
E. Dummit's Math 3527 ∼ Number Theory 1, Spring 2026 ∼ Homework 1, due Fri Jan 16th.

Justify all responses with clear explanations and in complete sentences unless otherwise stated. Write up your
solutions cleanly and neatly and submit via Gradescope, making sure to select page submissions for each problem.
Use of generative AI in any manner is not allowed on this or any other course assignments.

Part I: No justi�cations are required for these problems. Answers will be graded on correctness.

1. Match the erroneous proofs (a)-(e) with the reasons (1)-(4) they are not valid inductive proofs of the claims.
Some reasons may be used more than once and others not at all.

Proofs:

(a) Proposition: If a1 = 3 and an+1 = 3an + 2 for all n ≥ 1, then an = 3n − 1 for all n.
Proof: Induct on n. The base case n = 1 is trivial. For the inductive step, suppose an = 3n − 1. Then
an+1 = 3an + 2 = 3(3n − 1) + 2 = 3n+1 − 1 as required.

(b) Proposition: For every positive integer n, 1 + 2 + 4 + · · ·+ 2n = 2n+ 1.
Proof: Induct on n. The base case n = 1 follows because 1 + 2 = 2 · 1 + 1. For the inductive step, we
want to show that 1 + 2 + 4 + · · ·+ 2n+1 = 2n+2 − 1. Multiplying both sides by 0 yields 0 = 0, which is
a true statement. Therefore the result holds by induction.

(c) Proposition: If a1 = 2, and an+1 = 4an − 4an−1 for all n ≥ 1, then an = 2n for all n.
Proof: Strong induction on n. The base case n = 1 follows since a1 = 2 = 21. For the inductive step,
suppose ak = 2k for all k ≤ n. Then an+1 = 4an−4an−1 = 4 ·2n−4 ·2n−1 = 4 ·2n−2 ·2n = 2 ·2n = 2n+1

as required.

(d) Proposition: All horses are the same color.
Proof: Induct on n, the number of horses. The base case n = 1 is trivial because any 1 horse is the
same color as itself. For the inductive step, suppose that any n+ 1 horses are the same color. Ignoring
the last horse yields means that we need to show that n horses are the same color, which is true by the
induction hypothesis. Therefore the result holds by induction.

(e) Proposition: For every positive integer n, 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1).

Proof: Induct on n. The base case n = 1 follows because 1 = 1
2 (1)(2). For the inductive step, suppose

that 1+2+3+· · ·+n+(n+1) = 1
2 (n+1)(n+2). Subtracting n+1 from both sides yields 1+2+3+· · ·+n =

1
2 (n+ 1)(n+ 2)− (n+ 1) = 1

2n(n+ 1), as required. Therefore the result holds by induction.

Reasons:

(1) The proof does not actually check that the base case is correct.

(2) The proof of the inductive step shows that the claimed result implies a true statement instead of proving
the claimed result.

(3) The proof of the inductive step assumes more base cases than are actually checked.

(4) The proof of the inductive step shows that the result for n+ 1 implies the result for n, rather than the
other way around.

2. For each pair of integers (a, b), use the Euclidean algorithm to calculate their greatest common divisor d =
gcd(a, b) and also to �nd integers x and y such that d = ax+ by. (Make sure to include enough detail in your
calculations to show you used the Euclidean algorithm.)

(a) a = 44, b = 12.

(b) a = 481, b = 24.

(c) a = 18063, b = 2025.

(d) a = 12445, b = 5567.

(e) a = 18200, b = 3505.

(f) a = 233, b = 144.
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Part II: Solve the following problems. Justify all answers with rigorous, clear explanations.

3. Prove the following basic properties of divisibility (note that some of these properties are referred to, but not
proven, in the course notes; you are expected to give the details of the proof!):

(a) If a, b are integers, show that a|b if and only if a|(−b).
(b) If a, b,m are integers with m 6= 0, show that a|b if and only if (ma)|(mb).

(c) If a, b, c are integers such that a|b and a - c, show that a - (b+ c).

(d) If a, b, c, x, y are integers such that a|b and a|c, show that a|(xb+ yc).

(e) If a, b are integers, show that a, b and a, a+ b have the same set of common divisors.

4. The Fibonacci numbers are de�ned as follows: F1 = F2 = 1 and for n ≥ 2, Fn = Fn−1 + Fn−2. The �rst few
terms of the Fibonacci sequence are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ....

(a) Prove that F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1 for every positive integer n. [Hint: Use induction.]

(b) Prove that F 2
n+1 − FnFn+2 = (−1)n for every positive integer n.

(c) Prove that F2n+1 = F 2
n+1 + F 2

n and F2n+2 = Fn+1(Fn+2 + Fn) for all n ≥ 1. [Hint: Show both together
by induction.]

5. The goal of this problem is to study a few more miscellaneous properties of Fibonacci numbers, as de�ned in
problem 4.

(a) Find gcd(F5, F10), gcd(F6, F9), gcd(F6, F12), and gcd(F12, F13).

(b) Show that Fn+k = FkFn+1 + Fk−1Fn, for any nonnegative n and k. [Hint: Induct on k.]

(c) Show that Fa|Fna for all positive integers n. [Hint: Use (b).]

(d) Show that Fa and Fa+1 are relatively prime for all n.

Remark: It can in fact be shown using the results in (b), (c), and (d) that the gcd of any two Fibonacci
numbers is another Fibonacci number, and more speci�cally that gcd(Fa, Fb) = Fgcd(a,b).
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