
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2026 ∼ Homework 2 Solutions

1. Find the following:

(a) The gcd and lcm of 288 and 600.

• From the Euclidean algorithm we �nd gcd(288, 600) = 24 . Then lcm(288, 600) = 288 · 600/24 =

7200 .

(b) The prime factorizations of 2025 and 2026. (You may want to use a calculator for these!)

• Using trial division or a computer we can �nd 2025 = 3452 and 2026 = 2 · 1013 .

(c) The prime factorizations of 20252026 and 20262025.

• Using (b) we see 20252026 = 3810454052 and 20262025 = 2202510132025 .

(d) The prime factorizations of 111, 1001, and 111111.

• Using trial division we can �nd 111 = 3 · 37 and 1001 = 7 · 11 · 13 .

• Then 111111 = 111 · 1001 = 3 · 7 · 11 · 13 · 37 .

(e) The gcd and lcm of 283115778112 and 243857771111.

• From the prime factorizations, the gcd is 24385777112 (take the minimum of the two exponents)

and the lcm is 2831157781111 (take the maximum of the two exponents).

(f) The prime factorization of 12! and the number of positive divisors of 12!.

• Noting 12! = 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10 · 11 · 12, the primes appearing are 2, 3, 5, 7, 11.

• Counting powers of each prime yields 15! = 21035527 · 11 .

• By the number-of-divisors formula, the number of divisors is (1 + 10)(1 + 5)(1 + 2)(1 + 1)(1 + 1) =

11 · 6 · 3 · 2 · 2 = 792 .

(g) The number of divisors and the sum of divisors of 10000.

• Since 10000 = 2454 we see it has (4 + 1)(4 + 1) = 25 divisors, and the sum of divisors is (1 + 2 +

22 + 23 + 24)(1 + 5 + 52 + 53 + 54) = 24211 .

2. It is sometimes claimed (occasionally in actual textbooks) that if p1, p2, . . . , pk are the �rst k primes, then the
number n = p1p2 · · · pk + 1 used in Euclid's proof is always prime for any k ≥ 1. Find a counterexample to
this statement; make sure to justify that it is actually a counterexample.

• Although 2 · 3 + 1 = 7, 2 · 3 · 5 + 1 = 31, 2 · 3 · 5 · 7 + 1 = 211, and 2 · 3 · 5 · 7 · 11 + 1 = 2311 are all prime,
2 · 3 · 5 · 7 · 11 · 13 + 1 = 30031 is not, since 30031 = 59 · 509.

3. Find examples of the following things:

(a) Four di�erent pairs of positive integers (a, b) with a ≤ b such that gcd(a, b) = 30 and lcm(a, b) = 1800.

• Since gcd(a, b) = 30 we see that a = 30a′ and b = 30b′ for some relatively prime integers a′ and b′.

• Then lcm(a, b) = lcm(30a′, 30b′) = 30lcm(a′, b′) = 30a′b′ because a′, b′ are relatively prime, so this
gives 30a′b′ = 1800 hence a′b′ = 60. So we must simply �nd pairs of relatively integers (a′, b′) with
a′ ≤ b′ such that a′b′ = 60. Using the prime factorization 60 = 22 ·3 ·5 we see that each prime power
is taken fully by one factor or by the other, so there are four possible choices for (a′, b′), namely
(5, 12), (4, 15), (3, 20), (1, 60).

• This yields the pairs (a, b) = (150, 360), (30, 450), (90, 600), (30, 1800) .
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(b) A positive integer n such that n/2 is a perfect square and n/3 is a perfect cube.

• If n = 2a3b then we want 2a−13b to be a square, so both exponents are even, and 2a3b−1 to be a
cube, so both exponents are multiples of 3.

• Testing small possibilities shows that a = 3, b = 4 satis�es all the requirements, so n = 2334 = 648
works. (In fact, it is the smallest example.)

(c) A positive integer n such that n, n + 1, n + 2, n + 3, n + 4, and n + 5 all have more than one distinct
prime factor.

• We want six consecutive integers that are all composite (and also not prime powers).

• The smallest primes are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
89, 97.

• The �rst gap of six consecutive integers is 90 through 96. Since 90, 91, 92, 93, 94, 95, 96 all have
more than one prime factor, we can take n = 91 .

• There are many additional larger options, as well.

(d) An integer that is a multiple of 15 that has exactly 15 positive divisors.

• By the number-of-divisors formula we see that an integer with 15 divisors is either a 14th power of a
prime, or is a square of a prime times a fourth power of a prime, since the only possible factorizations
are 15 = 15 or 15 = 3 · 5.
• But a multiple of 15 has factors of both 3 and 5, so the only options are to take 3254 = 2025 or

3452 = 5625 .

4. Let n be a positive integer greater than 1.

(a) Show that if n is composite, then n must have at least one divisor d with 1 < d ≤
√
n. Deduce that if n

is composite, then n has at least one prime divisor p ≤
√
n. [Hint: Write n = ab where 1 < a ≤ b < n.]

• Since n is composite, we can write n = ab for some 1 < a ≤ b < n.

• Then we see that a2 ≤ ab = n, and so a ≤
√
n. Thus, n has a divisor (namely a) that is ≤

√
n as

claimed.

• For the second statement, simply let p be any prime divisor of a: then 1 < p ≤ a ≤
√
n, and p

divides a hence n. Thus, n has a prime divisor ≤
√
n.

(b) Show that if no prime less than or equal to
√
n divides n, then n is prime.

• This is simply the contrapositive of the second statement in part (a): if n has no prime divisor
p ≤
√
n then n is not composite (i.e., n is prime).

(c) Show explicitly that n = 109 and n = 251 are prime by verifying that they are not divisible by any prime
≤
√
n.

• Note that
√
109 <

√
121 = 11, so for 109 we only have to check the primes 2,3,5,7. But since

109 = 54 · 2+1 = 36 · 3+1 = 21 · 5+4 = 15 · 7+4 we see that none of the primes 2,3,5,7 divide 109,
so 109 is prime.

• Likewise, since
√
251 <

√
256 = 16, for 251 we only have to check the primes 2,3,5,7,11,13. Since

251 = 2 · 125 + 1 = 3 · 83 + 2 = 50 · 5 + 1 = 35 · 7 + 6 = 22 · 11 + 9 = 19 · 13 + 4, none of these primes
divide 251, so 251 is prime.
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5. Recall that the factorial of n is de�ned as n! = n · (n− 1) · · · · · 1, so for example 4! = 4 · 3 · 2 · 1 = 24. (Note
that 0! is de�ned to be 1.)

(a) If n ≥ 3, show that the integers n! + 2, n! + 3, ... , n! + n are all composite.

• Notice that for any 2 ≤ k ≤ n, we have k appearing as a factor in n!, and so n! + k = k · [1 · 2 · · · (k−
1) · (k + 1) · · ·n+ 1].

• Since the term k and the remaining term 1 · 2 · · · (k − 1) · (k + 1) · · ·n + 1 are both greater than 1,
this gives an explicit factorization of n! + k, so it is composite as claimed.

(b) Suppose we list the primes in increasing order: p1 < p2 < p3 < · · · , so, for instance, p5 = 11. For
an arbitrary positive integer n, show that there is some pair of consecutive primes pk, pk+1 such that
pk+1 − pk ≥ n: in other words, that there exists a �prime gap� of size at least n.

• By (a), none of the n− 1 numbers n! + 2, n! + 3, ... , n! + n is prime. So if pk is the largest prime
below n!+2 and pk+1 is the smallest prime above n!+n, then pk+1−pk ≥ (n!+n+1)− (n!+1) = n,
as required.

Remark: Part (b) shows that there are arbitrarily large prime gaps. The smallest possible prime gap that
could occur in�nitely often is 2, and the twin prime conjecture says that there are in�nitely many pairs
of consecutive primes that di�er by 2.

6. The goal of this problem is to study which numbers of the form N = ak − 1 can be prime, where a and k are
positive integers greater than 1.

(a) Show that if a > 2, then N = ak − 1 is not prime.

• By factoring, we see N = ak − 1 has N = (a− 1)(ak−1 + ak−2 + · · ·+ a+ 1).

• Since a > 1, both factors are greater than 1, so N is composite.

(b) Show that if k is composite, then N = 2k − 1 is not prime. [Hint: If k = rs, show N is divisible by
2r − 1.]

• By factoring, we see (2r)s − 1 = (2r − 1)(2r(s−1) + 2r(s−2) + · · ·+ 2r + 1).

• Again since r, s > 1 we see that both factors are greater than 1, so N is composite.

(c) Deduce that the only possible primes of the form N = ak − 1 are those of the form 2p − 1 where p is
a prime. (Such primes are called Mersenne primes.) Are all the numbers of the form 2p − 1 (p prime)
actually prime?

• The �rst part follows from parts (a) and (b), since ak − 1 is composite if a 6= 2 and k is nonprime.

• However, not all numbers of the form 2p−1 with p prime are prime: although 23−1 = 7, 25−1 = 31,
and 27 − 1 = 127 are prime, we have 211 − 1 = 23 · 89, so 2p − 1 is not always prime even when p is
prime.

Remark: Mersenne primes can be used to construct perfect numbers, as described in problem 7.

7. Recall that if N is a positive integer, then σ(N) denotes the sum of the positive divisors of N . We say that
N is a perfect number when σ(N) = 2N : this is often phrased as �the sum of all of the proper divisors of N
equals N itself�.

(a) Show that if 2n+1 − 1 is a prime number, then the number N = 2n(2n+1 − 1) is perfect.

• If 2n+1 − 1 is prime, then by the formula for the sum of divisors, with N = 2n(2n+1 − 1) we have
σ(N) = (1 + 2 + · · ·+ 2n)(1 + 2n+1 − 1) = (2n+1 − 1)2n+1 = 2N , so N is perfect.

(b) Show that 28, 496, 8128 are perfect numbers.

• Note that 28 = 22 · 7, 496 = 24 · 31, and 8128 = 26 · 127, so by part (a) since each of 7 = 23 − 1,
31 = 25 − 1, and 127 = 27 − 1 is a prime, we see that 28, 496, and 8128 are perfect numbers.
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We would now like to prove a partial converse to (a): namely, that every even perfect number must be of
the form given in (a). So suppose N = 2nc is a perfect number where n ≥ 1 and c is odd, and observe that
σ(N) = (2n+1 − 1)σ(c).

(c) Show that c must be divisible by 2n+1 − 1.

• Since σ(N) = 2N the formula for σ(N) gives 2n+1c = (2n+1 − 1)σ(c), so 2n+1 − 1 divides 2n+1c.

• But 2n+1 − 1 is relatively prime to 2n+1, so by the relatively prime divisibility property, it must
divide the other factor c.

(d) Show that c must equal 2n+1 − 1 and that 2n+1 − 1 is prime. [Hint: Use σ(c) = 2n+1c/(2n+1 − 1) and
the fact that c has two divisors c and c/(2n+1 − 1) to conclude it has no other divisors.]

• By (c) we know that c is divisible by 2n+1 − 1 so c has at least the two divisors c and c/(2n+1 − 1).

• But from (c) we also saw that σ(c) = 2n+1c/(2n+1− 1) = c+ c/(2n+1− 1), and so these are the only
two divisors of c. Therefore, the smaller one c/(2n+1 − 1) must be 1, hence c = 2n+1 − 1, and the
larger one c = 2n+1 − 1 must be prime.

(e) Deduce that the even perfect numbers are precisely the numbers of the form N = 2n(2n+1 − 1) where
2n − 1 is prime.

• This is immediate from (a) and (d), since (a) showed all these numbers are perfect and (d) shows
any even perfect number is of the form N = 2nc where c = 2n+1 − 1 is prime.

Remark: Perfect numbers have been of mathematical (and numerological) interest since antiquity. Euclid
established the result in (a), and roughly two millennia later, Euler proved the result in (e). It is not
known whether there are in�nitely many even perfect numbers, and it is also not known whether there
are any odd perfect numbers.
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