divisibility and common factors, we will examine one of the other fundamental
properties of the integers, namely, the existence and uniqueness of prime factorizations. We begin with primes:

• De�nition: If p > 1 is an integer, we say it is prime if there is no integer d with 1 < d < p such that d|p.
(In other words, if p has no nontrivial proper divisors.) If n > 1 is not prime, which is equivalent to saying
n = ab for some integers 1 < a, b < n, we say n is composite.

◦ The �rst few primes are 2, 3, 5, 7, 11, 13, 17, 19, and so forth. 1 is neither prime nor composite.

◦ Remark: In more advanced contexts, the following equivalent de�nition of a prime is often used instead:
the integer p > 1 is prime if and only if p|ab implies that p|a or p|b.

• The prime numbers are often called the �building blocks under multiplication�, because every positive integer
can be written as the product of prime numbers in an essentially unique way. To prove this, we �rst show
that there exists at least one such factorization:

• Proposition (Existence of Prime Factorizations): Every positive integer n can be written as a product of zero
or more primes (where a �product� is allowed to have only one term, and the empty product has value 1).

◦ The representation of n as a product of primes is called the prime factorization of n. (For example, the
prime factorization of 6 is 6 = 2 · 3.) We will show in a moment that it is unique up to reordering.

◦ Proof: We use strong induction on n. The result clearly holds if n = 1, since 1 is the empty product.

◦ Now suppose n ≥ 2. If n is prime, we are done, so assume that n is not prime, hence composite.

◦ By de�nition, there exists a d with 1 < d < n such that d|n: then n/d is an integer satisfying 1 < n/d < n.

◦ By the strong induction hypothesis, both d and n/d can be written as a product of primes; multiplying
these two products then yields n as a product of primes.

• To establish the uniqueness of prime factorizations, we require the following prime divisibility property:

• Proposition (Prime Divisibility): If a and b are integers and p is a prime number with p|ab, then p|a or p|b.

◦ Proof: Consider gcd(a, p): it divides p, hence is either 1 or p. If it is p, then p|a. If it is 1, then a and p
are relatively prime: but now since p|ab and a, p are relatively prime, we see p|b.
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• Theorem (Fundamental Theorem of Arithmetic): Every positive integer n can be factored into a product of
primes, and this factorization is unique up to reordering of the factors.

◦ Proof: We showed existence already. For uniqueness we use strong induction on n. The base case n = 1
is trivial: any nonempty product must be greater than 1, so the only factorization of 1 is the trivial
product.

◦ For the inductive step suppose all positive integers less than n have a unique prime factorization, and
suppose n has two factorizations n = p1p2 · · · pk = q1q2 · · · ql.
◦ Since p1 is prime and divides q1q2 · · · ql, by repeated application of the previous proposition we see that
p1 must divide one of q1, q2, . . . , ql: say, qi. But the only divisors of qi are 1 and qi, and since p1 6= 1,
we must have p1 = qi.

◦ Cancelling the factors yields n/p1 = p2 · · · pk = q1 · · · qi−1qi+1 · · · ql. By the inductive hypothesis, since
n/p1 < 1, its prime factorization is unique up to reordering. Hence the prime factorization for n is also
unique, as desired.

• To save space, we group equal primes together when actually writing out the canonical prime factorization:
thus, 12 = 22 · 3, 720 = 22 · 32 · 5, and so forth. More generally, we often write the prime factorization in the
form n = pn1

1 pn2
2 · · · p

nj

k , where the pi are distinct primes and the ni are their corresponding exponents.

• Proposition (Factorizations): Suppose a = pa1
1 p

a2
2 · · · p

ak

k and b = pb11 p
b2
2 · · · p

bk
k for distinct primes pi.

1. We have a|b if and only if ai ≤ bi for each i.
◦ Proof: First suppose b = ad and d = pd1

1 p
d2
2 · · · p

dk

k : then by comparing prime factorizations we have
ai + di = bi for each i. Since all exponents are nonnegative, in particular ai ≤ bi for each i.
◦ Conversely, if ai ≤ bi for each i, taking di = bi − ai and d = pd1

1 p
d2
2 · · · p

dk

k gives b = ad, so a|b.

2. We have gcd(a, b) = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(ak,bk)

k and lcm(a, b) = p
max(a1,b1)
1 p

max(a2,b2)
2 · · · pmax(ak,bk)

k .

◦ Proof: By (1), since the exponent of each prime in d = p
min(a1,b1)
1 p

min(a2,b2)
2 · · · pmin(ak,bk)

k is ≤ ai and
≤ bi, we see d|a and d|b so d is a common divisor of a and b.

◦ On the other hand, if e|a and e|b where e has prime factorization e = pe11 p
e2
2 · · · p

ek
k , then by (1) we

must have ei ≤ ai and ei ≤ bi hence ei ≤ min(ai, bi). But then by (1) again, that means e divides d,
so d is the greatest common divisor of a and b. The proof for the least common multiple is analogous.

• Example: Find the gcd and lcm of 1200 = 243152 and 1800 = 233252.

◦ By the formulas, the gcd takes the smaller power in each exponent, yielding a gcd of 233152 = 600

while the lcm takes the larger power in each exponent, yielding an lcm of 243252 = 3600 .

• Prime factorizations also yield simple formulas for the number and sum of divisors of an integer:

• Proposition (Number and Sum of Divisors): Suppose n is a positive integer with prime factorization n =
pn1
1 pn2

2 · · · p
nk

k . Then the number of positive divisors of n is (1 + n1)(1 + n2) · · · (1 + nk) and the sum of the
positive divisors of n is (1 + p1 + · · ·+ pn1

1 )(1 + p2 + · · ·+ pn2
2 ) · · · (1 + pk + · · ·+ pnk

k ).

◦ Proof: Notice that the positive integers d dividing n are of the form pd1
1 p

d2
2 · · · p

dk

k where d1, d2, . . . , dk
are integers with 0 ≤ di ≤ ni for each i.
◦ Thus, there are 1 + n1 choices for d1, 1 + n2 choices for d2, ... , and 1 + nk choices for dk, so the total
number of choices for d is indeed the product (1 + n1)(1 + n2) · · · (1 + nk).

◦ Now consider multiplying out the product (1 + p1 + · · ·+ pn1
1 )(1 + p2 + · · ·+ pn2

2 ) · · · (1 + pk + · · ·+ pnk

k ):

it is the sum of all terms of the form pd1
1 p

d2
2 · · · p

dk

k with 0 ≤ di ≤ ni for each i. But these are precisely
the positive divisors of n, so this product is the sum of the divisors of n.

• Example: Find the number of positive divisors and the sum of the positive divisors for n = 18.

◦ We have 18 = 22 ·31 so 18 has (2+1)(1+1) = 6 divisors and the sum of the divisors is (1+2)(1+3+32) =

3 · 13 = 39 . (Indeed, the 6 divisors are 1, 2, 3, 6, 9, 18, whose sum is indeed 39.)
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• One question we might have is: how many primes are there? The most basic answer to this question is that
there are in�nitely many primes:

• Theorem (Euclid): There are in�nitely many prime numbers.

◦ Proof: Suppose we have a list of primes p1, p2, . . . , pk, and consider n = p1p2 · · · pk + 1.

◦ Let q be any prime divisor of n (possibly n itself). We claim that q cannot equal any of the pi, so suppose
otherwise: then pi divides n = p1p2 · · · pk + 1.

◦ Since pi also divides p1p2 · · · pk, we see that pi therefore divides n − p1p2 · · · pk = 1. But this is a
contradiction. Hence q is a new prime not on the list.

◦ Therefore, any �nite list cannot contain all of the prime numbers, so there are in�nitely many.

• One particularly famous application of prime factorizations is to show that
√
2 is irrational:

• Theorem (Irrationality of
√
2): The number

√
2 is irrational, which is to say, there do not exist integers m

and n such that
√
2 = m/n.

◦ Proof: Suppose by way of contradiction that
√
2 were rational so that

√
2 = m/n for some integers m

and n, which (by negating if needed) we may assume are positive.

◦ Squaring both sides and clearing denominators yields the equivalent equation m2 = 2n2.

◦ Now consider the prime factorizations of both sides: say m = 2m23m3 · · · and n = 2n23n3 · · · .
◦ Squaring gives n2 = 22n232n3 · · · , m2 = 22m232m3 · · · , so m2 = 2n2 yields 22m2+13m3 · · · = 22n232n3 · · · .
◦ By the uniqueness of prime factorizations, all of the corresponding exponents must be equal, so in
particular, 2m2 + 1 = 2n2 so that 2(n2 −m2) = 1. But this is impossible, because 2 does not divide 1.
Therefore, it could not have been true that

√
2 = m/n, so

√
2 must be irrational as claimed.

• There are very many results and open problems relating to prime numbers, some of which are as follows:

The Prime Number Theorem: Euclid's result, while extremely elegant, does not tell us much about the
actual primes themselves: for example, it does not say anything about how common the primes are. Are
most numbers prime? Or are most numbers composite? More rigorously, if we let π(n) be the number
of primes in the interval [1, n], we would like to know how fast π(n) increases as n increases: does it
grow like n, or

√
n, or something else? The answer is given by the Prime Number Theorem proven

independently by Hadamard and de la Vallée Poussin in 1896: π(n) ∼ n/ ln(n), meaning that as n→∞,

the limit lim
n→∞

π(n)

n/ ln(n)
= 1.

Twin Primes: Another question is: how close do primes get? It is obvious that 2 is the only even prime,
so aside from 2 and 3, any pair of primes has to di�er by at least 2: such pairs are called twin primes.
One can write down a long list of twin primes: (3,5), (5,7), (11,13), (17,19), (29,31), (41,43), (59,61),
and so forth. Are there in�nitely many? The answer is not known, although twin primes are expected
to be quite rare. However, as of August 2014, the Polymath project has sharpened results of Maynard
and Zhang to show that there exist in�nitely many pairs of primes (p1, p2) such that |p2 − p1| ≤ 246.

Goldbach's Conjecture: One can observe that 2 + 2 = 4, 3 + 3 = 6, 3 + 5 = 8, 3 + 7 = 10, 5 + 7 = 12,
3 + 11 = 14, 3 + 13 = 16, 5 + 13 = 18, 7 + 13 = 20, and so forth. It appears that every even number
greater than 2 can be written as the sum of two primes. It is not known whether this pattern continues,
although it has been numerically veri�ed for every even integer less than 4 · 1018. In 2013, a proof that
every odd integer greater than 5 can be written as a sum of three primes was announced by Helfgott.
(This result is weaker than Goldbach's conjecture, but it is of the same type.)

1.4 Rings and Other Number Systems

• One of our goals in number theory is to examine properties of the integers that generalize to other number
systems. To do this in a reasonable way, we will phrase our results using the language of commutative rings.

◦ A fuller discussion of the theory of rings belongs to abstract algebra, but the language of rings provides
the best setting in which to compare di�erent number systems. We will only give a brief overview of ring
arithmetic here, leaving a more extensive discussion of generalizations to a later chapter.
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1.4.1 De�nition and Examples

• De�nition3: A commutative ring with 1 is a set R having two (closed) binary operations + and · that satisfy
the eight axioms [R1]-[R8]:

[R1] The operation + is associative: a+ (b+ c) = (a+ b) + c for any elements a, b, c in R.

[R2] The operation + is commutative: a+ b = b+ a for any elements a, b in R.

[R3] There is an additive identity 0 satisfying a+ 0 = a for all a in R.

[R4] Every element a has an additive inverse −a satisfying a+ (−a) = 0.

[R5] The operation · is associative: a · (b · c) = (a · b) · c for any elements a, b, c in R.

[R6] The operation · distributes over +: a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c for any elements
a, b, c in R.

[R7] The operation · is commutative: a · b = b · a for any elements a, b in R.

[R8] There is a multiplicative identity 1 6= 0, satisfying 1 · a = a = a · 1 for all a in R.

• De�nition: If a commutative ring with identity further satis�es the axiom [F], it is called a �eld.

[F] Every nonzero a in R has a multiplicative inverse a−1 satisfying a · a−1 = 1 = a−1 · a.

◦ Remark: Fields may be a familiar object from linear algebra, as �elds are a central underlying component
of a vector space.

• Here are some examples (and non-examples) of rings4:

• Example: The integers Z are a commutative ring with identity.

• Non-Example: The set of odd integers is not a ring.

◦ The problem is that, although multiplication of two odd integers does return an odd integer, the sum of
two odd integers is not odd: thus, the operation + is not de�ned on the set of odd integers.

• (Non-)Example: The set of even integers forms a commutative ring without identity.

◦ The properties [R1]-[R7] all follow from their counterparts in Z: [R3] follows because 0 is an even integer,
and [R4] follows because n is an even integer if and only if −n is an even integer.

◦ This ring does not have a multiplicative identity because there is no element n ∈ R such that n · 2 = 2.

• Example: The rational numbers Q, the real numbers R, and the complex numbers C are all examples of �elds.

◦ Recall that C is the set of numbers of the form a+ bi, where a and b are real numbers and i2 = −1.
◦ Addition and multiplication in C are as follows: (a+bi)+(c+di) = (a+c)+(b+d)i, and (a+bi)·(c+di) =
ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

• Example: The set of complex numbers of the form a+ bi where a, b ∈ Z are a commutative ring with identity.

◦ This ring is denoted Z[i] (read as: �Z adjoin i�) and is also often called the Gaussian integers.

◦ The properties [R1]-[R8] all follow from their counterparts in C: [R3] follows because 0 = 0 + 0i, and
[R4] follows because we have −(a+ bi) = (−a) + (−b)i.

• Example: The set of real numbers of the form a+ b
√
2 where a, b ∈ Z are a commutative ring with identity.

3We will remark here that there are also notions of a noncommutative ring (in which the axiom [R7] on the commutativity of
multiplication is dropped) and a ring without 1 (in which the axiom [R8] on the existence of a multiplicative identity is dropped). We
will not use these more general types of rings, but they are important objects of study in abstract algebra. One fundamental example
of a noncommutative ring, familiar from linear algebra, is the ring of n× n matrices under matrix addition and multiplication.

4For brevity, when we do not specify the operations + and ·, they are always assumed to be the standard addition and multiplication
operations on the corresponding sets.
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◦ This ring is denoted Z[
√
2]. The addition and multiplication are de�ned in a similar way as for the complex

numbers and Gaussian integers: (a+ b
√
2)+(c+d

√
2) = (a+ c)+ (b+d)

√
2, and (a+ b

√
2) · (c+d

√
2) =

ac+ ad
√
2 + bc

√
2 + 2bd = (ac+ 2bd) + (ad+ bc)

√
2.

• We can generalize the two examples above: if D is any integer, the set of complex numbers of the form a+b
√
D

for a, b ∈ Z forms a ring, denoted Z[
√
D].

◦ Associated to this ring is a particularly important map called the norm map, which is de�ned as follows:

N(a+b
√
D) = (a+b

√
D) · (a−b

√
D) = a2−Db2. Observe that this function takes values in the integers,

and that it is also multiplicative: N(rs) = N(r)N(s) for any r, s ∈ R.

• There is one other important class of rings we will discuss, namely, polynomial rings:

• De�nition: Let F be a �eld and x be an indeterminate. A polynomial in x with coe�cients in F consists of
a formal sum anx

n + an−1x
n−1 + · · · + a1x + a0, for an integer n ≥ 0 and where each element ai ∈ F . The

set of all such polynomials is denoted by F [x] and has the structure of a commutative ring with 1 under the
familiar addition and multiplication of polynomials:

◦ Addition is de�ned termwise:

(anx
n+an−1x

n−1+· · ·+a1x+a0)+(bnx
n+bn−1x

n−1+· · ·+b1x+b0) = (an+bn)x
n+(an−1+bn−1)x

n−1+· · ·+(a0+b0)

and multiplication is de�ned �rst on monomials (polynomials with only one nonzero coe�cient), via
(axn) ·(bxm) = abxn+m, and then extended to arbitrary polynomials via the distributive laws. Explicitly,

(a0+a1x+a2x
2+· · ·+anxn)·(b0+b1x+b2x2+· · ·+bmxm) = a0b0+(a1b0+a0b1)x+(a2b0+a1b1+a0b2)x

2+· · ·+anbmxn+m

where the coe�cient of xj in the product is given by a0bj + a1bj−1 + · · ·+ ajb0 =
∑j

k=0 akbj−k.

◦ These operations are all de�ned, since F is a �eld, and it is reasonably straightforward to see that each
of the axioms [R1]-[R8] hold: thus, F [x] is a commutative ring with 1.

◦ The term �indeterminate� is deliberately unde�ned in the de�nition above. A more concrete5 (but vastly
less intuitive) de�nition of polynomials can be given using Cartesian products, but we will not use it.

◦ If an 6= 0, we say that the polynomial has degree n, and if an = 1 we say the polynomial is monic. (By
convention, the degree of the zero polynomial 0 is −∞.)

◦ The leading term of the polynomial is its highest-degree term (i.e., anx
n) and its leading coe�cient is

the corresponding coe�cient (i.e., an).

◦ We will employ the traditional �function� notation for polynomials (e.g., by writing a polynomial as
p(x) = x2 + 5), and also often drop the variable portion (e.g., by referring to �the polynomial p�) when
convenient. We reiterate, however, that our polynomials are not functions, but rather formal sums.

• The degree of a polynomial is quite fundamental so we will record a few basic properties now:

• Proposition (Degrees in Polynomial Rings): If p and q are any polynomials in a polynomial ring F [x], then
deg(p+ q) ≤ max(deg p,deg q), and deg(pq) = deg p+ deg q.

◦ Proof: It is straightforward to verify that each claim holds if p or q is zero. Now assume p and q are
nonzero.

◦ For p + q, observe that if there are no terms of degree k or higher in p or q, then there are no terms of
degree k or higher in p+ q either.

◦ For pq, observe that if p has leading term anx
n and q has leading term bmx

m, then the leading term of
pq is anbmx

m+n since anbm 6= 0 because F is a �eld and an and bm are nonzero.

5Speci�cally: inside the Cartesian product
∏

Z≥0
F = (r0, r1, r2, . . . ) indexed by the nonnegative integers, we de�ne the �polynomials�

to be the sequences all but �nitely many of whose entries are zero, and interpret the sequence (r0, r1, r2, . . . , rn, 0, 0, . . . ) as the formal
sum r0 + r1x+ r2x2 + · · ·+ rnxn. We can then de�ne the operations of polynomial addition and multiplication solely in terms of these
sequences.
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1.4.2 Arithmetic in Rings, Units

• Our immediate goal in discussing rings is to study properties of arithmetic in Z that generalize to arbitrary
rings. To this end, we begin by establishing a number of basic properties of ring arithmetic.

◦ As in Z, we de�ne the binary operation of subtraction by setting a − b = a + (−b). We also often use
implicit multiplication, and drop the · notation.
◦ We can de�ne scaling of a ring element a by a positive integer as repeated addition: na = a+ a+ a+ · · ·+ a︸ ︷︷ ︸

n terms

.

By associativity of addition, this notation is well-de�ned. In a ring with 1, this notation coincides with
the product of ring elements n · a, but (as we would desire) it is true that n · a = na.

◦ We can also de�ne exponentiation of a ring element a as ak = a · a · a · · · · · a︸ ︷︷ ︸
k terms

, for any positive integer k.

By associativity of multiplication, this notation is well-de�ned.

• Proposition (Basic Arithmetic): Let R be an arbitrary ring. The following properties hold in R:

1. The additive identity 0 is unique, as is the multiplicative identity 1 (if R has a 1).

◦ Proof: Suppose that 0a and 0b were both additive identities. Then by [R2], [R3], and the hypotheses,
0a = 0a + 0b = 0b + 0a = 0b. A similar argument with [R8] shows that the multiplicative identity is
unique, if it exists.

2. Addition has a cancellation law: for any a, b, c ∈ R, if a+ b = a+ c, then b = c.

◦ Proof: By [R1]-[R4], b = 0+b = [(−a)+a]+b = (−a)+[a+b] = (−a)+[a+c] = [(−a)+a]+c = 0+c = c.

3. Additive inverses are unique.

◦ Proof: Suppose both b and c are additive inverses of a. Then a+ b = 0 = a+ c, so by (2), b = c.

4. For any a ∈ R, 0 · a = 0 = a · 0.
◦ Proof: Let b be any element of R. By [R3], [R5] and [R6], we have b·a+0·a = (b+0)·a = b·a = b·a+0.
Then by property (2), we conclude 0 · a = 0. A similar argument using distribution on the right
shows that a · 0 = 0 also.

5. For any a ∈ R, −(−a) = a.

◦ Proof: By de�nition, −(−a) has the property that (−a)+ [−(−a)] = 0. But by [R2] applied to [R4],
we also know (−a) + a = 0, so by property (3), we conclude −(−a) = a.

6. If R has a 1, then for any a ∈ R, (−1) · a = −a = a · (−1).
◦ Proof: By [R4], [R6], [R8], and the previous property, we have 0 = 0·a = [1+(−1)]·a = 1·a+(−1)·a =
a+ (−1) · a. Therefore, (−1) · a is an additive inverse of a, so by property (3), we see (−1) · a = −a.
In a similar way, we can see that a · (−1) = −a.

7. For any a, b ∈ R, −(a+ b) = (−a) + (−b).
◦ Proof: By [R1]-[R4], observe that (b+ a) + [(−a) + (−b)] = [b+ (a+ (−a)] + (−b) = [b+0]+ (−b) =
b+ (−b) = 0. Thus, by (3), we conclude that (−a) + (−b) is the additive inverse of b+ a = a+ b.

8. For any a, b ∈ R, (−a) · b = −(a · b) = a · (−b), and (−a) · (−b) = a · b.
◦ Proof: Observe that a · b+ (−a) · b = [a+ (−a)] · b = 0 · b = 0 by [R4], [R6], and property (4). Thus,

(−a)·b is an additive inverse of a·b, so by property (3), it is equal to −(a·b). A similar argument shows
that a·(−b) = −(a·b). For the last statement, observe that (−a)·(−b) = −[a·(−b)] = −(−[a·b]) = a·b
by the �rst two statements and property (5).

9. For any positive integers m and n and any a ∈ R, ma+ na = (m+ n)a, m(na) = (mn)a, am+n = aman,
and amn = (am)n.

◦ Proof: By [R1], (m+ n)a = a+ a+ · · ·+ a︸ ︷︷ ︸
m+n terms

= a+ a+ · · ·+ a︸ ︷︷ ︸
m terms

+ a+ a+ · · ·+ a︸ ︷︷ ︸
n terms

= ma+ na.

◦ The other properties follow in the same way, using multiplication in place of addition.
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• It is possible for a general ring to contain many elements that have multiplicative inverses, unlike in Z (where
the only elements with multiplicative inverses are 1 and −1).

• De�nition: In a commutative ring R with 1 6= 0, we say that an element a is a unit if there exists a b ∈ R
such that ab = 1. The set of units in R is denoted R×.

◦ Example: In Z, there are only two units, namely 1 and −1.
◦ Example: In a �eld, every nonzero element is a unit. In fact, the �eld axiom [F] says that a commutative
ring with 1 6= 0 is a �eld if and only if every nonzero element is a unit.

◦ Example: In the ring of polynomials R[x], the units are the nonzero constant polynomials. To see this,
observe that all of the nonzero constants are units, and that a nonconstant polynomial p(x) cannot satisfy
p(x) · q(x) = 1 by degree considerations: if q(x) is zero then so is the product, and otherwise, the degree
of the product is at least the degree of p(x).

◦ Example: In the ring of Gaussian integers Z[i], the units are 1, −1, i, and −i. This can be seen as follows:
suppose that a + bi is a unit, with (a + bi)(c + di) = 1. Applying the norm map N(a + bi) = a2 + b2

to both sides yields (a2 + b2)(c2 + d2) = 1. Now, both of these quantities are nonnegative integers, so
it must be the case that a2 + b2 = c2 + d2 = 1. But the only integral solutions to this equation are
(a, b) = (±1, 0) and (0,±1), meaning that the only units are ±1 and ±i.
◦ Example: In the ring Z[

√
2], the integers 1 and −1 are units, but the element

√
2 + 1 is also a unit,

because (
√
2+1) · (

√
2− 1) = 1. This observation implies that any power of

√
2+1 is a unit in this ring,

since its inverse is the corresponding power of
√
2− 1. Therefore, Z[

√
2] has in�nitely many units, unlike

Z[i] which has only 4 units. Note that Z[
√
2] is not a �eld, however, because

√
2 is not a unit.

• Here are a few basic properties of units in general rings:

• Proposition (Units): Let R be a ring with 1 6= 0. Inside R, the multiplicative inverse of a unit is unique, the
product of two units is a unit, and the multiplicative inverse of a unit is also a unit.

◦ Proof: For uniqueness, if a is a unit with ab = 1 and also ac = 1, then b = b(ac) = (ba)c = c.

◦ For the second statement, if a is a unit with ab = 1 = ba, then by de�nition b is also a unit.

◦ For the last statement, if c is another unit with cd = 1 = dc, then (ac)(db) = a(cd)b = a1b = ab = 1 and
likewise (db)(ac) = 1 as well, so the inverse of ac is db.

◦ Remark (for those who like group theory): Together with the observation that 1 is a unit, the second
and third statements imply that the set of units R× forms a group under multiplication. (For this reason
R× is usually called the �group of units� of the ring R.)

• We can also generalize the observations about units in Z[i] and Z[
√
2].

• Proposition (Units in Z[
√
D]): For a �xed D, an element r in the ring Z[

√
D] is a unit if and only if N(r) = ±1.

◦ Proof: Suppose r = a+ b
√
D and note that N(r) = a2 −Db2 = r · (a− b

√
D).

◦ If N(r) = ±1, then we see that r · (a− b
√
D) = ±1, so (by multiplying by −1 if necessary) we see that

±(a− b
√
D) is a multiplicative inverse for r.

◦ Conversely, suppose r is a unit and rs = 1. Taking norms yields N(rs) = N(r)N(s) = 1. Since N(r)
and N(s) are both integers, we see that N(r) must either be 1 or −1.

• Example: Determine whether
√
3, 1 +

√
3, and 2 +

√
3 are units in Z[

√
3].

◦ Note N(
√
3) =

√
3 ·
√
3 = 3, N(1+

√
3) = (1+

√
3)(1−

√
3) = −2 and N(2+

√
3) = (2+

√
3)(2−

√
3) = 1.

◦ So
√
3 and 1 +

√
3 are not units , while 2 +

√
3 is a unit .

• One of our main goals is to study properties of arithmetic (units, divisibility, common divisors, primes, and
unique factorization) in other rings like Z[i] and F [x], which we will develop much more in later chapters.

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2014-2026. You may not reproduce or distribute this
material without my express permission.

18


