Math 3527 (Number Theory 1)
Lecture #8 of 38 ~ January 26, 2026

Residue Classes + Modular Arithmetic
@ Residue Classes Modulo m
@ Modular Arithmetic
e Units in Z/mZ

This material represents §2.1.2-§2.1.4 from the course notes.




Recall, |

Recall our discussion of congruences last week:

Definition

If m is a modulus, we say a = b (modulo m) when m divides b — a.

Proposition (Properties of Congruences)

For any modulus m > 0 and any integers a, b, c, d, we have

1. a=a (mod m).

2. a= b (mod m) if and only if b= a (mod m).

3. Ifa=b (mod m) and b= c (mod m), then a= c (mod m).

4. Ifa=b (mod m) and c = d (mod m), thena+c=b+d
(mod m).

5. Ifa=b (mod m) and c = d (mod m), then ac = bd (mod
m).




Recall, 11

We also introduced residue classes:

Definition

If a is an integer, the residue class of a modulo m is the set

a={beZ:a= b(mod m)} of integers congruent to a modulo m.

o More explicitly,
a={...,a—3ma—-2mya—m,a,a+m,a+2m,a+3m,...}.

@ It is very important to remember that residue classes are sets
of integers: they are not themselves numbers. (Yet.)



Examples

Here are some examples of residue classes for different moduli m:

@ The residue class of 2 modulo 4 is the set
{...,—6,-2,2,6,10,14,...}.
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{...,—6,—4,-2,0,2,4,6,8,...} of even integers.
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@ The residue class of 2 modulo 4 is the set
{...,—6,-2,2,6,10,14,...}.

@ The residue class of 2 modulo 5 is the set
{...,—8,-3,2,7,12,17,... }.
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@ The residue class of 1 modulo 2 is the set
{...,—5,-3,-1,1,3,5,7,9,... } of odd integers.



Examples

Here are some examples of residue classes for different moduli m:

@ The residue class of 2 modulo 4 is the set
{...,—6,-2,2,6,10,14,...}.

@ The residue class of 2 modulo 5 is the set
{...,—8,-3,2,7,12,17,... }.

@ The residue class of 11 modulo 19 is the set
{..., =27, -8,11, 30, 49, 68, , ... }.

@ The residue class of 0 modulo 2 is the set
{...,—6,—4,-2,0,2,4,6,8,...} of even integers.

@ The residue class of 1 modulo 2 is the set
{...,—5,-3,-1,1,3,5,7,9,... } of odd integers.

@ More generally, the residue class of 0 modulo m is the set
{...,=3m,—=2m, —m,0, m,2m,3m, ...} of multiples of m.



Examples Mod 3

Last time, we identified three different residue classes modulo 3:

e Zeroth, 0 ={...,—-9,-6,-3,0,3,6,9,12,15,...}.

e First, 1=1{...,—-11,-8,-5,-2,1,4,7,10,13,... }.

@ Second, 2 =1{...,-10,—7,—4,-1,2,5,8,11,14,...}.
If you write out other residue classes modulo 3, you'll discover they
just end up duplicating one of these three:



Examples Mod 3

Last time, we identified three different residue classes modulo 3:
e Zeroth, 0 ={...,—-9,-6,-3,0,3,6,9,12,15,...}.
e First, 1=1{...,—-11,-8,-5,-2,1,4,7,10,13,... }.
@ Second, 2 =1{...,-10,—7,—4,-1,2,5,8,11,14,...}.
If you write out other residue classes modulo 3, you'll discover they
just end up duplicating one of these three:
e Try4={...,-11,-8,-5,-2,1,4,7,10,13,...} = 1.
e Or5={...,-10,-7,-4,-1,2/58,11,14,...} =2.
e Or10=1{...,—-11,-8,-5,-2,1,4,7,10,13,...} = 1 also.
It seems that there are really only three different residue classes

modulo 3, each of which has many different names. What pattern
do the names have?



Properties of Residue Classes, |

Let's prove some properties of residue classes:

Proposition (Properties of Residue Classes)

Let m > 0 be a modulus. Then

1. If a and b are integers with respective residue classes a, b
modulo m, then a = b (mod m) if and only if 3 = b.

2. Two residue classes modulo m are either disjoint or identical.

3. There are exactly m distinct residue classes modulo m, given
byﬁ, 1,..., m—1.




Properties of Residue Classes: |l

L. If a and b are integers with respective residue classes 3, b
modulo m, then a = b (mod m) if and only if 3 = b.

Let's strategize first.

@ Note that this is an if-and-only-if statement, so we rleed to
prove both directions: “if a= b (mod m) then 3 = b" and

the converse “if 3 = b then a = b (mod m)".
o Note also that the statement @ = b is an equality of sets.
@ To show that, we need to show each set is a subset of the
other.



Properties of Residue Classes; IlI

1. If a and b are integers with respective residue classes 3, b
modulo m, then a = b (mod m) if and only if 3 = b.
Proof: [Forward] If a = b (mod m) then 2 = b.
@ So, suppose a = b (mod m). [Goal: Show that a C b.]

@ So suppose x € a, which is to say, x = a (mod m).
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1. If a and b are integers with respective residue classes 3, b
modulo m, then a = b (mod m) if and only if 3 = b.
Proof: [Forward] If a = b (mod m) then 2 = b.
@ So, suppose a = b (mod m). [Goal: Show that a C b.]
@ So suppose x € a, which is to say, x = a (mod m).

@ Now because x = a (mod m) and a = b (mod m), by our
properties of congruences we can conclude that x = b (mod
m), and therefore x € b as claimed.
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1. If a and b are integers with respective residue classes 3, b
modulo m, then a = b (mod m) if and only if 3 = b.
Proof: [Forward] If a = b (mod m) then 2 = b.
@ So, suppose a = b (mod m). [Goal: Show that a C b.]
@ So suppose x € a, which is to say, x = a (mod m).

@ Now because x = a (mod m) and a = b (mod m), by our
properties of congruences we can conclude that x = b (mod
m), and therefore x € b as claimed.

@ We still have to show that b C 3. In fact, the argument is
exactly the same, just with a and b swapped. (Write it out if
you like!)



Properties of Residue Classes. 1V

1. If a and b are integers with respective residue classes 3, b
modulo m, then a = b (mod m) if and only if 3 = b.

Proof: [Reverse] If 3 = b then a = b (mod m).

e Now suppose a3 = b.



Properties of Residue Classes. 1V

1. If a and b are integers with respective residue classes 3, b

modulo m, then a = b (mod m) if and only if 3 = b.

Proof: [Reverse] If 2= b then a= b (mod m).
e Now suppose a3 = b.
@ Since a € 3, by definition, that means a € b too.
e But b is just the set of integers congruent to b modulo m.
o

So that means a is congruent to b modulo m, as desired.



Properties of Residue Classes! V

2. Two residue classes modulo m are either disjoint or identical.

Proof:
@ Suppose that @ and b are residue classes modulo m.

o If 3N b = () then we are immediately done, so suppose aN b is
nonempty. [To show: 2 = b.]
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2. Two residue classes modulo m are either disjoint or identical.

Proof:
@ Suppose that @ and b are residue classes modulo m.
e If aN b = () then we are immediately done, so suppose an b is
nonempty. [To show: 2 = b.]
@ Since 3N b is nonempty, the intersection contains some
element x.

e Since x € 3 that means a = x (mod m), and since x € b that
means b = x (mod m).

@ So by congruence properties, we see that a = b (mod m).
@ But now, by (1) from earlier, that implies 3 = b, as desired.



Properties of Residue Classes? VII

3. There are exactly m distinct residue classes modulo m, given
by 0,1,... , m—1.

Proof:

@ Notice that these are the possible remainders when we divide
an integer by m.
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3.

There are exactly m distinct residue classes modulo m, given
by 0,1,... , m—1.

Proof:

Notice that these are the possible remainders when we divide
an integer by m.

So: by the division algorithm, for any integer a there exists a
unique r with 0 < r < m such that a = gm + r with g € Z.
But now a = gm + r tells us that a = r (mod m), which by
(1) saysa=T.

But the possible values of r are the m integers O, 1, ... ,

m — 1, and r is unique.

Thus, any residue class @ modulo m is equal to precisely one
of the residue classes 0, 1, ... , m— 1, as claimed!



Properties of Residue Classes — VIII

Definition

The collection of residue classes modulo m is denoted 7./ mZ (read
as 'Z modulo mZ").

@ Remark: Many other authors denote this collection of residue
classes modulo m as Z,,.1 We will avoid this notation and
exclusively use Z/mZ (or its shorthand Z/m), since Zp, is used
elsewhere in algebra and number theory for a different object.

@ By the properties we just proved, Z/mZ contains exactly m
elements: namely, 0, 1, ... , m — 1.

!Feel free, if you see other people writing the integers modulo m this way,
to tell them that I, Prof. Dummit, specifically said you should tell them they're
using the wrong notation.



Arithmetic With Residue Classes, |

Our goal now is to describe how to define arithmetic operations on
the residue classes modulo m.

Definition

The addition operation in ZZ/mZ is defined asa+ b = a+ b, and
the multiplication operation is defined as a- b = ab.

o Notationally, the operations look very natural: we just add (or
multiply) the corresponding numbers under the bars.

@ But the notation is hiding a lot of complexity: remember, 3 is
a set, not a number.



Arithmetic With Residue Classes, Il

Let's illustrate with an example: take modulus m = 4, so that our
residue classes are 0, 1, 2, and 3.
@ The definition on the last slide says, for example, that we
should define 1+ 1 = 2. Seems reasonable, right?
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Let's illustrate with an example: take modulus m = 4, so that our
residue classes are 0, 1, 2, and 3.

@ The definition on the last slide says, for example, that we
should define 1+ 1 = 2. Seems reasonable, right?

o Okay, so then what should 1+ 3 be? By definition, that's... 4.

@ But 4 isn't one of our residue classes.



Arithmetic With Residue Classes, Il

Let's illustrate with an example: take modulus m = 4, so that our
residue classes are 0, 1, 2, and 3.

@ The definition on the last slide says, for example, that we
should define 1+ 1 = 2. Seems reasonable, right?

o Okay, so then what should 1+ 3 be? By definition, that's... 4.
@ But 4 isn't one of our residue classes.

o Except, yes, it actually is, because it's just O by another name.
So we have 1 +3 =0.



Arithmetic With Residue Classes, Il

Let's continue with m = 4 and residue classes 0, 1, 2, and 3.
@ We just decided that 1+ 3 = 0.

e Okay, now: what is 5 + 117 (Remember, these are perfectly
good residue classes modulo 4!)



Arithmetic With Residue Classes, Il

Let's continue with m = 4 and residue classes 0, 1, 2, and 3.
@ We just decided that 1+ 3 = 0.

e Okay, now: what is 5 + 117 (Remember, these are perfectly
good residue classes modulo 4!)

@ The definition says the sum should be 16.

@ But wait: 5 is equal to 1, and 3 is equal to 11. So the sum
5+ 11 is just the sum 1+ 3 in disguise.

@ But that means the result should come out the same, namely,
0. Does it?



Arithmetic With Residue Classes, Il

Let's continue with m = 4 and residue classes 0, 1, 2, and 3.
@ We just decided that 1+ 3 = 0.

e Okay, now: what is 5 + 117 (Remember, these are perfectly
good residue classes modulo 4!)

@ The definition says the sum should be 16.

@ But wait: 5 is equal to 1, and 3 is equal to 11. So the sum
54 11 is just the sum 1+ 3 in disguise.

@ But that means the result should come out the same, namely,
0. Does it?

@ Yes, luckily for us, 16 is also just another name for 0, so
everything is still okay.



Arithmetic With Residue Classes, 1V

To illustrate, compare to what happens if we just take some
random sets of integers, instead of residue classes.
@ Suppose for example we have sets
A={...,1,3,5,6,9,...}
B={...,0,4,7,10,12,...}
c={..,2811,13,...}
and we define 3 to be the set (A, B, or C) that a is an
element of. Then for example 1 = A while 2 = C.
Now suppose we try to “define” a+ b =a+ b.



Arithmetic With Residue Classes, 1V

To illustrate, compare to what happens if we just take some
random sets of integers, instead of residue classes.

@ Suppose for example we have sets
A={...,1,3,5,6,9,...}
B={...,0,4,7,10,12,...}
c={..,2811,13,...}
and we define 3 to be the set (A, B, or C) that a is an
element of. Then for example 1 = A while 2 = C.

Now suppose we try to “define” a+ b =a+ b.

@ For example, we would have 1 +3 =4, and also 1 +5 = 6.

@ But in terms of the sets, these are contradictory statements,
since they say A+ A= B and A+ A = A respectively.

@ This is very bad, because it means the operations don't make
any sense!



Arithmetic With Residue Classes, V

Luckily for us, we will never run into this problem using the
addition and multiplication operations on residue classes. But we
need to justify that fact!

@ We need to show that our addition and multiplication
operations on residue classes are “well defined”: that the
definitions make sense and are unambiguous.

@ Otherwise, we haven't given a valid definition.

The potential ambiguity in our definition comes from the fact that
each residue class has many different names: we need to show that
no matter which name we use, the result comes out the same.



Arithmetic With Residue Classes, VI

The key properties that make everything work are that a = b (mod
m) and ¢ = d (mod m) imply a+ ¢ = b+ d (mod m) and
ac = bd (mod m).
@ Why? Imagine we want to compute 3@ 4 ¢ modulo m.
@ No matter which element b in the residue class of a and which
element d in the residue class of ¢ we take, the properties

above dictate that the sum b+ d will lie in the same residue
class as a + ¢, and the product bd will lie in the same residue

class as ac.
@ So we never have to worry about an “inconsistency” .

Let's formalize all of this.



Arithmetic With Residue Classes, VII

Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a+ b= a+ b and a- b = ab are well defined on the set
Z/mZ of residue classes modulo m.
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Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a+ b= a+ b and a- b = ab are well defined on the set
Z/mZ of residue classes modulo m.

Proof:
o First, consider the task of computing a + ¢.
o If b=13aand d = ¢, then we need to verify b+ d has the
same definition as 3 + €.



Arithmetic With Residue Classes, VII

Proposition (Modular Arithmetic, Part 1)

Let m be a modulus. Then the addition and multiplication
operations a+ b= a+ b and a- b = ab are well defined on the set
Z/mZ of residue classes modulo m.

Proof:
o First, consider the task of computing a + ¢.
o If b=13aand d = ¢, then we need to verify b+ d has the
same definition as 3 + €.
@ By our properties, these say a = b and ¢ = d (mod m) which
imply a+ c= b+ d (mod m), hence a+ c = b +d.
o Butsincea+c=a+ cand b+d = b+ d, the results agree!
@ So addition is well defined. The same argument works for
multiplication.
Now we can actually do arithmetic with residue classes!



Modular Arithmetic — |

Let's do a few examples of calculations modulo 6. Our residue

classes are 0, 1, 2, 3, 4, 5.
@ What is 2 + 37



Modular Arithmetic — |

Let's do a few examples of calculations modulo 6. Our residue

classes are 0, 1, 2, 3, 4, 5.
@ What is 2 + 3?7 Just add: it's 5.
o What is 2447



Modular Arithmetic — |

Let's do a few examples of calculations modulo 6. Our residue

classes are 0, 1, 2, 3, 4, 5.
@ What is 2 4+ 3? Just add: it's 5.
e What is 2 +4? Adding gives 2+4 = 6. And remember, 6 = 0.
@ So we have 2+ 4 = 0.
e What is 2-2?
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Let's do a few examples of calculations modulo 6. Our residue

classes are 0, 1, 2, 3, 4, 5.
@ What is 2 4+ 3? Just add: it's 5.
e What is 2 +4? Adding gives 2+4 = 6. And remember, 6 = 0.
@ So we have 2+ 4 = 0.
e What is 227 Just multiply: it's 4.
e What is 4-57



Modular Arithmetic — |

Let's do a few examples of calculations modulo 6. Our residue

classes are 0, 1, 2, 3, 4, 5.
@ What is 2 4+ 3? Just add: it's 5.
e What is 2 +4? Adding gives 2+4 = 6. And remember, 6 = 0.
@ So we have 2+ 4 = 0.
e What is 227 Just multiply: it's 4.
@ What is 4 - 57 Multiplying gives 4 - 5 = 20, and remember,
20 = 2, because 2 is the remainder when we divide 20 by 6.
@ So we have 4-5 = 2.

In fact, because there are only six different residue classes to add
and multiply, we can just write out the entire addition and
multiplication tables modulo 6.



Modular Arithmetic — Il

Here's the addition table modulo 6:

+]10/1/2/3/4|5
0/0/1|2(3/4/5
1123450
2123|4501
3/3/4/5/0/1)2
414/5/0(1/2/3
5/5/0(1(2/3)4




Modular Arithmetic — Il

Here's the multiplication table modulo 6:

1012|345
0jojoj0|0|0|0O
1/0/1(2/3|4|5
2(0(2/4|0/2 4
3/0/3/0/3|0|3
4/0/4/2/0/4 2
5/0/5/4/3|2|1
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Here are the two tables modulo 5:




Modular Arithmetic

In general, how can we fill in these tables efficiently? (Imagine that
you had some homework problems asking you to fill in these kinds
of tables....)

@ The idea is just to replace the result of each calculation with
its remainder when we divide by m. (We usually call that
“reducing modulo m".)

@ The reason this works is because if a=gm+ r then a=r
(mod m) and therefore a = 7.

@ So, for example, to find 7 - 11 (mod 20), we compute
7-11 = 77 and then reduce modulo 20: since
77 = 3-20 + 17, the remainder is 17, s0 7 - 11 = 77 = 17.



Modular Arithmetic ————

In fact, arithmetic modulo m is commonly described by ignoring
residue classes entirely and only working with the integers 0
through m — 1, with the result of every computation “reduced
modulo m” to obtain a result lying in this range.

@ So why don't we just do it that way? Many reasons.



Modular Arithmetic ————

In fact, arithmetic modulo m is commonly described by ignoring
residue classes entirely and only working with the integers 0
through m — 1, with the result of every computation “reduced
modulo m” to obtain a result lying in this range.

@ So why don't we just do it that way? Many reasons.
o First, it's cumbersome and inelegant.

@ Second, many basic properties of arithmetic are no longer
true, or (at least) have to be modified substantially.

@ Third, this approach doesn't generalize very well to other
settings of interest. And so, once you enter those settings, you
have to redo everything again (properly) with residue classes.

@ And finally, residue classes extend quite well to more general
settings where we may not have such an obvious set of
“representatives” for the classes like 0, 1, ... , m— 1.



Modular Arithmetic

In many programming languages “a mod m”, frequently denoted
“a%m", is defined to be a function returning the corresponding
remainder in the interval [0, m — 1].
e With this definition, it is not true that
(a+ b)%m = (a%m) + (b%m), nor is it true that
ab%m = (a%m) - (b%m).



Modular Arithmetic

In many programming languages “a mod m”, frequently denoted
“a%m", is defined to be a function returning the corresponding
remainder in the interval [0, m — 1].
e With this definition, it is not true that
(a+ b)%m = (a%m) + (b%m), nor is it true that
ab%m = (a%m) - (b%m).
@ The reason is that because the sum and product may each
exceed m, we may have to reduce again at the end.
@ To obtain actually true statements, one needs to write
something like ab%m = [(a%m) - (b%m)]%m. (Ugh.)
That's why the best viewpoint is to work with residue classes: then
the statement @ - b = ab is perfectly acceptable.
@ It is also good to get used to thinking about equalities of
residue classes directly, rather than falling back to the idea of
reducing all terms to their residues {0,1,...,m —1}.



Z/mZ Is A Ring, |

These addition and multiplication operations make Z/mZ into a
commutative ring with 1:

Proposition (Modular Arithmetic, Part 2)

For any modulus m and any residue classes a, b, €, we have
[R1] + is associative: 3+ (b+ <) = (a+ b) +<.

[R2] + is commutative: 3+ b= b+ a.

[R3] O is an additive identity: a+ 0 = a.

[R4] 3 has an additive inverse —a with a+ (—3) = 0.

[R5] - is associative: a-(b-¢)=(a-b)-¢

[R6] - is commutative: a-b=b-3

[R7] - distributes over +: a- (b + c) a-b+a-c.
[R8] 1 is a multiplicative identity: 1-a =




Z/mZ ls A Ring, Il

The proofs are all very similar so I'll just do [R1].
[R1] + is associative: a+ (b+7¢) = (a+ b) +¢.



Z/mZ ls A Ring, Il

The proofs are all very similar so I'll just do [R1].
[R1] + is associative: a+ (b+7¢) = (a+ b) +¢.
Proof:

o By definition of residue class addition, we have
a+(bt+c)=a+b+tc=a+(b+c)andalso
(@+b)+c=atb+c=(atb)+c




Z/mZ ls A Ring, Il

The proofs are all very similar so I'll just do [R1].
[R1] + is associative: a+ (b+7¢) = (a+ b) +¢.
Proof:

@ By definition of residue class addition, we have
a+(b+c)=a+b+c=a+(b+c)andalso
(@+b)+c=a+b+c=(ath)+c

e But a+ (b+ ¢) = (a+ b) + ¢ by the associative property [I1]
of the integers.

@ Thus, the associated residue classes a + (b + ¢) and
(a+ b) + c are also equal.
The other properties [R2]-[R8] follow in a very similar way from the
analogous properties [I2]-[I8] of the integers.



Units in Z/mZ, |

Last lecture we also introduced the notion of a unit in a
commutative ring with 1, which is simply an element r with a
multiplicative inverse r~1, where r- r~ =1 =r"1.r. Naturally,
some residue classes are units.

e Example: With modulus m = 10, observe that 3-7 =21 =1
so 3 and 7 are multiplicative inverses modulo 10.
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Last lecture we also introduced the notion of a unit in a
commutative ring with 1, which is simply an element r with a
multiplicative inverse r~1, where r- r~ =1 =r"1.r. Naturally,
some residue classes are units.

e Example: With modulus m = 10, observe that 3-7 = 21
so 3 and 7 are multiplicative inverses modulo 10.

e Example: With modulus m = 9, observe that 2-5 = 10
so 2 and 5 are multiplicative inverses modulo 9.

o
Il
|



Units in Z/mZ, |

Last lecture we also introduced the notion of a unit in a
commutative ring with 1, which is simply an element r with a
multiplicative inverse r~1, where r- r~ =1 =r"1.r. Naturally,
some residue classes are units.

e Example: With modulus m = 10, observe that 3-7 =21 =1
so 3 and 7 are multiplicative inverses modulo 10.

e Example: With modulus m = 9, observe that 2-5=10=1
so 2 and 5 are multiplicative inverses modulo 9.

We can identify the invertible residue classes modulo m using the

multiplication table: simply check the row for a to see if it has an

entry 1 in it. If it does, then the corresponding column label is the
inverse 37!, sincea!-a=1.



Units in Z/mZ, Il

Which residue classes are units modulo 6, and what are their

inverses?
-10[1]2|3|4|5
ojofojofo|0]|0
110[1/2(3]|4|5
2110(24(0|2|4
3/0(3/0(3/0|3
41042042
5/0(5[4[3/2]1




Units in Z/mZ, Il

Which residue classes are units modulo 6, and what are their

inverses?
-10[1]2|3|4|5
ojofojofo|0]|0
110[1/2(3]|4|5
2110(24(0|2|4
3/0(3/0(3/0|3
41042042
5/0(5[4[3/2]1

We can see that only 1 and 5

are invertible, and each one is its
own inverse: 1-1=1and5-5=

T



Units in Z/mZ, 1l

Which residue classes are units modulo 5, and what are their
inverses?
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Units in Z/mZ, 1l

Which residue classes are units modulo 5, and what are their
inverses?
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We can see that all of 1, 2, 3, and 4 are invertible: specifically,
1-1=1,2-3=1,and4-4=1.

So 1 and 4 are their own inverses, while 2 and 3 are each other’s
inverses.



Units in Z/mZ, IV

Here's a table of some more invertible residue classes and their
inverses for small moduli m:

Modulus || Invertible residue classes, and their inverses

m=2 [|[T'=1

m=3 [|[T'=1,2"=2

m=4 [T '=1,3"'=3

m=5 |1 =12 =33 =24 =4

m=6 |1 '=15"'=5

m=9 |[T'=1,2"'=54"'=7,5 ' =27"'=48"'=8
m=10 || T '=1,3"'=77"'=3,9"'=0

(7, 8 are skipped because they're on the HW.) See any patterns?



Units in Z/mZ, V

Here's a table of the invertible and non-invertible residue classes
for small moduli m:

Modulus Invertible Non-Invertible
m=?2 1 0
m=3 1,2 0
m=14 1,3 0,2
m=25 1,2 3,4 0
m==6 1,5 0,23, 4
m=9 | 1,2,45,7 8 0,3,6
m =10 1,3,7,9 0,2,4,56,8

Can you identify a rule for when a residue class is invertible?



Units in Z/mZ, V

Here's a table of the invertible and non-invertible residue classes
for small moduli m:

Modulus Invertible Non-Invertible
m=?2 1 0
m=3 1,2 0
m=14 1,3 0,2
m=25 1,2 3,4 0
m==6 1,5 0,23, 4
m=9 | 1,2,45,7 8 0,3,6
m =10 1,3,7,9 0,2,4,56,8

Can you identify a rule for when a residue class is invertible?
It seems like the invertible residue classes are the ones relatively
prime to the modulus.



Units in Z/mZ, VI

In fact, this is true:

Proposition (Invertible Elements Modulo m)

If m is a modulus, then the residue class a is a unit in Z/mZ,
meaning that there exists some residue class X with X -3 = 1, if
and only if a and m are relatively prime.

We will prove this result next time.
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In fact, this is true:

Proposition (Invertible Elements Modulo m)

If m is a modulus, then the residue class a is a unit in Z/mZ,
meaning that there exists some residue class X with X -3 = 1, if
and only if a and m are relatively prime.

We will prove this result next time. But here is a nice corollary:

The ring 7./ pZ is a field if and only if p is a prime number. \

Proof (of corollary): By definition, Z/pZ is a field if and only if
every nonzero residue class is a unit. By the proposition, that
occurs if and only if each of 1,2,..., p — 1 are relatively prime to
p. But this is readily seen to be equivalent to saying p is prime.




Summary

We described the addition and multiplication operations on residue
classes, and showed that they are well defined.

We discussed the ring structure of Z/mZ.

We discussed units in Z/mZ.

Next lecture: More units, zero divisors, and powers in Z/mZ.



