
E. Dummit's Math 3527 ∼ Number Theory I, Spring 2026 ∼ Homework 1 Solutions

1. Match the erroneous proofs (a)-(e) with the reasons (1)-(4) they are not valid inductive proofs of the claims.
Some reasons may be used more than once and others not at all.

(a) Proposition: If a1 = 3 and an+1 = 3an + 2 for all n ≥ 1, then an = 3n − 1 for all n.
Proof: Induct on n. The base case n = 1 is trivial. For the inductive step, suppose an = 3n − 1. Then
an+1 = 3an + 2 = 3(3n − 1) + 2 = 3n+1 − 1 as required.

• The argument for the inductive step is correct. The issue is that the base case is wrong: although

a1 = 3, the formula gives instead a1 = 31 − 1 = 2, which is reason (1) .

• The issue is that the base case is simply asserted rather than actually proven. (Of course, this would
have been very obvious if the calculations for the base case were actually given in the proof!)

(b) Proposition: For every positive integer n, 1 + 2 + 4 + · · ·+ 2n = 2n+ 1.
Proof: Induct on n. The base case n = 1 follows because 1 + 2 = 2 · 1 + 1. For the inductive step, we
want to show that 1 + 2 + 4 + · · ·+ 2n+1 = 2n+2 − 1. Multiplying both sides by 0 yields 0 = 0, which is
a true statement. Therefore the result holds by induction.

• The error is that the argument in the inductive step starts out by assuming P (n+1) and then shows
that it implies a true statement (in this case that, 0 = 0). This is not a valid argument because for
an induction proof, the inductive step needs to assume P (n) and show that it implies P (n+1). This

is reason (2) .

(c) Proposition: If a1 = 2, and an+1 = 4an − 4an−1 for all n ≥ 1, then an = 2n for all n.
Proof: Strong induction on n. The base case n = 1 follows since a1 = 2 = 21. For the inductive step,
suppose ak = 2k for all k ≤ n. Then an+1 = 4an−4an−1 = 4 ·2n−4 ·2n−1 = 4 ·2n−2 ·2n = 2 ·2n = 2n+1

as required.

• The issue here is that the inductive step uses the two previous cases k = n and k = n− 1, but only

one base case is actually established, which is reason (3) .

• One way to see that this is a problem is to use the recurrence to �nd a2 (i.e., by setting n = 1), it
yields a2 = 4a1 − 4a0, but a0 has not been de�ned!

(d) Proposition: All horses are the same color.
Proof: Induct on n, the number of horses. The base case n = 1 is trivial. For the inductive step, suppose
that any n + 1 horses are the same color. Ignoring the last horse yields means that we need to show
that n horses are the same color, which is true by the induction hypothesis. Therefore the result holds
by induction.

• The error is that the proof of the inductive step assumes P (n + 1) and uses it to establish P (n):
that is backwards from the correct logic, which is to show that P (n) implies P (n+1), and is reason

(4) .

(e) Proposition: For every positive integer n, 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1).

Proof: Induct on n. The base case n = 1 follows because 1 = 1
2 (1)(2). For the inductive step, suppose

that 1+2+3+· · ·+n+(n+1) = 1
2 (n+1)(n+2). Subtracting n+1 from both sides yields 1+2+3+· · ·+n =

1
2 (n+ 1)(n+ 2)− (n+ 1) = 1

2n(n+ 1), as required. Therefore the result holds by induction.

• The error is the same mistake as in part (d): the inductive step starts out by assuming P (n + 1)
and then reduces it to P (n). This is backwards from the correct logic, which is to show that P (n)

implies P (n + 1), and is reason (4) . (One could also reasonably argue that this is reason (2) as

well.)

• In this case, the mistake can be �xed by writing the steps in the correct order (start with 1 + 2 +
· · ·+ n = 1

2n(n+ 1) and add n+ 1 to both sides to obtain 1 + 2 + · · ·+ (n+ 1) = 1
2 (n+ 1)(n+ 2)).
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2. For each pair of integers (a, b), use the Euclidean algorithm to calculate their greatest common divisor d =
gcd(a, b) and also to �nd integers x and y such that d = ax+ by.

(a) a = 44, b = 12.

• Applying the Euclidean algorithm to a = 44 and b = 12 yields

44 = 3 · 12 + 8

12 = 1 · 8 + 4

8 = 2 · 4

and thus the gcd is the last nonzero remainder of 4 .

• For the linear combination, we solve for the remainders:

8 = = 1 · 44− 3 · 12
4 = 12− 1 · 8 = −1 · 44 + 4 · 12

and so we see 4 = −1 · 44 + 4 · 12 so we can take x = −1 and y = 4.

(b) a = 481, b = 24.

• Applying the Euclidean algorithm to a = 481 and b = 24 yields

481 = 20 · 24 + 1

24 = 24 · 1

and thus the gcd is the last nonzero remainder of 1 .

• For the linear combination, we trivially solve for the remainder 1 = 1 · 481− 20 · 24 so we can take
x = 1 and y = −20.

(c) a = 18063, b = 2025.

• Applying the Euclidean algorithm to a = 18063 and b = 2025 yields

18063 = 8 · 2025 + 1863

2025 = 1 · 1863 + 162

1863 = 11 · 162 + 81

162 = 2 · 81

and so the gcd is the last nonzero remainder of 81 .

• For the linear combination, we solve for the remainders:

1863 = = 1 · 18063− 8 · 2025
162 = 2025− 1 · 1863 = −1 · 18063 + 9 · 2025
81 = 1863− 11 · 162 = 12 · 18063− 107 · 2025

and so we see 81 = 12 · 18063− 107 · 2025 so we can take x = 12 and y = −107.
(d) a = 12445, b = 5567.

• Applying the Euclidean algorithm to a = 12445 and b = 5567 yields

12445 = 2 · 5567 + 1311

5567 = 4 · 1311 + 323

1311 = 4 · 323 + 19

323 = 17 · 19

and so the gcd is the last nonzero remainder of 19 .

• For the linear combination, we solve for the remainders:

1311 = = 1 · 12445− 2 · 5567
323 = 5567− 4 · 1311 = −4 · 12445 + 9 · 5567
19 = 1311− 4 · 323 = 17 · 12445− 38 · 5567

and so we see 19 = 17 · 12445− 38 · 5567 so we can take x = 17 and y = −38.
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(e) a = 18200, b = 3505.

• Applying the Euclidean algorithm to a = 18200 and b = 3505 yields

18200 = 5 · 3505 + 675

3505 = 5 · 675 + 130

675 = 5 · 130 + 25

130 = 5 · 25 + 5

25 = 5 · 5

and so the gcd is the last nonzero remainder of 5 .

• For the linear combination, we solve for the remainders:

675 = = 1 · 18200− 5 · 3505
130 = 3505− 5 · 675 = −5 · 18200 + 26 · 3505
25 = 675− 5 · 130 = 26 · 18200− 135 · 3505
5 = 130− 5 · 25 = −135 · 18200 + 701 · 3505

and so we see 5 = −135 · 18200 + 701 · 3505 so we can take x = −135 and y = 701.

(f) a = 233, b = 144.

• Applying the Euclidean algorithm to a = 233 and b = 144 yields

233 = 1 · 144 + 89

144 = 1 · 89 + 55

89 = 1 · 55 + 34

55 = 1 · 34 + 21

34 = 1 · 21 + 13

21 = 1 · 13 + 8

13 = 1 · 8 + 5

8 = 1 · 5 + 3

5 = 1 · 3 + 2

3 = 1 · 2 + 1

2 = 2 · 1

and so the gcd is the last nonzero remainder of 1 .

• For the linear combination, we solve for the remainders:

89 = = 233− 1 · 144
55 = 144− 1 · 89 = −1 · 233 + 2 · 144
34 = 89− 1 · 55 = 2 · 233− 3 · 144
21 = 55− 1 · 34 = −3 · 233 + 5 · 144
13 = 34− 1 · 21 = 5 · 233− 8 · 144
8 = 21− 1 · 13 = −8 · 233 + 13 · 144
5 = 13− 1 · 8 = 13 · 233− 21 · 144
3 = 8− 1 · 5 = −21 · 233 + 34 · 144
2 = 5− 1 · 3 = 34 · 233− 55 · 144
1 = 3− 1 · 2 = −55 · 233 + 89 · 144

and so we see 1 = −55 · 233 + 89 · 144 so we can take x = −55 and y = 89.
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3. Prove the following basic properties of divisibility (note that some of these properties are referred to, but not
proven, in the course notes; you are expected to give the details of the proof!):

(a) If a, b are integers, show that a|b if and only if a|(−b).
• First suppose a|b so that b = pa for some integer p. Then −b = (−p)a so a|(−b).
• Conversely, suppose a|(−b) so that −b = qa for some integer q. Then b = (−q)a so a|b.

(b) If a, b,m are integers with m 6= 0, show that a|b if and only if (ma)|(mb).

• First suppose a|b, so that b = pa for some integer p. Then mb = mpa = p(ma) so (ma)|(mb).

• Conversely suppose (ma)|(mb), so that mb = p(ma) for some integer p. Since m 6= 0 we can cancel
m to conclude that b = pa, meaning a|b as required.

(c) If a, b, c are integers such that a|b and a - c, show that a - (b+ c).

• Suppose by way of contradiction that a|(b + c). Then b + c = ka for some k, and also since a|b we
have b = la for some l.

• But then c = (b+ c)− b = ka− la = (k − l)a would be divisible by a, which is a contradiction.

(d) If a, b, c, x, y are integers such that a|b and a|c, show that a|(xb+ yc).

• By de�nition, if a|b and a|c, then there exist integers p and q with b = pa and c = qa.

• Then xb + yc = x(pa) + y(qa) = (xp)a + (yq)a = (xp + yq)a, and so for k = xy + yq we see that
xb+ yc = ka, meaning that a|(xb+ yc).

(e) If a, b are integers, show that a, b and a, a+ b have the same set of common divisors.

• Suppose d is a common divisor of a, b so that d|a and d|b. Then d|a and d|(a+ b) as well, so d is a
common divisor of a, a+ b.

• Conversely, if e is a common divisor of a, a+b so that e|a and e|(a+b), then e|a and e|[(a+b)−a] = b
as well, so e is a common divisor of a, b.

• Together these two statements imply that a, b and a, a+ b have the same set of common divisors.

4. The Fibonacci numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2. The �rst few
terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n. [Hint: Use induction.]

• We prove the result by induction on n.

• For the base case n = 1, we must verify F1 = F3 − 2, which is true because F3 = 3 and F1 = 1.

• For the inductive step, we assume that F1 + F2 + F3 + · · · + Fk = Fk+2 − 1 and must show that
F1 + F2 + F3 + · · ·+ Fk + Fk+1 = Fk+3 − 1.

• Then F1+F2+F3+ · · ·+Fk+Fk+1 = [F1+F2+F3+ · · ·+Fk]+Fk+1 = Fk+2−1+Fk+1 = Fk+3−1
as required.

• Hence by induction, F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n.

(b) Prove that F 2
n+1 − FnFn+2 = (−1)n for every positive integer n.

• We prove the result by induction on n.

• For the base case n = 1, we must verify F 2
2 − F1F3 = −1, which is true since F2 = 1, F1 = 1, and

F3 = 2.

• For the inductive step, we assume that F 2
n+1 − FnFn+2 = (−1)n and must show that F 2

n+2 −
Fn+1Fn+3 = (−1)n+1.

• By de�nition, we have Fn+3 = Fn+2 + Fn+1, so F 2
n+2 − Fn+1Fn+3 = F 2

n+2 − Fn+1[Fn+1 + Fn+2] =
Fn+2[Fn+2 − Fn+1]− F 2

n+1 = Fn+2Fn − F 2
n+1 = −(−1)n = (−1)n+1, as required.

• Hence by induction, F 2
n+1 − FnFn+2 = (−1)n for every positive integer n.
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(c) Prove that F2n+1 = F 2
n+1 + F 2

n and F2n+2 = Fn+1(Fn+2 + Fn) for all n ≥ 1. [Hint: Show both together
by induction.]

• We show both statements simultaneously by induction on n.

• For the base case n = 1, we have F3 = F 2
2 + F 2

1 = 2 and F4 = F2(F3 + F1) = 1(2 + 1) = 3, as
required.

• For the inductive step, suppose that F2n−1 = F 2
n + F 2

n−1 and F2n = Fn(Fn+1 + Fn−1)

• Then F2n+1 = F2n+F2n−1 = Fn(Fn+1+Fn−1)+F 2
n+F 2

n−1 = FnFn+1+Fn−1Fn+1+F 2
n = F 2

n+1+F 2
n

as required.

• Also, F2n+2 = F2n+1 + F2n = F 2
n+1 + F 2

n + FnFn+1 + FnFn−1 = F 2
n+1 + FnFn+1 + FnFn+1 =

Fn+1(Fn+2 + Fn) as required.

5. The goal of this problem is to study a few more miscellaneous properties of Fibonacci numbers, as de�ned in
problem 4.

(a) Find gcd(F5, F10), gcd(F6, F9), gcd(F6, F12), and gcd(F12, F13).

• We have gcd(F5, F10) = gcd(5, 55) = 5 , gcd(F6, F9) = gcd(8, 34) = 2 , gcd(F6, F12) = gcd(8, 144) =

8 , and gcd(F12, F13) = gcd(144, 233) = 1 .

(b) Show that Fn+k = FkFn+1 + Fk−1Fn, for any nonnegative n and k. [Hint: Induct on k.]

• We follow the hint and induct on k: for k = 1 the statement says Fn+1 = F1Fn+1 + F0Fn, and for
k = 2 the statement says Fn+2 = F2Fn+1 + F1Fn = Fn+1 + Fn both of which are true.

• Now suppose that Fn+k = FkFn+1 + Fk−1Fn holds for all k ≤ l; we want to show that Fn+l+1 =
Fl+1Fn+1 + FlFn. We have

Fn+l+1 = Fn+l + Fn+l−1

= [FlFn+1 + Fl−1Fn] + [Fl−1Fn+1 + Fl−2Fn]

= [Fl + Fl−1]Fn+1 + [Fl−1 + Fl−2]Fn

= Fl+1Fn+1 + FlFn,

where we used the inductive hypothesis for k = l and k = l − 1.

(c) Show that Fa|Fna for all positive integers n. [Hint: Use (b).]

• We use induction on n. For the base case n = 1 we clearly have Fa|Fa.

• For the inductive step, suppose Fa divides Fna. Then using (a) we see that F(n+1)a = FnaFn+a +
Fna−1Fa is the sum of two terms each divisible by Fa, so it is also divisible by Fa.

(d) Show that Fa and Fa+1 are relatively prime for all n.

• This is another induction: we have gcd(F1, F2) = gcd(1, 1) = 1, and for the inductive step if Fn−1

and Fn are relatively prime, then so are Fn−1 + Fn = Fn+1 and Fn.

Remark: It can in fact be shown using the results in (b), (c), and (d) that the gcd of any two Fibonacci
numbers is another Fibonacci number, and more speci�cally that gcd(Fa, Fb) = Fgcd(a,b).
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