
Linear Algebra (part 2) : Linear Transformations (by Evan Dummit, 2025, v. 4.00)

Contents

2 Linear Transformations 1

2.1 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.1.1 De�nition and Basic Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1.2 Kernel and Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.3 Algebraic Operations on Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 One-to-One Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.5 Isomorphisms of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Matrices Associated to Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 The Matrix Associated to a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Algebraic Properties of Matrices Associated to Linear Transformations . . . . . . . . . . . . . 16

2.2.3 The Rank of a Linear Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Inverse Transformations and Inverse Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 Change of Basis, Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Linear Transformations

In this chapter we will study linear transformations, which are structure-preserving maps between vector spaces.
Such maps generalize the idea of a linear function and share many properties with linear functions from Rm to Rn.

We begin by studying linear transformations (in general) and two important subspaces associated to a linear
transformation, the kernel and the image. Next, we study the space of linear transformations from one vector
space to another, and characterize some algebraic properties of linear transformations. We also analyze invertible
linear transformations and isomorphisms and then apply these ideas to establish the rather stunning result that
any �nite-dimensional F -vector space has structure identical to the vector space Fn.

We conclude with a lengthy exploration of the various relationships between linear transformations and matrices,
and use our understanding of bases to give a concrete �matrix representation� of a linear transformation in the
�nite-dimensional case. We also analyze the behavior of these matrix representations under change of basis and the
correspondence between isomorphisms and invertible matrices.

2.1 Linear Transformations

• Now that we have a reasonably good idea of what a general vector space looks like, the next natural question
is: what do maps from one vector space to another look like?

◦ Here, we don't want to ask about arbitrary functions, but about functions from one vector space to
another which preserve the structure (namely, addition and scalar multiplication) of the vector space.
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2.1.1 De�nition and Basic Examples

• De�nition: If V and W are vector spaces having the same scalar �eld F , we say a function T from V to W
(denoted T : V →W ) is a linear transformation if the following two properties hold:

[T1] The map respects addition of vectors: T (v1 + v2) = T (v1) + T (v2) for any vectors v1 and v2 in V .

[T2] The map respects scalar multiplication: T (αv) = αT (v) for any vector v in V and any scalar α ∈ F .

◦ Warning: It is important to note that in the statement T (v1 +v2) = T (v1) +T (v2), the addition on the
left-hand side is taking place inside V , whereas the addition on the right-hand side is taking place inside
W . Likewise, in the statement T (αv) = αT (v), the scalar multiplication on the left-hand side is in V
while the scalar multiplication on the right-hand side is in W .

◦ Remark: We require the vector spaces V and W to have the same �eld of scalars because condition [T2]
would not make sense otherwise.

• Example: If V = W = R2, show that the map T de�ned1 by T (x, y) = 〈x, x+ y〉 is a linear transformation
from V to W .

◦ We simply check the two parts of the de�nition.

◦ Let v = 〈x, y〉, v1 = 〈x1, y1〉, and v2 = 〈x2, y2〉, so that v1 + v2 = 〈x1 + x2, y1 + y2〉.
◦ [T1]: We have T (v1 +v2) = 〈x1 + x2, x1 + x2 + y1 + y2〉 = 〈x1, x1 + y1〉+ 〈x2, x2 + y2〉 = T (v1)+T (v2).

◦ [T2]: We have T (αv) = 〈αx, αx+ αy〉 = α 〈x, x+ y〉 = αT (v).

• We can substantially generalize the example above:

• Example: If V = Fm (thought of as m × 1 matrices) and W = Fn (thought of as n × 1 matrices) and A is
any n×m matrix, show that the map T with T (v) = Av is a linear transformation.

◦ The veri�cation is exactly the same as in the previous example.

◦ [T1]: We have T (v1 + v2) = A(v1 + v2) = Av1 +Av2 = T (v1) + T (v2).

◦ [T2]: Also, T (αv) = A(αv) = α(Av) = αT (v).

• Checking a particular map to determine if it is a linear transformation is in general fairly straightforward:

• Example: If V = M2×2(Q) and W = Q, determine whether the trace map is a linear transformation from V
to W .

◦ Let M =

[
a b
c d

]
, M1 =

[
a1 b1
c1 d1

]
, M2 =

[
a2 b2
c2 d2

]
so M1 +M2 =

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
.

◦ [T1]: We have tr(M1 +M2) = (a1 + a2) + (d1 + d2) = (a1 + d1) + (a2 + d2) = tr(M1) + tr(M2).

◦ [T2]: We have tr(α ·M) = αa+ αd = α · (a+ d) = α · tr(M).

◦ Both parts of the de�nition are satis�ed, so the trace is a linear transformation .

• Example: If V = M2×2(C) and W = C, determine whether the determinant map det

[
a b
c d

]
= ad− bc is a

linear transformation from V to W .

◦ Let M1 =

[
a1 b1
c1 d1

]
, M2 =

[
a2 b2
c2 d2

]
so M1 +M2 =

[
a1 + a2 b1 + b2
c1 + c2 d1 + d2

]
.

◦ [T1]: We have det(M1 + M2) = (a1 + a2)(d1 + d2) − (b1 + b2)(c1 + c2), while det(M1) + det(M2) =
(a1d1 − b1c1) + (a2d2 − b2c2).

◦ When we expand out the products in det(M1 + M2) we will quickly see that the expression is not the
same as det(M1) + det(M2).

1In principle here we should actually write T (〈x, y〉) = 〈x, x+ y〉, but this notation looks rather ugly, so we will suppress the vector
brackets inside the function notation when writing linear transformations on vectors in Fn.
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◦ An explicit example is M1 =

[
1 0
0 0

]
and M2 =

[
0 0
0 1

]
: det(M1) = det(M2) = 0, while M1 +M2 =[

1 0
0 1

]
has determinant 1.

◦ The �rst part of the de�nition does not hold, so this function is not a linear transformation . (In fact,
the condition [T2] fails as well.)

• Here are a few additional examples of linear transformations:

◦ If V is the vector space of di�erentiable functions and W is the vector space of real-valued functions, the
derivative map D sending a function to its derivative is a linear transformation from V to W .

◦ If V is the vector space of all continuous functions on [a, b], then the integral map I(f) =
´ b
a
f(x) dx is

a linear transformation from V to R.
◦ The transpose map is a linear transformation from Mm×n(F ) to Mn×m(F ) for any �eld F and any
positive integers m,n.

◦ For any a ∈ F , the evaluation at a map on F [x], de�ned by T (p) = p(a), is a linear transformation from
F [x] to F .

◦ If V and W are any vector spaces, the zero map sending all elements of V to the zero vector in W is a
linear transformation from V to W .

◦ If V is any vector space, the identity map sending all elements of V to themselves is a linear transformation
from V to V .

• Here are some basic properties of linear transformations:

• Proposition (Properties of Linear Transformations): Suppose that V and W are F -vector spaces. Then the
following hold:

1. If T : V →W is linear, then T (0V ) = 0W .

◦ Proof: Let v be any vector in V . Since 0v = 0V from basic properties, applying [T2] yields
0T (v) = T (0V ).

◦ But 0T (v) = 0W since scaling any vector of W by 0 gives the zero vector of W .

◦ Combining these two statements gives T (0V ) = 0T (v) = 0W , so T (0V ) = 0W as claimed.

2. For any vectors v1, . . . ,vn ∈ V and any scalars a1, . . . , an, if T is linear then T (a1v1 + · · · + anvn) =
a1T (v1) + · · ·+ anT (vn).

◦ This result says that linear transformations can be moved through linear combinations.

◦ Proof: By a trivial induction using [T1], we see that T (a1v1+ · · ·+anvn) = T (a1v1)+ · · ·+T (anvn).

◦ Then by [T2], we have T (aivi) = aiT (vi) for each 1 ≤ i ≤ n.
◦ Plugging these relations into the �rst equation gives T (a1v1 + · · ·+anvn) = a1T (v1)+ · · ·+anT (vn)
as required.

3. The map T : V → W is linear if and only if for any v1 and v2 in V and any scalar α, T (v1 + αv2) =
T (v1) + αT (v2).

◦ Proof: If T is linear, then by [T1] and [T2], T (v1 + cv2) = T (v1) + T (cv2) = T (v1) + cT (v2).

◦ Conversely, suppose that T (v1 + cv2) = T (v1) + cT (v2). Setting c = 1 produces T (v1 + v2) =
T (v1) + T (v2) so T satis�es [T1].

◦ Then taking v1 = v2 = 0 and c = 1 yields T (0) = T (0) + T (0), so T (0) = 0.

◦ Finally, setting v1 = 0 yields T (cv2) = T (0) + cT (v2) = cT (v2) so T satis�es [T2].

• A fundamental result is that a linear transformation is completely determined by its values on a basis:

• Theorem (Linear Transformations and Bases): Any linear transformation T : V → W is characterized by its
values on a basis of V . Conversely, for any basis B = {vi} of V and any vectors {wi}, there exists a unique
linear transformation T : V →W such that T (vi) = wi for each i.
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◦ Proof: For the �rst statement, let B = {vi} be a basis of V . Then any vector v in V can be written as
v = a1v1 + a2v2 + · · ·+ anvn for (unique) vectors v1, . . . ,vn in B and scalars a1, . . . , an.

◦ By the previous proposition, T (v) = a1T (v1) +a2T (v2) + · · ·+anT (vn), so the value of T is determined
by the values T (v1), T (v2), ... , T (vn).

◦ Conversely, suppose that we are given the values T (vi) = wi for each vi in B. Then the map T :
V →W de�ned by setting T (a1vi1 + a2vi2 + · · ·+ anvin) = a1wi1 + · · ·+ anwin is a well-de�ned linear
transformation from V toW : the map is well-de�ned because every vector in V can be written in exactly
one way as a linear combination of vectors in B, and the linearity properties are both immediate.

◦ If S were some other linear transformation with S(vi) = wi = T (vi) for each i, then since the vi are a
basis for V , we immediately see that S(v) = T (v) for all v in V , meaning that S and T are the same
function.

• The theorem above says that we can reconstruct the entirety of a linear transformation given its values on a
basis.

• Example: If V is the vector space of polynomials of degree ≤ 2 and T : V → R is the linear transformation
such that T (1) = 5, T (1 + x) = 4, and T (2 + x2) = 3, �nd T (5 + 2x+ 2x2).

◦ We simply need to express 5 + 2x+ 2x2 in terms of the basis {1, 1 + x, 2 + x2} for V .
◦ A straightforward calculation shows 5 + 2x+ 2x2 = −1(1) + 2(1 + x) + 2(2 + x2).

◦ Thus, T (5 + 2x+ 2x2) = −T (1) + 2T (1 + x) + 2T (2 + x2) = −1(5) + 2(4) + 2(3) = 9 .

2.1.2 Kernel and Image

• We will now study a pair of important subspaces associated to a linear transformation.

• De�nition: If T : V → W is a linear transformation, then the kernel of T , denoted ker(T ), is the set of
elements v in V with T (v) = 0.

◦ The kernel is the elements which are sent to zero by T .

• De�nition: If T : V → W is a linear transformation, then the image of T (often also called the range of T ),
denoted im(T ), is the set of elements w in W such that there exists a v in V with T (v) = w.

◦ The image is the elements in W which can be obtained as output from T . If im(T ) = W , we say T is
onto (or surjective).

◦ Even though they mean the same thing, we use the word �image� with linear transformations (rather
than �range�) to emphasize the additional structure that the image of a linear transformation possesses,
relative to the range of a general function.

• Example: If T : R3 → R3 is the linear transformation with T (x, y, z) = 〈x+ y, z, x+ y〉, �nd the kernel and
image of T .

◦ For the kernel, we want to �nd all (x, y, z) such that T (x, y, z) = 〈0, 0, 0〉, so we obtain the three equations
x+ y = 0, z = 0, x+ y = 0. These equations collectively say y = −x, so we see that the kernel is the set
of vectors of the form 〈x,−x, 0〉.
◦ For the image, one possible answer is simply �the set of vectors of the form 〈x+ y, z, x+ y〉�. A slightly
more useful description would be �the vectors of the form 〈a, b, a〉� since the �rst and second coordinates
can be arbitrary, but the third is always equal to the �rst.

• The kernel and image are subspaces of V and W respectively:

• Proposition (Kernel and Image are Subspaces): If T : V → W is linear, then ker(T ) is a subspace of V and
im(T ) is a subspace of W .

◦ Proof: We simply check the subspace criterion for each.
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◦ For ker(T ), [S1] follows because T (0) = 0 by our properties of linear transformations.

◦ For [S2], if v1 and v2 are in ker(T ), then T (v1) = 0 and T (v2) = 0. Therefore, T (v1 + v2) = T (v1) +
T (v2) = 0 + 0 = 0.

◦ Finally, for [S3], if v is in ker(T ), then T (v) = 0. Hence T (αv) = αT (v) = α0 = 0.

◦ For im(T ), [S1] also follows from T (0) = 0.

◦ For [S2], if w1 and w2 are in im(T ), then there exist v1 and v2 such that T (v1) = w1 and T (v2) = w2.
Then T (v1 + v2) = T (v1) + T (v2) = w1 + w2, so that w1 + w2 is also in the image.

◦ Finally, for [S3], if w is in im(T ), then there exists v with T (v) = w. Then T (αv) = αT (v) = αw, so
αw is also in the image.

• There is a straightforward way to �nd a spanning set for the image of a linear transformation:

• Proposition (Computing Image): If T : V →W is linear and v1, . . . ,vn is a basis for V , then T (v1), . . . , T (vn)
spans im(T ).

◦ Note that in general the vectors T (v1), . . . , T (vn) are not necessarily a basis for the image since they
need not be linearly independent (e.g., if T is the zero transformation).

◦ Proof: Suppose w is in the image of T . Then by hypothesis, w = T (v) for some vector v.

◦ Since v1, . . . ,vn is a basis for V , there are scalars a1, . . . , an such that v = a1v1 + · · ·+ anvn.

◦ Then w = T (v) = a1T (v1) + · · ·+anT (vn) is a linear combination of T (v1), . . . , T (vn), so it lies in their
span. This is true for any w in the image of T , so T (v1), . . . , T (vn) spans the image of T as claimed.

• It is natural to wonder whether there is an equally easy way to �nd a spanning set for the kernel of a general
linear transformation: unfortunately, there is not.

◦ In the event that V is �nite-dimensional, the general procedure for �nding the kernel and image is fairly
algorithmic once we choose bases for V and W .

◦ Finding the kernel requires solving a system of homogeneous linear equations, which can be done using
row-reductions.

◦ Finding the image requires reducing the spanning set T (v1), . . . , T (vn) to a basis. As we have already
discussed in our analysis of spanning sets and bases, this reduction can be performed by removing
linearly dependent elements until the resulting set is linearly independent. (We will later describe a
di�erent procedure using row-reductions.)

◦ When the dimensions of V and W are fairly small, these calculations can often be done by inspection,
rather than resorting to row-reduction algorithms.

• Example: If T : R2 → R3 is the linear transformation with T (x, y) = 〈x+ y, 0, 2x+ 2y〉, �nd a basis for ker(T )
and im(T ).

◦ For the kernel, we want to �nd all 〈x, y〉 such that T (x, y) = 〈0, 0, 0〉, which clearly are the vectors of the

form 〈x,−x〉 = x · 〈1,−1〉, so a basis for the kernel is given by the single vector 〈1,−1〉 .

◦ For the image, by the proposition above it is enough simply to �nd the span of T (v1), T (v2) where v1

and v2 are a basis for R2. Using the standard basis, we compute T (1, 0) = 〈1, 0, 2〉 and T (0, 1) = 〈1, 0, 2〉,
so a basis for the image is given by the single vector 〈1, 0, 2〉 .

• Example: If T : P2(C) → C2 is the linear transformation with T (p) = 〈p(1), p′(1)〉, �nd a basis for ker(T )
and im(T ).

◦ Notice that T (a+ bx+ cx2) = 〈a+ b+ c, b+ 2c〉.
◦ For the kernel, we want to �nd all p such that T (p) = 〈0, 0〉, which is equivalent to requiring a+ b+ c = 0
and b + 2c = 0, so that b = −2c and a = c. Thus, the kernel is the set of polynomials of the form

p(x) = c− 2cx+ cx2, which is spanned by the polynomial 1− 2x+ x2 .
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◦ The image is spanned by T (1) = 〈1, 0〉, T (x) = 〈1, 1〉, T (x2) = 〈1, 2〉. Since these vectors clearly span

C2, we may take the �rst two vectors 〈1, 0〉 , 〈1, 1〉 as a basis.

• We can give some intuitive explanations for what the kernel and image are measuring.

◦ The image of a linear transformation measures how close the map is to giving all of W as output: a
linear transformation with a large image hits most of W , while a linear transformation with a small
image misses most of W .

◦ The kernel of a linear transformation measures how close the map is to being the zero map: a linear
transformation with a large kernel sends many vectors to zero, while a linear transformation with a small
kernel sends few vectors to zero.

◦ We can quantify these notions of �large� and �small� using dimension:

• De�nitions: The dimension of ker(T ) is called the nullity of T , and the dimension of im(T ) is called the rank
of T .

◦ A linear transformation with a large nullity has a large kernel, which means it sends many elements to
zero (hence �nullity�).

• There is a very important relationship between the rank and the nullity of a linear transformation:

• Theorem (Nullity-Rank): For any linear transformation T : V → W , dim(ker(T )) + dim(im(T )) = dim(V ).
In words, the nullity plus the rank is equal to the dimension of V .

◦ Proof: Let {xi}i∈I be a basis for ker(T ) and let {wj}j∈J be a basis for im(T ) in W , where I and J are
indexing sets.

◦ Then by the de�nition of the image, there exist {vj}j∈J in V such that T (vj) = wj for each j ∈ J .
◦ We claim that the (multi)set of vectors S = {xi}i∈I ∪ {vj}j∈J is a basis for V ; since the cardinality of
S is clearly dim(ker(T )) + dim(im(T )), this will establish the theorem.

◦ To see that S spans V , let v be an element of V . Since T (v) lies in im(T ), there exist scalars b1, . . . , bk
and vectors v1, . . . ,vk such that T (v) =

∑k
j=1 bjwj .

◦ Then T
[
v −

∑k
j=1 bjvj

]
= T (v) −

∑k
j=1 bjT (vj) =

∑k
j=1 bjwj −

∑k
j=1 bjwj = 0, meaning that v −∑k

j=1 bjvj is in ker(T ) hence can be written as a sum
∑l
i=1 cixi for unique scalars ci and some vectors

x1, . . .xl.

◦ But this means v =
∑k
j=1 bjvj +

∑l
i=1 cixi for some scalars bj and ci, and so S spans V .

◦ To see that S is linearly independent, suppose we had a dependence 0 =
∑k
j=1 bjvj +

∑l
i=1 cixi.

◦ Applying T to both sides yields 0 = T (0) =
∑k
j=1 bjT (vj) +

∑l
i=1 ciT (xi) =

∑k
j=1 bjwj .

◦ Since the wj are linearly independent, we conclude that all the coe�cients bj must be zero.

◦ We then obtain the relation 0 =
∑l
i=1 cixi, but now since the xi are linearly independent, we conclude

that all the coe�cients ci must also be zero. Hence S is linearly independent, as claimed.

• Example: If T : M2×2(R)→ R is the trace map, �nd the nullity and the rank of T and verify the conclusion
of the nullity-rank theorem.

◦ We have T

(
a b
c d

)
= a+ d.

◦ First, we compute the kernel: we see that T

(
a b
c d

)
= 0 when d = −a, so the elements of the kernel

have the form

[
a b
c −a

]
= a

[
1 0
0 −1

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
.

◦ So the kernel has a basis given by the three matrices

[
1 0
0 −1

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
, meaning that the

nullity is 3 .
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◦ For the image, we can clearly obtain any value in R, since T
(
a 0
0 0

)
= a for any a. So the image is

1-dimensional, meaning that the rank is 1 .

◦ Then the rank plus the nullity is 4, which (per the theorem) is indeed equal to the dimension of the space
of 2× 2 matrices.

2.1.3 Algebraic Operations on Linear Transformations

• Now that we have established some basic properties of individual linear transformations, we will study the
ways that linear transformations can interact with one another.

• Functions sharing the same domain and target have a vector space structure, as we have already discussed.

◦ Recall that if f : S → T and g : S → T are functions, then we have de�ned the sum f + g, which is also
a function from S to T , by setting (f + g)(x) = f(x) + g(x) for each x in S.

◦ Likewise, we have de�ned the scalar multiple cf as the function with (cf)(x) = cf(x), for each x in S.

◦ With these operations of (function) addition and scalar multiplication, the set of functions from S to T
forms a vector space.

• We would now like to analyze this structure when the collection of functions is the set of linear transformations
from one vector space to another.

◦ The key observation is that the sum of two linear transformations is also a linear transformation, as is
any scalar multiple of a linear transformation. Explicitly:

• Theorem (Space of Linear Transformations): Let V and W be vector spaces with the same �eld of scalars.
Then the set L(V,W ) of all linear transformations from V to W is a subspace of the space of functions from
V to W .

◦ Proof: We verify the subspace criterion.

◦ [S1]: The zero map is a linear transformation.

◦ [S2]: Suppose that T1 and T2 be linear transformations: we must show that T1 + T2 is also a linear
transformation. This follows from the observations that

(T1 + T2)(v1 + v2) = T1(v1 + v2) + T2(v1 + v2) = [T1(v1) + T1(v2)] + [T2(v1) + T2(v2)]

= [T1(v1) + T2(v1)] + [T1(v2) + T2(v2)] = (T1 + T2)(v1) + (T1 + T2)(v2)

and that

(T1 + T2)(αv) = T1(αv) + T2(αv) = αT1(v) + αT2(v) = α[(T1 + T2)(v)].

◦ [S3]: Suppose that T is a linear transformation: we must show that cT is also a linear transformation.
This follows from the observations that

(cT )(v1 + v2) = cT (v1 + v2) = c [T (v1) + T (v2)] = cT (v1) + cT (v2)

and

(cT )(αv) = cT (αv) = c[αT (v)] = α[cT (v)].

• We can go further by composing linear transformations. As with sums and scalar multiples of linear transfor-
mations, the composition of two linear transformations is also a linear transformation. Explicitly:

• Proposition (Composition of Linear Transformations): If T2 : U → V and T1 : V → W are two linear
transformations, then the composite function T1 ◦ T2 : U →W , written T1T2, is also a linear transformation.

◦ Proof: Observe that T1T2(v1 + v2) = T1[T2(v1 + v2)] = T1[T2(v1) + T2(v2)] = T1T2(v1) + T1T2(v2) and
that T1T2(αv) = T1[T2(αv)] = T1[αT2(v)] = αT1T2(v).
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• Example: For T1(x, y) = 〈x, x− y, y〉 and T2(x, y, z) = 〈x− z, y − z〉, �nd T1T2 and T2T1.

◦ We simply compute T1(T2(x, y, z)) = T1(x− z, y− z) = 〈x− z, x− y, y − z〉 and T2(T1(x, y)) = T2(x, x−
y, y) = 〈x− y, x− 2y〉.
◦ It is quite easy to see from this explicit description that both compositions are linear.

• Example: For T1(x, y) = 〈3x, x− y〉 and T2(x, y) = 〈x+ y, 2x〉, �nd T1T2 and T2T1.

◦ We compute T1(T2(x, y)) = T1(x + y, 2x) = 〈3x+ 3y,−x+ y〉 and T2(T1(x, y)) = T2(3x, x − y) =
〈4x− y, 6x〉.

• Composition of linear transformations is not commutative (in much the same way that composition of general
functions is not commutative): if T1T2 is de�ned, it need not even be the case that T2T1 is de�ned.

◦ In the event that both compositions T1T2 and T2T1 are de�ned (which requires T1 : V → W and
T2 : W → V ), the composite function T1T2 : W → W and the composite function T2T1 : V → V are
maps on di�erent vector spaces.

◦ Finally, even in the very special case where T1 and T2 are both linear transformations from a vector
space V to itself, T1T2 is not generally equal to T2T1, as we saw in the second example above.

• On the other hand, except for commutativity (which fails), the operations of composition, addition, and scalar
multiplication of linear transformations possess most of the other algebraic properties reminiscent of those of
a �eld or vector space.

• Proposition (Identity for Linear Transformations): Suppose V,W are vector spaces with the same �eld of
scalars, and T : V →W is a linear transformation. If IV is the identity map on V and IW is the identity map
on W (each mapping every vector to itself), then TIV = T and IWT = T .

◦ Proof: Trivial, since TIV (v) = T (v) = IWT (v) for every v in V , by de�nition of IV and IW .

• Proposition (Associativity of Linear Transformations): Suppose U, V,W,X are vector spaces with the same
�eld of scalars, and T3 : U → V , T2 : V → W , and T1 : W → X are linear transformations. Then
T1(T2T3) = (T1T2)T3.

◦ Proof: This follows from the fact that function composition is always associative.

◦ Explicitly, for any v in U , we have [T1(T2T3)](v) = T1[(T2T3)(v)] = T1[T2(T3(v))], while [(T1T2)T3](v) =
[T1T2](T3(v)) = T1(T2(T3(v)).

◦ Since these expressions are both equal to T1(T2(T3(v)) for any v in U , these functions are the same.

• Since composition of linear transformations is associative, for a linear transformation T : V → V we can de�ne
powers of T :

• De�nition: For a linear transformation T : V → V , we de�ne T 0 = IV , the identity transformation, and for
n ≥ 1 we set Tn = Tn−1T .

◦ By an easy induction using the associative law, one can see that Tm+n = TmTn for all m,n ≥ 0.

• We also have versions of the distributive law for linear transformations:

• Proposition (Distributivity of Linear Transformations): Suppose U, V,W are vector spaces with the same �eld
of scalars, T1 : U → V and T2 : U → V are linear transformations, and c is any scalar.

1. If S : V →W is any linear transformation, then S(T1 + T2) = ST1 + ST2 and (cS)T1 = c(ST1).

2. If S : W → U is any linear transformation, then (T1 + T2)S = T1S + T2S and (cT1)S = c(T1S).

◦ Proof: For the �rst statement of (1), for any vector v in U we have

[S(T1 + T2)](v) = S[(T1 + T2)(v)] = S[T1(v) + T2(v)] = ST1(v) + ST2(v) = [ST1 + ST2](v)

so S(T1 + T2) and ST1 + ST2 behave identically on every vector v.
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◦ Similarly, for the second statement of (1), we have

[(cS)T1](v) = (cS)[T1(v)] = cS(T1(v)) = c(ST1)(v)

and so (cS)T1 and c(ST1) behave identically on every vector v.

◦ The statements in (2) follow in exactly the same way.

2.1.4 One-to-One Linear Transformations

• Now that we have characterized some of the algebraic properties of linear transformations, we ask the next
natural question: when does a linear transformation T : V →W have an inverse?

◦ To be precise, we are seeking a two-sided inverse for T : a function T−1 : im(T )→ V such that TT−1 is
the identity on im(T ) (meaning that TT−1(w) = w for every w in im(T )) and that T−1T is the identity
on V (meaning that T−1T (v) = v for every v in V ).

◦ For general functions f : S → T , f will possess a two-sided inverse precisely when f is one-to-one,
meaning that f(x1) = f(x2) implies x1 = x2. Equivalently, a one-to-one function is one that sends
distinct elements in its domain to distinct elements in its range.

◦ The construction is straightforward: intuitively, we simply undo the action of f .

◦ Explicitly, suppose f : S → T is one-to-one. For each y ∈ range(f), there exists an element x ∈ S such
that f(x) = y, and by the assumption that f is one-to-one, there is exactly one such x. Now de�ne the
function f−1 : range(f)→ S as follows: for each y ∈ range(f) with f(x) = y, set f−1(y) = x.

◦ This de�nition is well-posed because x is unique, and it is easy to verify that f−1(f(x)) = x for each x
in S and that f(f−1(y)) = y for each y in range(f).

• We can give a simple characterization of whether a particular linear transformation possesses an inverse by
looking at its kernel:

• Proposition (Kernel and One-to-One Maps): If T : V → W is a linear transformation, the following are
equivalent:

1. T is a one-to-one function on V .

2. T possesses a (two-sided) inverse function T−1 : im(T )→ V that is a linear transformation.

3. The kernel ker(T ) consists of only the zero vector.

◦ Proof: We show that (1) implies (2), that (2) implies (3), and that (3) implies (1).

◦ 1 =⇒ 2: If T is a one-to-one function then by the discussion above, we know that T has a two-sided
inverse function T−1, so we just need to show that T−1 is a linear transformation.

∗ [T1]: If w1 and w2 are two elements in im(T ), then by hypothesis there exist vectors v1 and v2 in
V such that T (v1) = w1 and T (v2) = w2. Then T (v1 + v2) = w1 + w2 so applying T−1 yields
T−1(w1 + w2) = T−1T (v1 + v2) = v1 + v2 = T−1(w1) + T−1(w2).

∗ [T2]: If w is any element in im(T ), then by hypothesis there exists a vector v in V such that
T (v) = w. Then T (cv) = cw, so applying T−1 yields T−1(cw) = T−1T (cv) = cv = cT−1(w).

◦ 2 =⇒ 3: Suppose T has an inverse transformation T−1 and that T (v) = 0. Applying T−1 to both sides
yields v = T−1(T (v)) = T−1(0) = 0. Thus, the only element in ker(T ) is the zero vector.

◦ 3 =⇒ 1: Suppose ker(T ) = {0} and that T (v1) = T (v2). Then since T is a linear transformation, we
can write 0 = T (v1) − T (v2) = T (v1 − v2), hence v1 − v2 is in ker(T ). But since ker(T ) = {0}, we
conclude that v1 − v2 = 0, so that v1 = v2. Hence T (v1) = T (v2) implies v1 = v2, which means T is
one-to-one.

• Per the result above, we can easily determine whether a given linear transformation is one-to-one by computing
its kernel.

• Example: Determine whether T : R3 → R3 de�ned by T (x, y, z) = 〈x− y, z, 2x− 2y〉 is one-to-one.
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◦ We simply �nd ker(T ): if T (x, y, z) = 〈0, 0, 0〉, then we must have x− y = 0, z = 0, and 2x− 2y = 0, so
we easily see that ker(T ) is the set of vectors 〈x, y, z〉 with x = y.

◦ Since the nonzero vector 〈1, 1, 0〉 is in ker(T ), for instance, we see that T is not one-to-one and hence

not one-to-one .

• Example: Determine whether the linear transformation T on the space of polynomials with real coe�cients
de�ned by T (p) =

´ x
0
p(t) dt is one-to-one.

◦ We simply �nd ker(T ): if p(x) = a0 + a1x + · · · + anx
n, then T (p) =

´ x
0

(a0 + a1x + · · · + anx
n) dx =

a0x+
a1
2
x2 + · · ·+ an

n+ 1
xn+1.

◦ Since T (p) = 0 only when a0 = a1 = · · · = an = 0, we conclude that ker(T ) = 0 and hence that T is

one-to-one .

◦ In this case, we can even write down the inverse of T : it is the derivative map D(p) = p′(x).

• One-to-one maps have a number of useful properties. Here are a few properties that follow essentially from
the de�nition:

◦ If T : V →W is one-to-one, then its inverse T−1 : im(T )→ V is unique.

◦ If T : V →W is one-to-one, then T−1 : im(T )→ V is also one-to-one, and (T−1)−1 = T .

◦ If T : U → V and S : V →W are one-to-one, then so is ST , and (ST )−1 = T−1S−1.

• Another important property of one-to-one maps is that they preserve linear independence:

• Proposition (One-to-One Maps Preserve Independence): If T : V →W is a one-to-one linear transformation,
the vectors v1, . . . ,vn in V are linearly independent if and only if T (v1), . . . , T (vn) are linearly independent
in W .

◦ Proof: Because T is a linear transformation, we have a1T (v1) + · · ·+ anT (vn) = T (a1v1 + · · ·+ anvn)
for any scalars a1, . . . , an.

◦ First suppose that v1, . . . ,vn are linearly independent, and consider a dependence a1T (v1) + · · · +
anT (vn) = 0.

◦ By the above, we see that T (a1v1+· · ·+anvn) = 0, so since ker(T ) = {0}, this implies a1v1+· · ·+anvn =
0. But since v1, . . . ,vn are linearly independent, we must have a1 = · · · = an = 0.

◦ For the other direction, suppose that T (v1), . . . , T (vn) are linearly independent, and that b1v1 + · · · +
bnvn = 0. Then b1T (v1) + · · ·+ bnT (vn) = T (b1v1 + · · ·+ bnvn) = T (0) = 0.

◦ But since T (v1), . . . , T (vn) are linearly independent, we must have b1 = · · · = bn = 0.

• Corollary: If T : V →W is a one-to-one linear transformation and B is a basis for V , then the vectors T (vi)
for vi in B form a basis for im(T ).

◦ Proof: We showed earlier that the vectors T (vi) span im(T ), and the previous proposition shows that
the T (vi) are also linearly independent, so they are a basis.

2.1.5 Isomorphisms of Vector Spaces

• We will now discuss a notion of equivalence of vector spaces, building on our results about one-to-one maps.

◦ Recall that by an earlier proposition, T : V →W is one-to-one (or injective) if ker(T ) = {0}.
◦ Also recall that we de�ned earlier that T : V →W is onto (or surjective) if im(T ) = W .

◦ A function f : S → T which is both injective and surjective is called a bijection.

• We showed already that a one-to-one linear transformation T : V → W possesses a (unique) inverse map
T−1 : im(T )→ V .
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◦ However, what we would really like is for this inverse map to be a function on all of W , not just on the
image of T .

◦ In order to ensure this, we simply need to require that im(T ) = W , which is the same as saying that T
is onto.

• De�nition: A linear transformation T : V → W is called an isomorphism if T is one-to-one and onto.
Equivalently, T is an isomorphism if ker(T ) = {0} and im(T ) = W . We say that two vector spaces are
isomorphic if there exists an isomorphism between them.

◦ Saying that two spaces are isomorphic is a very strong statement, as we will see: it says that the vector
spaces V and W have exactly the same structure.

◦ More intuitively, if T : V → W is an isomorphism then we can use T to relabel the elements of V to
have the same names as the elements of W , and (once we do so) we cannot tell V and W apart at all.

• Example: Show that the map T : R4 →M2×2(R) given by T (x1, x2, x3, x4) =

[
x1 x2
x3 x4

]
is an isomorphism.

◦ This map is a linear transformation; it clearly is additive and respects scalar multiplication.

◦ Also, ker(T ) = 0 since the only element mapping to the zero matrix is (0, 0, 0, 0). And it is also clear
that im(T ) = M2×2.

◦ Thus T is an isomorphism.

• Example: Show that the map T : C3 → P2(C) given by T (a, b, c) = (a + b) + (a + c)x + (b + c)x2 is an
isomorphism.

◦ This map is a linear transformation; it clearly is additive and respects scalar multiplication.

◦ Also, ker(T ) = {0} since T (a, b, c) = 0 requires a+ b = a+ c = b+ c = 0, and the only solution to this
system is a = b = c = 0.

◦ Finally, a brief calculation will show that T

(
a0 + a1 − a2

2
,
a0 + a2 − a1

2
,
a1 + a2 − a0

2

)
= a0 + a1x +

a2x
2, so im(T ) = P2(C).

◦ Thus T is an isomorphism.

◦ Remark: Alternatively, after computing ker(T ) = {0}, we could have used the nullity-rank theorem to
conclude that the dimension of im(T ) was 3− 0 = 3, hence necessarily all of P2(C).

• Proposition (Isomorphisms and Inverses): If T : V → W is a linear transformation, the following are equiva-
lent:

1. T is one-to-one and onto.

2. T possesses an inverse function T−1 : W → V that is a linear transformation.

3. T possesses an inverse function T−1 : W → V .

◦ Notice that the condition (3) does not include the requirement that T−1 be a linear transformation: the
point is that it is su�cient for T to have an inverse function only.

◦ Proof: We show that (1) implies (2) and that (3) implies (1), since (2) clearly implies (3).

◦ 1 =⇒ 2: If T is one-to-one, then by our earlier results on invertible transformations, we know that T
has a two-sided inverse function T−1 : im(T )→ V that is a linear transformation. If T is also onto, then
im(T ) = W , so the inverse function T−1 is a map from W to V .

◦ 3 =⇒ 1: Suppose T possesses an inverse function T−1. Then by hypothesis, T (T−1(w)) = w for every
w in W , so T is onto. Furthermore, since T (0) = 0 and T−1 is well-de�ned, we must have T−1(0) = 0.
Then if T (v) = 0, applying T−1 to both sides yields v = T−1T (v)) = T−1(0) = 0, so ker(T ) = {0}
meaning that T is one-to-one.

• Here are a few other properties of isomorphisms that follow essentially immediately from the de�nition and
our earlier results about one-to-one maps:
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◦ The identity map IV : V → V is an isomorphism.

◦ If T : V →W is an isomorphism, then T−1 : W → V is also an isomorphism.

◦ If T : U → V and S : V →W are isomorphisms, then ST : U →W is an isomorphism.

◦ Remark: These three properties above collectively show that �being isomorphic� is an equivalence re-
lation2 on vector spaces. (For example, if U is isomorphic to V and V is isomorphic to W , then U is
isomorphic to W .)

◦ Isomorphisms preserve linear independence: if T : V → W is an isomorphism, the vectors v1, . . . ,vn in
V are linearly independent if and only if T (v1), . . . , T (vn) are linearly independent in W .

◦ Isomorphisms preserve span: if T : V → W is an isomorphism and S = {vi}i∈I is a subset of V with
T (S) = {T (vi)}i∈I , then T (spanS) = spanT (S).

• It may seem that isomorphisms are hard to �nd, but this is not the case.

• Theorem (Isomorphism and Dimension): Two (�nite-dimensional) vector spaces V and W are isomorphic if
and only if they have the same dimension. In particular, any �nite-dimensional vector space V with scalar
�eld F is isomorphic to Fn, where n = dimF V .

◦ This result should be rather unexpected: it certainly doesn't seem obvious, just from the eight axioms
of a vector space, that any �nite-dimensional vector space is essentially �the same� as the vector space
Fn for some n. But they are!

◦ The result holds for arbitrary bases, but we will give the proof in the �nite case; the in�nite-dimensional
case is identical save for harder-to-parse notation.

◦ Proof: Isomorphisms preserve linear independence (since they and their inverses are one-to-one), so two
vector spaces can only be isomorphic if they have the same dimension.

◦ For the other direction, choose a basis v1, . . . ,vn for V and a basis w1, . . . ,wn for W . We claim the
map T de�ned by T (a1v1 + · · ·+ anvn) = a1w1 + · · ·+ a1wn is an isomorphism between V and W .

◦ We need to check �ve things: that T is well-de�ned, that T respects addition, that T respects scalar
multiplication, that T is one-to-one, and that T is onto.

◦ T is well-de�ned: The description above de�nes T on every element v of V because v1, . . . ,vn spans V ,
and the de�nition is unique because there is only way of writing v as a linear combination of v1, . . . ,vn
(because v1, . . . ,vn is linearly independent).

◦ T respects addition: If v = a1v1 + · · ·+ a1vn and ṽ = b1v1 + · · ·+ bnvn, then T (v+ ṽ) = (a1 + b1)w1 +
· · ·+ (an + bn)wn = T (v) + T (ṽ) by the distributive law.

◦ T respects scalar multiplication: For any scalar β we have T (βv) = (βa1)w1 + · · ·+ (βan)wn = βT (v).

◦ T is one-to-one: Since w1, . . . ,wn are linearly independent, the only way that a1w1 + · · ·+ a1wn can be
the zero vector is if a1 = a2 = · · · = an = 0, which means ker(T ) = 0.

◦ T is onto: Since w1, . . . ,wn span W , every element w in W can be written as w = a1w1 + · · ·+ a1wn

for some scalars a1, · · · an. Then for v = a1v1 + · · ·+ a1vn, we have T (v) = w.

• In much the same way that being linearly independent, being a spanning set, and being a basis are equivalent
in a �nite-dimensional vector space, we have a similar relationship between being one-to-one, being onto, and
being an isomorphism for a map between two �nite-dimensional vector spaces of the same dimension:

• Proposition (One-to-One, Onto, Isomorphism Equivalences): Suppose T : V → W is a linear transformation
where V and W are �nite-dimensional vector spaces of the same dimension. Then T is one-to-one if and only
if T is onto, if and only if T is an isomorphism.

◦ Proof: Under the given hypotheses, T is one-to-one ⇐⇒ ker(T ) = {0} ⇐⇒ dim(ker(T )) = 0
nullity-rank⇐⇒

dim(im(T )) = dim(V )
dim(V )=dim(W )⇐⇒ dim(im(T )) = dim(W )

dim(W ) �nite⇐⇒ im(T ) = W ⇐⇒ T is onto.

2Recall that a relation ∼ on a set S is an equivalence relation if x ∼ x for every x, if x ∼ y implies y ∼ x, and if x ∼ y and y ∼ z
together imply x ∼ z. Equivalence relations behave similarly to equalities, and (indeed) equality of two numbers is the prototypical
example of an equivalence relation.
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◦ Thus, T is one-to-one if and only if T is onto. These two statements together are equivalent to T being
an isomorphism, so all three statements are equivalent to one another.

• It is important to note that the result above is not true for in�nite-dimensional vector spaces:

• Example: Let V = R[x]. Show that the linear transformation I : V → V de�ned by I[f(x)] =
´ x
0
f(t) dt is

one-to-one but not onto, while the linear transformation D : V → V de�ned by D[f(x)] = f ′(x) is onto but
not one-to-one.

◦ Notice that I[a0 + a1x + · · · + anx
n] = a0x +

a1
2
x2 + · · · + an

n+ 1
xn+1, so the only polynomial that I

maps to zero is the zero polynomial. However, I is not onto, since any polynomial in the image of I is
divisible by x. (In fact, the image of I is exactly the set of polynomials divisible by x.)

◦ In a similar way, D[a0 +a1x+ · · ·+anx
n] = a1 +2a2x+ · · ·+nanx

n−1: then D[1] = 0 = D[0] so D is not
one-to-one. However, D is onto, since as is easy to check directly (or as follows from the fundamental
theorem of calculus), D(I(f)) = f .

◦ Remark: Note here that D(I(f)) = f for every polynomial f , but I(D(f)) = f − a0. The linear
transformations I and D cancel one another when composed in the order D ◦ I, but do not cancel when
composed in the order I ◦D.

2.2 Matrices Associated to Linear Transformations

• So far, we have studied linear transformations T : V →W in a fairly generic way, without much reference to
the structure of V or W .

◦ If we choose a basis for V and a basis for W , however, we can describe the behavior of T with respect
to this basis, and it turns out that T behaves exactly like multiplication by a matrix3, at least when V
and W are �nite-dimensional.

• To illustrate the idea, consider the map from T : R3 → R2 with T (x, y, z) = 〈2x− y + z, 3x+ 4y − 5z〉.

◦ Let us choose the standard basis {v1,v2,v3} = {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} for V and the standard basis
{w1,w2} = {〈1, 0〉 , 〈0, 1〉} for W .

◦ Then T (v1) = 2w1 + 3w2, T (v2) = −w1 + 4w2, and T (v3) = w1 − 5w2.

◦ We can summarize this by saying that T (av1 + bv2 + cv3) = (2a− b+ c)w1 + (3a+ 4b− 5c)w2.

◦ Notice that the coe�cients ofw1 andw2 are given by the entries in the matrix product

[
2 −1 1
3 4 −5

] a
b
c

.
◦ Furthermore, as we proved earlier, the behavior of T on V is completely characterized by its behavior
on a basis of V , and by the de�nition of a basis, any vector in W is completely characterized by the
coe�cients when it is written as a linear combination of the basis elements of W .

◦ In other words, the entries in the matrix

[
2 −1 1
3 4 −5

]
completely characterize the behavior of the

linear transformation T , once we have chosen the bases {v1,v2,v3} for V and {w1,w2} for W .

◦ Observe that the columns of this matrix are simply the coe�cient vectors for the basis elements of V in
terms of the basis elements of W .

• By choosing particular bases for V and for W , we obtain a correspondence between linear transformations
from V to W and matrices: this will allow us to analyze both types of objects together, and to study each
one using our understanding of the other.

◦ For example, by using properties of linear transformations, it is possible to provide almost trivial proofs
of some of the algebraic properties of matrix multiplication which otherwise require a great deal of tedious
algebra.

◦ Conversely, we will be able to prove a number of things about linear transformations by using properties
of matrix arithmetic.

3In fact, the correspondence between linear transformations and matrix multiplication is the reason that matrix multiplication is
de�ned the way it is.
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2.2.1 The Matrix Associated to a Linear Transformation

• To de�ne matrices associated to linear transformations, we �rst need to de�ne the objects we will use for the
construction:

• De�nition: If V is a �nite-dimensional vector space, an ordered basis for V is a basis of V equipped with a
particular ordering.

◦ We will write an ordered basis in the same way as we write a generic set, and it is to be taken for granted
the fact that when we write an expression like β = {v1,v2,v3}, we intend β to be an ordered basis unless
speci�cally stated otherwise.

◦ Example: The pairs β1 = {〈1, 0〉 , 〈0, 1〉}, β2 = {〈1, 1〉 , 〈0, 2〉}, and β3 = {〈0, 2〉 , 〈1, 1〉} are three di�erent
ordered bases of R2. (Note that β2 6= β3 because the ordering is di�erent.)

• De�nition: Let V be a �nite-dimensional vector space with scalar �eld F , and let β = {v1,v2, . . . ,vn} be an
ordered basis for V . For a vector v = a1v1+a2v2+· · ·+anvn, we de�ne the coordinate vector of v relative to β

to be the vector [v]β =


a1
a2
...
an

 in Fn.

◦ Note that because β is a basis of V , the coe�cients a1, a2, . . . , an exist and are unique.

◦ Example: If V is the space of polynomials of degree ≤ 3 with ordered basis β = {1, x, x2, x3}, then the

coordinate vectors of 3− 4x+ x3 and −x are


3
−4
0
1

 and


0
−1
0
0

 respectively.

◦ Example: If V = R2 with ordered basis β = {〈1, 1〉 , 〈0, 2〉}, then the coordinate vectors of 〈1, 1〉, 〈1, 5〉,

and 〈4, 10〉 relative to β are

[
1
0

]
,

[
1
2

]
, and

[
4
3

]
respectively.

• By working with coordinate vectors, we can essentially transport our discussion from the general vector space
V into the more concrete setting of Fn. Explicitly:

• Proposition: Let V be a �nite-dimensional vector space with scalar �eld F , and let β be an ordered basis of
V . Then the map ϕ : V → Fn de�ned by ϕ(v) = [v]β is an isomorphism.

◦ Proof: It is easy to see that ϕ is linear, since [v + w]β = [v]β + [w]β and [cv]β = c[v]β .

◦ Furthermore, since β is linearly independent, the only vector v whose coordinate vector is the zero vector
is v = 0, so ϕ is one-to-one. Finally, since β spans V , the map ϕ is onto.

• Given a linear transformation T : V → W , if we choose ordered bases {v1, . . . ,vn} for V and {w1, . . . ,wm}
for W , we can represent the behavior of T by writing down the coordinate vectors for the elements T (vj)
with respect to the vectors wi.

• De�nition: Let V and W be �nite-dimensional vector spaces with ordered bases β = {v1, . . . ,vn} and
γ = {w1, . . . ,wm} respectively. If T : V → W is a linear transformation, for each 1 ≤ j ≤ n and 1 ≤ i ≤ m

there exist unique scalars ai,j such that T (vj) =

m∑
i=1

ai,jwi for each 1 ≤ j ≤ n. The m× n matrix [T ]γβ whose

(i, j)-entry is ai,j is called the matrix representation of T with respect to the ordered bases β and γ.

◦ The de�nition is rather lengthy, but the basic idea is the same as the one we described above: the jth
column of the matrix [T ]γβ is [T (vj)]γ , the coordinate vector of T (vj) with respect to the basis γ (of W ).

• Example: Let T : R3 → R2 with T (x, y, z) = 〈2x− y + z, 3x+ 4y − 5z〉. Find the matrix associated to T
with respect to the standard bases β = {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} and γ = {〈1, 0〉 , 〈0, 1〉} of R3 and R2

respectively.
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◦ We have T (1, 0, 0) = 2 〈1, 0〉+ 3 〈0, 1〉, T (0, 1, 0) = −1 〈1, 0〉+ 4 〈0, 1〉, and T (0, 0, 1) = 1 〈1, 0〉 − 5 〈0, 1〉.

◦ Therefore, the matrix associated to T is [T ]γβ =

[
2 −1 1
3 4 −5

]
.

• Example: Let T : C3 → P2(C) be de�ned by T (a, b, c) = (a+ b) + (a− 2c)x+ (a+ b+ c)x2. Find the matrix
associated to T with respect to the standard bases β = {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} and γ = {1, x, x2} of C3

and P2(C) respectively.

◦ We have T (1, 0, 0) = 1 + x+ x2, T (0, 1, 0) = 1 + x2, and T (0, 0, 1) = −2x+ x2.

◦ Therefore, the matrix associated to T is [T ]γβ =

 1 1 0
1 0 −2
1 1 1

 .

• Example: Let T : P2(Q) → M2×2(Q) be de�ned by T (p) =

[
p(0) p(1)
p′(0) p′(1)

]
. Find the matrix associated to

T with respect to the standard bases β = {1, x, x2} and γ =

{[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]}
of

P2(Q) and M2×2(Q) respectively.

◦ We have T (1) =

[
1 1
0 0

]
= 1e1,1 + 1e1,2 + 0e2,1 + 0e2,2, T (x) =

[
0 1
1 1

]
= 0e1,1 + 1e1,2 + 1e2,1 + 1e2,2,

and T (x2) =

[
0 1
0 2

]
= 0e1,1 + 1e1,2 + 0e2,1 + 2e2,2.

◦ Therefore, the matrix associated to T is [T ]γβ =


1 0 0
1 1 1
0 1 0
0 1 2

 .

• Example: Let T : P3(R) → P3(R) be de�ned by T (p) =
12

x− 1

´ x
1
p(t) dt. Find the matrix associated to T

with respect to the standard basis β = γ = {1, x, x2, x3}.

◦ We have T (1) = 12, T (x) = 6 + 6x, T (x2) = 4 + 4x+ 4x2, and T (x3) = 3 + 3x+ 3x2 + 3x3.

◦ Therefore, the matrix associated to T is [T ]γβ =


12 6 4 3
0 6 4 3
0 0 4 3
0 0 0 3

 .

• We note in particular that if we use di�erent bases, the same linear transformation will generally have di�erent
associated matrices:

• Example: Let I : R2 → R2 be the identity transformation I(a, b) = 〈a, b〉. Find the matrix associated to I
with respect to the standard basis β1 = γ1 = {〈1, 0〉 , 〈0, 1〉} of R2.

◦ We have I(1, 0) = 1 〈1, 0〉+ 0 〈0, 1〉 and I(0, 1) = 1 〈1, 0〉+ 0 〈0, 1〉.

◦ Therefore, the matrix associated to I is [I]γ1β1
=

[
1 0
0 1

]
, which we recognize as the 2 × 2 identity

matrix.

• Example: Let I : R2 → R2 be the identity transformation I(a, b) = 〈a, b〉. Find the matrix associated to I
with respect to the bases β2 = {〈2,−2〉 , 〈3, 1〉} and γ2 = {〈1,−1〉 , 〈1, 1〉} of R2.

◦ We have I(2,−2) = 2 〈1,−1〉+ 0 〈1, 1〉 and I(3, 1) = 1 〈1,−1〉+ 2 〈1, 1〉.
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◦ Therefore, the matrix associated to I is [I]γ2β2
=

[
2 1
0 2

]
.

◦ Note that the matrix for this linear transformation is di�erent from the one given above: this should not
be surprising, since we are using di�erent bases.

2.2.2 Algebraic Properties of Matrices Associated to Linear Transformations

• We can use the matrix associated to a linear transformation to evaluate the linear transformation on arbitrary
vectors, using matrix multiplication.

◦ Recall that if A is an m× n matrix and B is an n× q matrix, then the matrix product AB is the m× q

matrix whose (i, j)-entry is the sum (AB)i,j =

n∑
k=1

ai,kbk,j .

• Proposition (Associated Matrix Action): Suppose that dim(V ) = n with an ordered basis β = {v1, . . . ,vn},
that dim(W ) = m with an ordered basis γ = {w1, . . . ,wn}, and that T : V → W is linear. If M = [T ]γβ and

v = x1v1 + · · ·+xnvn is a vector in V , then T (v) = y1w1 + · · ·+ymwm, where yi =

n∑
k=1

mi,kxk. Equivalently,

the coordinate vector [T (v)]γ is given by the matrix product M [v]β .

◦ Intuitively, the linear transformation T acts as left-multiplication by its associated matrix [T ]γβ when
considered on the level of coordinate vectors.

◦ Proof: By properties of linear transformations and the fact that T (vi) =

n∑
j=1

mi,kwi, we can write

T (v) = T (

n∑
k=1

xivi) =

n∑
k=1

xiT (vi) =

n∑
k=1

xi

[
n∑
i=1

mi,kwi

]
=

n∑
i=1

[
n∑
k=1

mi,kxi

]
wi

from which we see that yi =

n∑
k=1

mi,kxk as claimed.

• Example: For T : R3 → R2 with T (x, y, z) = 〈2x− y + z, 3x+ 4y − 5z〉, and with the standard bases β and
γ of R3 and R2 respectively, verify that [T (v)]γ = [T ]γβ [v]β for v = 〈2, 3, 5〉.

◦ We computed earlier that [T ]γβ =

[
2 −1 1
3 4 −5

]
for this transformation.

◦ For v = 〈2, 3, 5〉, we have [v]β =

 2
3
5

, so [T ]γβ [v]β =

[
2 −1 1
3 4 −5

] 2
3
5

 =

[
6
−7

]
.

◦ Since T (v) = T (2, 3, 5) = 〈6,−7〉, we indeed see that [T (v)]γ =

[
6
−7

]
= [T ]γβ [v]β .

• By applying this result to a composition of linear transformations, we can deduce that the matrix associated
to a composition of linear transformations is the matrix product of the associated matrices.

◦ Indeed, this property of modeling compositions of linear transformations is (really) the reason that matrix
multiplication is de�ned the way it is.

• Corollary (Linear Transformations and Matrix Multiplication): Suppose that U, V , andW are �nite-dimensional
and have ordered bases α, β, and γ respectively, and that T : U → V and S : V → W are linear transfor-
mations. Then [ST ]γα = [S]γβ [T ]βα, or, in words, the matrix associated to ST is the product of the matrix
associated to S with the matrix associated to T .

16



◦ Proof: Let v be any vector in U . Then by the previous proposition, [ST ]γα[v]α = [ST (v)]γ , while
[S]γβ [T ]βα[v]α = [S]γβ [T (v)]β = [ST (v)]γ .

◦ Since these two expressions are equal for every vector v in U , the matrices [ST ]γα and [S]γβ [T ]βα are equal.

• Example: Let T : R3 → P2(R) be de�ned by T (a, b, c) = (a+ b) + (a− 2c)x+ (a+ b+ c)x2 and S : P2(R)→

M2×2(R) be de�ned by S(p) =

[
p(0) p(1)
p′(0) p′(1)

]
. For the standard bases α = {〈1, 0, 0〉 , 〈0, 1, 0〉 , 〈0, 0, 1〉} of

R3, β = {1, x, x2} of P2(R), and γ = {e1,1, e1,2, e2,1, e2,2} of M2×2(R), verify that [ST ]γα = [S]γβ [T ]βα.

◦ We computed earlier that [T ]βα =

 1 1 0
1 0 −2
1 1 1

 and that [S]γβ =


1 0 0
1 1 1
0 1 0
0 1 2

.

◦ Thus, [S]γβ [T ]βα =


1 0 0
1 1 1
0 1 0
0 1 2


 1 1 0

1 0 −2
1 1 1

 =


1 1 0
3 2 −1
1 0 −2
3 2 0

.
◦ We can also see that ST (a, b, c) =

[
a+ b 3a+ 2b− c
a− 2c 3a+ 2b

]
from a direct calculation, so [ST ]γα =

1 1 0
3 2 −1
1 0 −2
3 2 0

. This is indeed equal to [S]γβ [T ]βα.

• Once we choose ordered bases β and γ for V and W , we can in fact view linear transformations T : V → W
completely interchangeably with their associated matrices. More explicitly:

• Theorem (Matrices and Linear Spaces): Suppose that dim(V ) = n with V having an ordered basis β =
{v1, . . . ,vn} and that dim(W ) = m with W having an ordered basis γ = {w1, . . . ,wn}, where V and W have
the same scalar �eld F . Then the map Φ : L(V,W )→Mm×n(F ) de�ned by Φ(T ) = [T ]γβ is an isomorphism.

◦ This theorem says that the space L(V,W ) of linear transformations from V to W is isomorphic to the
space of m× n matrices, where the correspondence is given by writing down the associated matrix with
respect to the �xed ordered bases β and γ.

◦ Proof: By our characterization of isomorphisms, it is enough to show that Φ is linear, one-to-one, and
onto.

◦ For [T1]: Suppose S and T are elements of L(V,W ). Then by de�nition, (S+T )(vj) = S(vj) +T (vj) =
m∑
i=1

si,jwi +

m∑
i=1

ti,jwi =

m∑
i=1

(si,j + ti,j)wi, so the (i, j)-entry of [S + T ]γβ is the (i, j)-entry of [S]γβ plus

the (i, j)-entry of [T ]γβ . Thus, [S + T ]γβ = [S]γβ + [T ]γβ .

◦ For [T2]: Suppose T is an element of L(V,W ) and c is a scalar. Then by de�nition, (cT )(vj) =

cT (vj) = c

m∑
i=1

ti,jwi =

m∑
i=1

(cti,j)wi, so the (i, j)-entry of [cT ]γβ is c times the (i, j)-entry of [T ]γβ . Thus,

[cT ]γβ = c[T ]γβ .

◦ The fact that Φ is one-to-one is immediate: if [T ]γβ is the zero matrix, then for any v in V , the coordinate
vector [T (v)]γ is the zero vector. Thus, T (v) = 0 for all v in V , so T is the zero transformation.

◦ Finally, Φ is onto, because a linear transformation is characterized by its values on a basis (and these
values can be arbitrary). Explicitly, for any matrixM inMm×n(F ), the linear transformation T speci�ed

by choosing T (vj) =

m∑
i=1

mi,jwi for each 1 ≤ j ≤ n has [T ]γβ = M .

• Corollary: If dim(V ) = n and dim(W ) = m, then the dimension of L(V,W ) is mn.

17



◦ Proof: Isomorphisms preserve dimension; the theorem above says that L(V,W ) is isomorphic toMm×n(F),
and the latter has dimension mn.

• We will remark at this juncture that, although we have used matrix multiplication as an ingredient in the proofs
above, we did not actually invoke any of the algebraic properties of matrix multiplication (e.g., associativity
or distributivity).

◦ In fact, we can use the results above to prove that matrix multiplication is associative and distributive,
by invoking the corresponding facts about linear transformations (which we have already established).

• Theorem (Algebra of Matrix Operations): For any matrices A, B, and C such that the appropriate products
are de�ned, we have A(BC) = (AB)C, (A+B)C = AC +BC, and A(B + C) = AB +AC.

◦ Proof: To show A(BC) = (AB)C, let U, V,W,X be vector spaces such that T3 : U → V has associated
matrix A, T2 : V → W has associated matrix B, and T1 : W → X has associated matrix C, for �xed
bases of each space. (The theorems above guarantee that we can make such choices.)

◦ Then, since composition of linear transformations is associative, we see that T1(T2T3) = (T1T2)T3.

◦ Writing down the associated matrix to each transformation, using the theorems above, then immediately
yields A(BC) = (AB)C.

◦ The other properties follow in a similar way.

◦ Remark: This method provides a much cleaner proof of these algebraic properties of matrix multiplication
than the standard method of multiplying everything out from the de�nition.

2.2.3 The Rank of a Linear Transformation

• We can now give a proper formulation of the notion of the rank of a matrix:

• De�nition: If A is an m × n matrix, the rank of A is de�ned to be the rank of the linear transformation
T : Fn → Fm of left-multiplication by A (namely, T (v) = Av). Equivalently, the rank is the dimension of
im(T ).

◦ The most important property of rank is that it is unchanged upon multiplication by an invertible matrix.

◦ We will prove this fact for linear transformations in general.

• Proposition (Rank and Isomorphisms): If T : V →W , L : W →W , and R : V → V are linear transformations
with L and R isomorphisms, then rank(LT ) = rank(T ) = rank(TR).

◦ Proof: First consider LT : V → W . Since L is an isomorphism (and therefore one-to-one), when we
restrict L to im(T ), it remains one-to-one. Therefore, this restricted map Lim(T ) is an isomorphism of
im(T ) with im(LT ). Hence dim(im(LT )) = dim(im(T )), and so rank(LT ) = rank(T ).

◦ Now consider TR : V → W . Since R is an isomorphism (and therefore onto), im(TR) = im(T ). Thus,
rank(AQ) = dim(im(TR)) = dim(im(T )) = rank(A).

• Corollary (Rank and Invertible Matrices): If A is an m× n matrix, P is an invertible m×m matrix, and Q
is an invertible n× n matrix, then rank(PA) = rank(A) = rank(AQ).

◦ Proof: Let V = Fn and W = Fm, and take T : V → W to have associated matrix A, L : W → W to
have associated matrix P , and R : V → V to have associated matrix Q.

◦ Since P and Q are invertible matrices, L and R are isomorphisms. The previous proposition then yields
the results immediately.

• The rank of a matrix can be computed from any linear transformation having that associated matrix:

• Corollary: If T : V →W is a linear transformation and β and γ are ordered bases for V and W respectively,
then rank(T ) = rank([T ]γβ).
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◦ Proof: Let dim(V ) = n and dim(W ) = m. The coordinate vector maps associated to β and γ yield
isomorphisms L : Fn →W and R : V → Fm.
◦ Then [T ]γβ = LTR by de�nition, so rank([T ]γβ) = rank(LTR) = rank(LT ) = rank(T ) by the proposition
above.

• We are often interested in the rank when solving systems of linear equations. The key fact is that row
operations do not alter the rank:

• Corollary: Applying elementary row operations to a matrix does not alter its rank.

◦ Proof: Each elementary matrix is invertible, and a product of invertible matrices is also invertible.

• Now we can show that our much-earlier de�nition of the rank as the number of pivots in a row-echelon form
is indeed well-de�ned and consistent with the one given above.

• Proposition (Rank and Row-Echelon Form): The rank of any matrix is equal to the number of pivots in (any)
row-echelon form.

◦ Proof: As noted above, applying row operations to a matrix A does not alter its rank, so the rank of A
is equal to the rank of (any) row-echelon form.

◦ Thus we may assume B is in row-echelon form. By de�nition, the rank of B is dim(im(T )) where
T : Fn → Fm is the linear transformation T (v) = Bv.

◦ Furthermore, im(T ) is spanned by {T (e1), T (e2), . . . , T (en)}, where {e1, . . . , en} is the standard basis of
Fn. However, T (ej) is simply the jth column of B.

◦ Now we simply observe that the pivotal columns in a row-echelon matrix are linearly independent (each
pivotal column has one more nonzero entry than the previous one) and the nonpivotal columns are
spanned by the pivotal columns (since all of their nonzero entries lie above the pivot entries).

◦ Thus, the rank of A, which is the same as the dimension of im(T ), is the number of pivots in the
row-echelon form of A.

2.2.4 Inverse Transformations and Inverse Matrices

• With minimal additional e�ort, we can also study the matrices associated to a linear transformation T : V →
W having an inverse T−1 : W → V .

◦ Recall that if A is an n × n matrix, we say that A is invertible if there exists an n × n matrix B such
that AB = In = BA, and we call B = A−1 the inverse of A.

◦ As we have already mentioned, we can test whether a particular matrix is invertible by testing whether
its determinant is nonzero, while the inverse matrix itself can be computed using row-reduction.

◦ Our focus at the moment is primarily on the theoretical properties of invertible matrices.

• Theorem (Invertible Transformations): Suppose V and W are �nite-dimensional with ordered bases β and γ,
and that T : V → W is linear. Then T has an inverse transformation T−1 : W → V if and only if [T ]γβ is an

invertible matrix, and in such a case, [T−1]βγ = ([T ]γβ)−1.

◦ Proof: Let dim(V ) = n. First, if T has an inverse T−1, then T is an isomorphism, so dim(W ) = dim(V ).

◦ Next, by de�nition T−1T (v) = v for every v in V , and TT−1(w) = w for every w in W , so [T−1T ]ββ
and [TT−1]γγ are both equal to the n× n identity matrix.

◦ But since [T−1T ]ββ = [T−1]βγ [T ]γβ and [TT−1]γγ = [T ]γβ [T−1]βγ , we immediately conclude that [T ]γβ is

invertible and has inverse [T−1]βγ .

◦ Conversely, suppose that [T ]γβ is an invertible matrix, and let S be the linear transformation with asso-

ciated matrix ([T ]γβ)−1.
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◦ Then [ST ]ββ = [S]βγ [T ]γβ = In and similarly [TS]γγ = [T ]γβ [S]βγ = In. Thus, both ST and TS have
associated matrix equal to the identity matrix, so they are both the identity transformation. Hence, T
has a two-sided inverse function.

• It turns out that we can weaken the de�nition of �invertible matrix� slightly without any loss:

• Proposition (One-Sided Inverses): If A and B are n× n matrices such that AB = In, then A and B are both
invertible and their inverses are each other.

◦ What this result says is that a matrix possessing either a left inverse or a right inverse automatically has
a two-sided inverse.

◦ Proof: Choose an n-dimensional vector space V with a basis β, and let T : V → V and S : V → V have
associated matrices A and B.

◦ Then the associated matrix for ST is the identity matrix, so ST = I. But this implies that T is one-
to-one, hence (since V is �nite-dimensional) an isomorphism. Then S = (ST )T−1 = T−1 is also an
isomorphism, so by the above results, the associated matrices A and B are both invertible.

◦ Finally, using associativity, we have A−1 = A−1AB = B and similarly B−1 = ABB−1 = A.

• There are many equivalent criteria for when a matrix has an inverse. Here are some of them:

• Proposition (Invertible Matrices): If V is an n-dimensional vector space with ordered basis β, and T : V → V

has associated matrix A = [T ]ββ , the following are equivalent:

1. The matrix A is invertible: there exists an n× n matrix B with AB = In = BA.

2. The matrix A has a right inverse: there exists an n× n matrix B with AB = In.

3. The matrix A has a left inverse: there exists an n× n matrix B with CA = In.

4. The linear transformation T is an isomorphism.

5. The kernel of T consists only of the zero vector.

6. The rank of T (equivalently, the rank of A) is equal to n.

7. The linear system Ax = 0 has only the trivial solution x = 0.

8. The linear system Ax = c has exactly one solution x, for any c.

9. The matrix A is row-equivalent to the identity matrix.

10. The determinant of A is nonzero.

◦ Proof: The proposition above shows that (1), (2), and (3) are equivalent. Propositions from earlier show
(4), (5), and (6) are equivalent, and that (1) and (4) are equivalent, so (1)-(6) are all equivalent.

◦ For (7), note that Ax = 0 is equivalent to saying that T (x) = 0, so the system Ax = 0 has only the
solution x = 0 precisely when the kernel of T consists only of the zero vector. Thus, (5) and (7) are
equivalent.

◦ For (8), note that Ax = c is equivalent to saying that T (x) = c, so the system Ax = c has a unique
solution precisely when T (x) = c has exactly one solution for x: but this is equivalent to saying that T
has an inverse function, which is equivalent to (4).

◦ For (9), since row operations do not change the solutions to a system, saying that A is row-equivalent to
the identity matrix is equivalent to saying that the system Ax = c has a unique solution, which is (8).

◦ Finally, for (10), we showed previously that det(A) 6= 0 is equivalent to saying that A is row-equivalent
to the identity matrix, which is (9).
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2.2.5 Change of Basis, Similarity

• As an application of inverse matrices, we can discuss change of basis.

◦ As motivation, consider the graph of the equation 6x2 + 4xy+ 9y2 = 1 in the plane. Without modifying
the equation, it is di�cult to determine the shape of the graph of this curve.

◦ If, however, we de�ne new variables s =
1√
5
x +

2√
5
y and t =

2√
5
x − 1√

5
y, a short computation will

show that the equation 6x2 + 4xy + 9y2 = 1 is equivalent to 2s2 + t2 = 5.

◦ Since the vectors s =
1√
5
〈1, 2〉 and t =

1√
5
〈2,−1〉 both have length 1 and are orthogonal (as their dot

product is zero), we can see that the equation 2s2 + t2 = 5 therefore represents an ellipse whose two axes
have lengths

√
5 (in the t-direction) and

√
5/2 (in the s-direction).

◦ By using the basis {s, t} for R2 rather than the standard basis {〈1, 0〉 , 〈0, 1〉}, we obtain a more useful
description of the curve 6x2 + 4xy + 9y2 = 1.

• We now describe, in general, how coordinates of vectors change when we write them in terms of a new basis.

• De�nition: Suppose β and γ are two ordered bases of the �nite-dimensional vector space V . The change-of-basis matrix
is de�ned to be Q = [I]γβ , where I is the identity transformation on V .

◦ Note [I]γβ is the matrix whose columns represent vectors in β as linear combinations of vectors in γ.

• Proposition (Change of Basis): Suppose β and γ are two ordered bases of the �nite-dimensional vector space
V . Then the change-of-basis matrix [I]γβ is invertible, and for any vector v in V , we have [v]γ = [I]γβ [v]β .

◦ Proof: Since I is invertible, by our earlier results we immediately see that the change-of-basis matrix is
invertible and its inverse is [I]βγ .

◦ Furthermore, by our proposition about the associated matrix action, we have [I]γβ [v]β = [Iv]γ = [v]γ .

• Example: In R3, let β = {〈2, 1, 2〉 , 〈−1, 1, 0〉 , 〈3, 1, 3〉} and γ = {〈1, 0, 0〉 , 〈1, 1, 0〉 , 〈1, 1, 1〉}. Find the change-
of-basis matrix [I]γβ and verify that [v]γ = [I]γβ [v]β for v = 〈13, 9, 16〉.

◦ We compute 〈2, 1, 2〉 = 1 〈1, 0, 0〉 − 1 〈1, 1, 0〉+ 2 〈1, 1, 1〉, 〈−1, 1, 0〉 = −2 〈1, 0, 0〉+ 1 〈1, 1, 0〉+ 0 〈1, 1, 1〉,
and 〈3, 1, 3〉 = 2 〈1, 0, 0〉 − 2 〈1, 1, 0〉+ 3 〈1, 1, 1〉.

◦ Thus, the change-of-basis matrix is [I]γβ =

 1 −2 2
−1 1 −2
2 0 3

 .

◦ We also calculate 〈13, 9, 16〉 = 2 〈2, 1, 2〉+ 3 〈−1, 1, 0〉+ 4 〈3, 1, 3〉 = 4 〈1, 0, 0〉 − 7 〈1, 1, 0〉+ 16 〈1, 1, 1〉.

◦ Then [I]γβ [v]β =

 1 −2 2
−1 1 −2
2 0 3

 2
3
4

 =

 4
−7
16

 = [v]γ , as required.

• If we have a linear transformation T : V →W , we can change basis in both V and W to obtain a new matrix
associated to T . This matrix is a product of the original matrix with the appropriate change-of-basis matrices
in a natural way:

• Proposition (Change of Basis): Suppose α and β are ordered bases of the �nite-dimensional vector space V ,
that γ and δ are ordered bases of the �nite-dimensional vector space W , and that T : V →W is linear. Then
[T ]δβ = P [T ]γαQ

−1, where P = [I]δγ is the change of basis matrix from γ to δ (i.e., from old to new in W ) and

and Q = [I]βα is the change of basis matrix from α to β (i.e., from old to new in V ).

◦ Proof: By the previous proposition on the change of basis matrix, Q−1 = [I]αβ . Then P [T ]γαQ
−1 =

[I]δγ [T ]γα[I]αβ = [ITI]δβ = [T ]δβ , as claimed.

• Corollary: Suppose α and β are ordered bases of the �nite-dimensional vector space V and T : V → V is
linear. Then [T ]ββ = Q[T ]ααQ

−1 where Q = [I]βα is the change of basis matrix from α to β.
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◦ Proof: Apply the previous result when γ = α and δ = β.

• Example: In P1(R), let β = {1, 1− x} and γ = {1 + x, x}. For T (p) = p(1) + xp′(x), �nd [T ]ββ and [T ]γγ and

verify that [T ]γγ = Q[T ]ββQ
−1 where Q = [I]γβ .

◦ We have T (1) = 1 and T (1− x) = −1 + (1− x), so [T ]ββ =

[
1 −1
0 1

]
.

◦ Also, T (1 + x) = 2(1 + x)− x and T (x) = 1 + x, so [T ]γγ =

[
2 1
−1 0

]
.

◦ Since 1 = (1 + x)− x and 1− x = (1 + x)− 2x, Q = [I]γβ =

[
1 1
−1 −2

]
.

◦ Inversely, since 1 + x = 2− (1− x) and x = 1− (1− x), we have Q−1 = [I]βγ =

[
2 1
−1 −1

]
.

◦ Then Q[T ]ββQ
−1 =

[
1 1
−1 −2

] [
1 −1
0 1

] [
2 1
−1 −1

]
=

[
2 1
−1 0

]
= [T ]γγ as claimed.

• For a variety of reasons, we will be interested in studying classes of matrices which represent the same linear
transformation in di�erent bases. Such matrices have a particular name:

• De�nition: We say two n× n matrices A and B are similar (or conjugate) if there exists an invertible n× n
matrix Q such that B = QAQ−1. (We refer to QAQ−1 as the conjugate of A by Q.)

◦ Notice that if B = QAQ−1 then A = Q−1BQ, so similarity is a symmetric relation.

◦ Example: The matrices A =

[
1 2
1 1

]
and B =

[
3 −1
2 −1

]
are similar with Q =

[
2 −3
−1 2

]
. Explic-

itly, we can compute that Q−1 =

[
2 3
1 2

]
, and then see

[
2 −3
−1 2

] [
3 −1
2 −1

] [
2 3
1 2

]
=

[
1 2
1 1

]
,

so that QAQ−1 = B.

◦ Remark: The matrix Q =

[
2 1
1 0

]
also has B = QAQ−1. In general, if two matrices A and B are

similar, then there can be many di�erent matrices Q with B = QAQ−1.

• Proposition (Similar Matrices): If A and B are similar n×n matrices, then there exists a linear transformation

T : V → V on an n-dimensional vector space and ordered bases α and β of V such that A = [T ]αα and B = [T ]ββ .

◦ More simply: If A and B are similar n× n matrices, then A and B are the associated matrices to some
shared linear transformation.

◦ Proof: Suppose B = QAQ−1 for some Q. Choose any n-dimensional vector space V with ordered basis
α, and let T : V → V be the linear transformation with A = [T ]αα.

◦ Take β to be the ordered basis such that Q = [I]βα: in other words, with αj =

n∑
i=1

Qi,jβi. (Since Q is

invertible, these βj are a basis for V .) Then B = QAQ−1 = Q[T ]ααQ
−1 = [T ]ββ by our results above.

• Similar matrices, owing to the fact that they represent the same linear transformation in di�erent bases, share
many algebraic properties.

◦ Explicitly, if B = QAQ−1 and D = QCQ−1, then B + D = Q(A + C)Q−1, BD = Q(AC)Q−1, and
B−1 = Q(A−1)Q−1. This tells us that the sum, product, or inverse of conjugates is the conjugate of the
corresponding sum, product, or inverse.

• We later study the following question: given a matrix A, what is the simplest matrix B that A is similar to?

Well, you're at the end of my handout. Hope it was helpful.
Copyright notice: This material is copyright Evan Dummit, 2012-2025. You may not reproduce or distribute this
material without my express permission.

22


