
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2026 ∼ Homework 2, due Fri Jan 23rd.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly and submit via Gradescope, making sure to select page submissions for each problem.
Use of generative AI in any manner is not allowed on this or any other course assignments.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Find the following:

(a) The gcd and lcm of 288 and 600.

(b) The prime factorizations of 2025 and 2026. (You may want to use a calculator for these!)

(c) The prime factorizations of 20252026 and 20262025.

(d) The prime factorizations of 111, 1001, and 111111.

(e) The gcd and lcm of 283115778112 and 243857771111.

(f) The prime factorization of 12! and the number of positive divisors of 12!.

(g) The number of divisors and the sum of divisors of 10000.

2. It is sometimes claimed (occasionally in actual textbooks) that if p1, p2, . . . , pk are the �rst k primes, then the
number n = p1p2 · · · pk + 1 used in Euclid's proof is always prime for any k ≥ 1. Find a counterexample to
this statement; make sure to justify that it is actually a counterexample.

3. Find examples of the following things:

(a) Four di�erent pairs of positive integers (a, b) with a ≤ b such that gcd(a, b) = 30 and lcm(a, b) = 1800.

(b) A positive integer n such that n/2 is a perfect square and n/3 is a perfect cube.

(c) A positive integer n such that n, n + 1, n + 2, n + 3, n + 4, and n + 5 all have more than one distinct
prime factor.

(d) An integer that is a multiple of 15 that has exactly 15 positive divisors.

Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

4. Let n be a positive integer greater than 1.

(a) Show that if n is composite, then n must have at least one divisor d with 1 < d ≤
√
n. Deduce that if n

is composite, then n has at least one prime divisor p ≤
√
n. [Hint: Write n = ab where 1 < a ≤ b < n.]

(b) Show that if no prime less than or equal to
√
n divides n, then n is prime.

(c) Show that n = 109 and n = 251 are prime by verifying they are not divisible by any prime ≤
√
n.

5. Recall that the factorial of n is de�ned as n! = n · (n− 1) · · · · · 1, so for example 4! = 4 · 3 · 2 · 1 = 24. (Note
that 0! is de�ned to be 1.)

(a) If n ≥ 3, show that the integers n! + 2, n! + 3, ... , n! + n are all composite.

(b) Suppose we list the primes in increasing order: p1 < p2 < p3 < · · · , so, for instance, p5 = 11. For
an arbitrary positive integer n, show that there is some pair of consecutive primes pk, pk+1 such that
pk+1 − pk ≥ n: in other words, that there exists a �prime gap� of size at least n.

Remark: Part (b) shows that there are arbitrarily large prime gaps. The smallest possible prime gap that
could occur in�nitely often is 2, and the twin prime conjecture says that there are in�nitely many pairs
of consecutive primes that di�er by 2.
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6. The goal of this problem is to study which numbers of the form N = ak − 1 can be prime, where a and k are
positive integers greater than 1.

(a) Show that if a > 2, then N = ak − 1 is not prime.

(b) Show that if k is composite, then N = 2k − 1 is not prime. [Hint: If k = rs, show N is divisible by
2r − 1.]

(c) Deduce that the only possible primes of the form N = ak − 1 are those of the form 2p − 1 where p is
a prime. (Such primes are called Mersenne primes.) Are all the numbers of the form 2p − 1 (p prime)
actually prime?

Remark: Mersenne primes can be used to construct perfect numbers, as described in problem 7.

7. Recall that if N is a positive integer, then σ(N) denotes the sum of the positive divisors of N . We say that
N is a perfect number when σ(N) = 2N : this is often phrased as �the sum of all of the proper divisors of N
equals N itself�.

(a) Show that if 2n+1 − 1 is a prime number, then the number N = 2n(2n+1 − 1) is perfect.

(b) Show that 28, 496, 8128 are perfect numbers.

We would now like to prove a partial converse to (a): namely, that every even perfect number must be of
the form given in (a). So suppose N = 2nc is a perfect number where n ≥ 1 and c is odd, and observe that
σ(N) = (2n+1 − 1)σ(c).

(c) Show that c must be divisible by 2n+1 − 1.

(d) Show that c must equal 2n+1 − 1 and that 2n+1 − 1 is prime. [Hint: Use σ(c) = 2n+1c/(2n+1 − 1) and
the fact that c has two divisors c and c/(2n+1 − 1) to conclude it has no other divisors.]

(e) Deduce that the even perfect numbers are precisely the numbers of the form N = 2n(2n+1 − 1) where
2n − 1 is prime.

Remark: Perfect numbers have been of mathematical (and numerological) interest since antiquity. Euclid
established the result in (a), and roughly two millennia later, Euler proved the result in (e). It is not
known whether there are in�nitely many even perfect numbers, and it is also not known whether there
are any odd perfect numbers.
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