E. Dummit’s Math 3527 ~ Number Theory I, Spring 2026 ~ Homework 1 Solutions

1. Match the erroneous proofs (a)-(e) with the reasons (1)-(4) they are not valid inductive proofs of the claims.
Some reasons may be used more than once and others not at all.

(a)

(d)

()

Proposition: If a; = 3 and a, 41 = 3a, + 2 for all n > 1, then a,, = 3" — 1 for all n.
Proof: Induct on n. The base case n = 1 is trivial. For the inductive step, suppose a,, = 3" — 1. Then
Uni1 = 3a, +2=3(3" — 1)+ 2 = 3" — 1 as required.

e The argument for the inductive step is correct. The issue is that the base case is wrong: although
a; = 3, the formula gives instead a; = 3! — 1 = 2, which is reason | (1) |

e The issue is that the base case is simply asserted rather than actually proven. (Of course, this would
have been very obvious if the calculations for the base case were actually given in the proof!)

Proposition: For every positive integer n, 1 +2+4 4 --- +2" =2n + 1.

Proof: Induct on n. The base case n = 1 follows because 1 + 2 = 2 -1+ 1. For the inductive step, we
want to show that 1 +2+4 4 .- + 27+ = 27+2 _ 1 Multiplying both sides by 0 yields 0 = 0, which is
a true statement. Therefore the result holds by induction.

e The error is that the argument in the inductive step starts out by assuming P(n+ 1) and then shows
that it implies a true statement (in this case that, 0 = 0). This is not a valid argument because for
an induction proof, the inductive step needs to assume P(n) and show that it implies P(n+1). This

is reason | (2) |

Proposition: If a; = 2, and a,4+1 = 4a,, — 4a,,_1 for all n > 1, then a,, = 2" for all n.

Proof: Strong induction on n. The base case n = 1 follows since a; = 2 = 2. For the inductive step,
suppose ap = 2* for all k < n. Then a,,1 = 4a, —4a,_1 = 4-2" —4-2""1 =4.2" —2.2" = 2.2" = on+l
as required.

e The issue here is that the inductive step uses the two previous cases k = n and k = n — 1, but only
one base case is actually established, which is reason | (3) |.

e One way to see that this is a problem is to use the recurrence to find as (i.e., by setting n = 1), it
yields as = 4a; — 4ag, but ag has not been defined!

Proposition: All horses are the same color.

Proof: Induct on n, the number of horses. The base case n = 1 is trivial. For the inductive step, suppose
that any n + 1 horses are the same color. Ignoring the last horse yields means that we need to show
that n horses are the same color, which is true by the induction hypothesis. Therefore the result holds
by induction.

e The error is that the proof of the inductive step assumes P(n + 1) and uses it to establish P(n):
that is backwards from the correct logic, which is to show that P(n) implies P(n+ 1), and is reason

(4) |

Proposition: For every positive integer n, 1+2+3+---4+n = %n(n +1).

Proof: Induct on n. The base case n = 1 follows because 1 = %(1)(2) For the inductive step, suppose
that 142434 - -+n+(n+1) = 1(n+1)(n+2). Subtracting n+1 from both sides yields 1+2+3+---+n =
i(n+1)(n+2) — (n+1) = in(n+1), as required. Therefore the result holds by induction.

e The error is the same mistake as in part (d): the inductive step starts out by assuming P(n + 1)
and then reduces it to P(n). This is backwards from the correct logic, which is to show that P(n)
implies P(n + 1), and is reason | (4) | (One could also reasonably argue that this is reason | (2) | as
well.)

e In this case, the mistake can be fixed by writing the steps in the correct order (start with 1+ 2 +
~+++n=1n(n+1) and add n+ 1 to both sides to obtain 1+ 2+ -+ (n+ 1) = 2(n+1)(n + 2)).




2. For each pair of integers (a,b), use the Euclidean algorithm to calculate their greatest common divisor d =
ged(a, b) and also to find integers = and y such that d = ax + by.

(a) a=44,b=12.
e Applying the Euclidean algorithm to a = 44 and b = 12 yields

44=3-1248
12=1-8+14
8§=2-4

and thus the gcd is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

8 = = 1-44-3-12
4 = 12—-1-8 = —-1-44+4-12

and so we see [4 = —1-44 +4-12|so we can take x = —1 and y = 4.
(b) a =481, b= 24.
e Applying the Euclidean algorithm to a = 481 and b = 24 yields

481 =20-24+1
24=24-1

and thus the ged is the last nonzero remainder of .

e For the linear combination, we trivially solve for the remainder |1 =1 -481 — 20 - 24 | so we can take
x=1and y = —20.

(¢) a =18063, b = 2025.
e Applying the Euclidean algorithm to a = 18063 and b = 2025 yields

18063 = 8-2025 4 1863
2025 = 1-1863+ 162
1863 = 11-162+ 81

162 = 2.81

and so the gcd is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

1863 = = 1-18063 — 8 - 2025
162 = 2025-1-1863 = —1-18063+9-2025
81 = 1863 —-11-162 = 12-18063 — 107 -2025

and so we see |81 = 12 - 18063 — 107 - 2025 | so we can take z = 12 and y = —107.
(d) a=12445, b = 5567.
e Applying the Euclidean algorithm to a = 12445 and b = 5567 yields

12445 = 25567 4 1311
5567 = 4-1311+4 323
1311 = 4-323+19

323 = 17-19

and so the gecd is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

1311 = = 1-12445— 25567
323 = 5667 —-4-1311 = —4-12445+4 95567
19 = 1311-4-323 = 17-12445— 385567

and so we see | 19 = 17 - 12445 — 38 - 5567 | so we can take x = 17 and y = —38.




(e) a = 18200, b = 3505.
e Applying the Euclidean algorithm to a = 18200 and b = 3505 yields

18200 = 5-3505+ 675
3505 = 5-675+130
675 = 5-130+4+25
130 = 5-25+5

25 = 5-95

and so the ged is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

675 = = 1-18200 — 5 - 3505

130 = 3505 —-5-675 = —5 - 18200 + 26 - 3505
25 = 675—-5-130 = 26-18200 — 135 - 3505
5 = 130—-5-25 = —135-18200+4 701 - 3505

and so we see |5 = —135 - 18200 + 701 - 3505 | so we can take x = —135 and y = 701.
(f) a =233, b= 144.

e Applying the Euclidean algorithm to a = 233 and b = 144 yields

233 = 1-144489
144 = 1-894 55
89 = 1-55+34
95 = 1-34+21
34 = 1-21+13
21 = 1-13+8
13 = 1-845
8§ = 1-5+3
5 = 1-3+2
3 = 1-2+1
2 = 2-1

and so the ged is the last nonzero remainder of .
e For the linear combination, we solve for the remainders:

89 = = 233 —-1-144

55 = 144-1-89 = —-1-233+2-144
34 = 89-1-56 = 2-233-3-144

21 = 55-1-34 = —-3-233+5.-144
13 = 34-1-21 = 5-233-8-144

8§ = 21-1-13 = —-8-233+4+13-144
5 = 13-1-8 = 13-233-21-144
3 = 8—1-5 = —21-233+34-144
2 = 5—1-3 = 34-233-55-144
1 = 3—1-2 = —55-233+89-144

and so we see |1 = —55-233 + 89 - 144 | so we can take x = —55 and y = 89.




3. Prove the following basic properties of divisibility (note that some of these properties are referred to, but not
proven, in the course notes; you are expected to give the details of the proof!):

(a) If a,b are integers, show that a|b if and only if a|(—b).

e First suppose a|b so that b = pa for some integer p. Then —b = (—p)a so a|(-b).
e Conversely, suppose a|(—b) so that —b = ga for some integer g. Then b = (—q)a so alb.

(b) If a,b,m are integers with m # 0, show that a|b if and only if (ma)|(mb).

e First suppose alb, so that b = pa for some integer p. Then mb = mpa = p(ma) so (ma)|(mb).
e Conversely suppose (ma)|(mb), so that mb = p(ma) for some integer p. Since m # 0 we can cancel
m to conclude that b = pa, meaning a|b as required.
(c) If a,b, c are integers such that a|b and a1 ¢, show that a f (b+ ¢).
e Suppose by way of contradiction that a|(b+ ¢). Then b+ ¢ = ka for some k, and also since alb we
have b = la for some I.
e But then ¢ = (b+¢) — b= ka — la = (k — l)a would be divisible by a, which is a contradiction.

(d) If a,b,c, z,y are integers such that a|b and alc, show that a|(zb + yc).

e By definition, if a|b and a|c, then there exist integers p and ¢ with b = pa and ¢ = qa.
e Then b + yc = z(pa) + y(qa) = (zp)a + (yq)a = (zp + yq)a, and so for k = xy + yq we see that
xb + yc = ka, meaning that a|(zb + yc).
(e) If a,b are integers, show that a,b and a, a + b have the same set of common divisors.
e Suppose d is a common divisor of a,b so that d|a and d|b. Then d|a and d|(a + b) as well, so d is a
common divisor of a,a + b.

e Conversely, if e is a common divisor of a, a+b so that e|a and e|(a+b), then e|a and e|[(a+b) —a] = b
as well, so e is a common divisor of a, b.

e Together these two statements imply that a,b and a,a + b have the same set of common divisors.

4. The Fibonacci numbers are defined as follows: F; = F, =1 and for n > 2, F,, = F,,_1 + F,,_o. The first few
terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that Fy + Fo + F3+---+ F,, = F,,; o — 1 for every positive integer n. [Hint: Use induction.]

e We prove the result by induction on n.

e For the base case n = 1, we must verify F; = F3 — 2, which is true because F3 = 3 and F} = 1.

e For the inductive step, we assume that Fy + Fs + F3 + --- + F, = Fji412 — 1 and must show that
P+ B+ Fs+- -+ Fy+ Fioyg = Fips — 1

o Then Fi+Fo+Fs+-- +Fp+Fpp1 = [Fi+Fo+ Fs+- -+ Fp ]+ Frp1 = Fipo— 14+ Fry = Fipz —1
as required.

e Hence by induction, Fy + Fy + F3 + --- + F,, = F,,4o — 1 for every positive integer n.
2 n . . .
—4inin — .
(b) Prove that F7, | — F,,Fy, 42 = (—1)" for every positive integer n

KL

e We prove the result by induction on n.

e For the base case n = 1, we must verify F7 — FyF3 = —1, which is true since F, = 1, F; = 1, and
F3=2.
e For the inductive step, we assume that F? , — F,,F,41> = (—1)" and must show that FZ , —

Frny1Fni3 = (_1)n+1'
e By definition, we have Fj, ;3 = Fj, 42 + F41, so F’r%+2 —Foi1Fhqs = Fﬁﬁ — Fpi1[Foy1 + Fugao] =
Fn+2[Fn+2 - Fn+1] - F3+1 = Fn+2Fn - F3+1 = _(_1)n = (_1)n+1’ as required-

e Hence by induction, F2,; — F,,F, ;2 = (—1)" for every positive integer n.



(c) Prove that Fy,4q1 = Fﬁ_H + F? and Fypy0 = Fpy1(Fhie + F,) for all n > 1. [Hint: Show both together
by induction.]
e We show both statements simultaneously by induction on n.
e For the base case n = 1, we have F3 = Fs + F2 =2 and Fy = Fo(F3+ F1) = 1(2+ 1) = 3, as
required.
e For the inductive step, suppose that Fy,_1 = F2? + F2?_; and Fy, = F,(Fyq1 + Fr_1)
o Then Fopy1 = Fopn+Fopn1 = Fp(Fpy1+F1)+Fi4+F2_ | = F,Fyp1+Fy 1 Fop1+F2 = F2  +F?
as required.
o Also, Fopio = Fopy1 + Fop = F2 . + F2 + FyFy1 + FoFyy = F2 + FoFy + FoFpyy =
Fri1(Fnt2 + F,,) as required.

5. The goal of this problem is to study a few more miscellaneous properties of Fibonacci numbers, as defined in
problem 4.

(a) Find ng(F5,F10), ng(Ff;,Fg), ng(F6,F12), and ng(Flg,Flg).

o We have ged(Fs, Fio) = ged(5,55) =[ 5], ged(Fs, Fo) = ged(8,34) = [ 2], ged(Fs, Fi2) = ged(8,144) =
(8], and ged(Fia, Fi3) = ged(144,233) =[1].
(b) Show that Fj,1y = FiFy11 + Fy—1F,, for any nonnegative n and k. [Hint: Induct on &.]
e We follow the hint and induct on k: for £ = 1 the statement says F, 1 = F1F,,+1 + FoF},, and for
k = 2 the statement says F, 1o = F3F, 11 + F1 F, = F,,+1 + F, both of which are true.

e Now suppose that F,,4r = FpF,4+1 + Fr—1F, holds for all £ < ; we want to show that F, ;11 =
Fi1Fh1 + FiF,. We have

Fovivi = Foyi+ Fapia

[FiFni1+ Fi 1B + [Fio1Foy1 + F1oF))]
[Fi + Fi_1] Frpq + [Fio1 + Fio]F,

Fp Py + B,

where we used the inductive hypothesis for k =1 and k=1 — 1.
(c) Show that Fy|F,, for all positive integers n. [Hint: Use (b).]

e We use induction on n. For the base case n = 1 we clearly have F,|F,.

e For the inductive step, suppose F,, divides F,. Then using (a) we see that Fontyya = FraFnta +
F,._1F, is the sum of two terms each divisible by Fy, so it is also divisible by Fj,.

(d) Show that F, and F,; are relatively prime for all n.
e This is another induction: we have ged(Fy, Fz) = ged(1,1) = 1, and for the inductive step if Fj,_q

and F,, are relatively prime, then so are F,,_; + F,, = Fj,+1 and F),.

Remark: It can in fact be shown using the results in (b), (¢), and (d) that the gecd of any two Fibonacci
numbers is another Fibonacci number, and more specifically that ged(Fy, ) = Fyea(a,b)-




