
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 9 Solutions

1. Let V be a �nite-dimensional vector space with scalar �eld F and T : V → V be linear. Identify each of the
following statements as true or false:

(a) If dim(V ) = n and T has n distinct eigenvalues in F , then T is diagonalizable.

• True : if T has n distinct eigenvalues, then each eigenspace must have dimension 1. But then each
eigenvalue's multiplicity is equal to the dimension of its eigenspace, so T is diagonalizable.

(b) If dim(V ) = n and T is diagonalizable, then T has n distinct eigenvalues in F .

• False : there are diagonalizable linear transformations with repeated eigenvalues, such as the identity
transformation (all its eigenvalues are 1, but it is clearly diagonalizable).

(c) If A is a diagonalizable n× n matrix, then so is A+ In.

• True : if Q−1AQ = D is diagonal, then Q−1(A+ In)Q = D + In is also diagonal.

(d) For any scalar λ, the λ-eigenspace of T is a subspace of the generalized λ-eigenspace of T .

• True : every λ-eigenvector is a generalized λ-eigenvector, so the λ-eigenspace is a subset (hence a
subspace) of the generalized λ-eigenspace.

(e) For any λ, a chain of generalized λ-eigenvectors is linearly independent.

• True : we proved this in the course of showing that the generalized λ-eigenspace has a chain basis.

(f) There always exists a basis β of V consisting of generalized eigenvectors of T .

• False : we must also know that the eigenvalues of T all lie in the scalar �eld F . For example, the
linear transformation T (x, y) = (y,−x) has no such basis when F = R, since its eigenvalues are ±i.

(g) If all eigenvalues of T lie in F , then there exists a basis β of V of generalized eigenvectors for T .

• True : this was proven in class.

(h) There always exists some basis β of V such that the matrix [T ]ββ is in Jordan canonical form.

• False : we must also know that the eigenvalues of T all lie in the scalar �eld F . For example, the
linear transformation T (x, y) = (y,−x) has no such basis when F = R, since its eigenvalues are ±i.

(i) Every matrix A ∈Mn×n(C) has a Jordan canonical form.

• True : here, because the eigenvalues of A all lie in C (because C is algebraically closed), we know
that A has a Jordan canonical form.

(j) If a matrix is diagonalizable, then its Jordan canonical form is diagonal.

• True : if a matrix is diagonalizable then its Jordan canonical form will be the diagonalization.

(k) If the Jordan canonical form of a matrix is diagonal, then the matrix is diagonalizable.

• True : since the matrix is similar to its Jordan form, that means the matrix is similar to a diagonal
matrix, which is to say, it is diagonalizable.

(l) Two matrices are similar if and only if they have equivalent Jordan canonical forms.

• True : every matrix is similar to its Jordan canonical form, and similarity is transitive.

(m) If J is the Jordan canonical form of A, then J + In is the Jordan canonical form of A+ In.

• True : if PAP−1 = J then P (A+ In)P
−1 = J + In, and J + In is also in Jordan canonical form.

(n) If J is the Jordan canonical form of A, then J2 is the Jordan canonical form of A2.

• False : although the Jordan form of A2 is conjugate to J2, J2 need not be in Jordan form.
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2. For each matrix M ∈Mn×n(C), �nd a basis for each of its generalized eigenspaces:

(a)

[
−4 9
−4 8

]
.

• The characteristic polynomial is det(tI −M) = (t− 2)2 so the eigenvalues are λ = 2, 2.

• We see that (2I2 −M)2 =

[
−4 9
−4 8

]2
=

[
0 0
0 0

]
, so every vector is a generalized 2-eigenvector:

thus we can take any basis, such as

[
1
0

]
,

[
0
1

]
.

(b)

 1 1 1
−2 4 2
2 −2 0

.
• The characteristic polynomial is det(tI −M) = (t− 1)(t− 2)2 so the eigenvalues are λ = 1, 2, 2.

• First, I2−M =

 0 −1 −1
2 −3 −2
−2 2 1

 RREF→

 1 0 1/2
0 1 1
0 0 0

 giving generalized 1-eigenbasis

 −1−2
2

 .

• (2I2−M)2 =

 1 −1 −1
2 −2 −2
−2 2 2

 RREF→

 1 −1 −1
0 0 0
0 0 0

 giving generalized 2-eigenbasis

 1
0
1

 ,
 1

1
0

 .

(c)

 1 −1 −5
−1 2 8
1 0 −2

.
• The characteristic polynomial is det(tI −M) = t2(t− 1) so the eigenvalues are λ = 0, 0, 1.

• First, (−M)2 =

 −3 −3 −3
5 5 5
−1 −1 −1

 RREF→

 1 1 1
0 0 0
0 0 0

 giving generalized 0-eigenbasis

 −10
1

 ,
 −11

0

 .

• Also, I2 −M =

 0 1 5
1 −1 −8
−1 0 3

 RREF→

 1 0 −3
0 1 5
0 0 0

 giving generalized 1-eigenbasis

 3
−5
1

 .

3. Suppose the characteristic polynomial of the 5× 5 matrix A is p(t) = t3(t− 1)2.

(a) Find the eigenvalues of A, and list all possible dimensions for each of the corresponding eigenspaces.

• The eigenvalues are t = 0, 0, 0, 1, 1 . The possible dimensions of the 0-eigenspace are 1, 2, 3 while

the possible dimensions of the 1-eigenspace are 1, 2 .

(b) Find the determinant and trace of A.

• The determinant is the product of the eigenvalues (with multiplicity), which by (a) is 0312 = 0 ,

and the trace is the sum of the eigenvalues (with multiplicity), which by (a) is 3 · 0 + 2 · 1 = 2 .

(c) List all possible Jordan canonical forms of A up to equivalence.

• For the 0-blocks, the possible sizes are 1-1-1, 2-1, or 3, and for the 1-blocks, the possible sizes are
1-1 or 2.

• Thus, there are 6 possibilities up to equivalence:
0

0
0

1
1

,


0 1
0

0
1

1

,


0 1
0 1

0
1

1

,


0
0

0
1 1

1

,


0 1
0

0
1 1

1

,


0 1
0 1

0
1 1

1

.
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(d) If ker(A) and ker(A− I) are both 2-dimensional, what is the Jordan canonical form of A?

• If ker(A) is 2-dimensional then the 0-eigenspace has dimension 2, which means there are 2 Jordan
blocks with eigenvalue 0, which therefore have sizes 2 and 1.

• By the same logic, there are 2 Jordan blocks with eigenvalue 1, which therefore have sizes 1 and 1.

• So the Jordan canonical form is J =


0 1

0
0

1
1

 .

(e) If A3 is diagonalizable but A2 is not, what is the Jordan canonical form of A?

• The Jordan forms of A2 and A3 can be computed from the square and cube of the Jordan form of
A.

• For the 1-blocks, since

[
1 1
0 1

]3
=

[
1 3
0 1

]
, we see that if A has a 1-block of size 2, then A3 would

also have a 1-block of size 2 hence not be diagonalizable. So A must have two 1-blocks of size 1.

• For the 0-blocks, since

 0
0

0

2

=

 0 1
0

0

2

=

 0
0

0

 if A had three blocks of

size 1 or blocks of sizes 1 and 2, then A2 would be diagonalizable. However since

 0 1
0 1

0

2

=

 0 0 1
0 0

0

 and

 0 1 0
0 1

0

3

=

 0
0

0

, if the block had size 3 then A2 would not be

diagonalizable but A3 would.

• Thus the only possible Jordan canonical form is J =


0 1

0 1
0

1
1

 .

4. Find the Jordan canonical form of each matrix A over C.

(a) A =

[
−6 9
−4 6

]
.

• The characteristic polynomial is det(tI −A) = t2, so the eigenvalues are λ = 0, 0.

• We can calculate rank(−A) = 1 and rank(−A)2 = 0.

• This means there is 1 Jordan block of size 2, so the Jordan canonical form is

[
0 1

0

]
.

• Alternatively, we could see this just by observing that the matrix is not diagonalizable, since then
the only possible Jordan canonical form is the one listed above.

(b) A =

 1 2 4
2 4 1
4 1 2

 .

• The characteristic polynomial is det(tI−A) = (t−7)(t2−7), so the eigenvalues are λ = 7,−
√
7,
√
7.

• Since the matrix is diagonalizable (either from the eigenvalue list, or because it is a real symmetric

matrix), the Jordan form is the diagonalization

 7 √
7

−
√
7

 .
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(c) A =

[
5 1
−2 7

]
.

• The characteristic polynomial is det(tI −A) = t2 − 12t+ 37, so the eigenvalues are λ = 6± i.

• Since the eigenvalues are distinct, the matrix is diagonalizable, and the diagonalization

[
6 + i

6− i

]
is also the Jordan canonical form.

(d) A =

 1 1 −1
−2 3 −2
−1 0 1

.
• The characteristic polynomial is det(tI −A) = (t− 1)(t− 2)2, so the eigenvalues are λ = 1, 2, 2.

• Since 1 is a single eigenvalue, it must appear in a block of size 1.

• Also, we can calculate rank(2I −A) = 2 and rank(2I −A)2 = rank(2I −A)3 = 1.

• This means there is 1 Jordan 1-block of size 2, so the Jordan canonical form is

 1
2 1

2

 .

• Alternatively, we could see this just by observing that the matrix is not diagonalizable, since then
the only possible Jordan canonical form is the one listed above.

(e) A =

 3 1 0
−1 1 0
4 5 2

.
• The characteristic polynomial is det(tI −A) = t3 − 6t2 + 12t− 8, whose roots are λ = 2, 2, 2.

• This means all Jordan blocks have eigenvalue 2. To �nd the sizes, we calculate rank(2I − A) = 2,
rank(2I − A)2 = 1, rank(2I − A)3 = 0. So there is only one Jordan block and it has size 3, so the

Jordan canonical form is

 2 1
2 1

2

 .

(f) A =

 3 1 0
−1 1 0
3 3 2

.
• The characteristic polynomial is det(tI −A) = t3 − 6t2 + 12t− 8, whose roots are λ = 2, 2, 2.

• This means all Jordan blocks have eigenvalue 2. To �nd the sizes, we calculate rank(2I − A) = 1,
rank(2I −A)2 = 0.

• This means there are two Jordan blocks of sizes 1 and 2, so the Jordan canonical form is

 2 1
2

2

 .

(g) A =


1 0 2 0
2 2 −7 −1
0 0 2 0
2 1 −2 0

 .

• The characteristic polynomial is det(tI −A) = (t− 1)3(t− 2) so the eigenvalues are λ = 1, 1, 1, 2.

• Since 2 is a single eigenvalue, it must occur in a single Jordan block of size 1.

• Also, we compute rank(A − I) = 2, rank(A − I)2 = rank(A − I)3 = 1. This means that for λ = 1,
there is Jordan block of size 1 and one block of size 2.

• Hence the Jordan form is


1 1

1
1

2

 .
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5. The goal of this problem is to �nd the Jordan form of the n× n �all 1s� matrix over an arbitrary �eld F . So

let n ≥ 2 and let A =


1 1 · · · 1
1 1 · · · 1
...

...
. . .

...
1 1 · · · 1

.
(a) Show that the 0-eigenspace of A has dimension n− 1 and �nd a basis for it.

• Note that the 0-eigenspace is the same as the nullspace, which we can �nd by row-reducing.

• The reduced row-echelon form of A is clearly


1 1 · · · 1
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

, which has n−1 non-pivot columns.

• Thus, the 0-eigenspace has dimension n− 1 and has a basis (1,−1, 0, . . . , 0), (1, 0,−1, 0, . . . , 0), ... ,
(1, 0, 0, . . . , 0,−1).

(b) If the characteristic of F does not divide n, �nd the remaining nonzero eigenvalue of A and a basis for
the corresponding eigenspace, and show that A is diagonalizable. [Hint: Calculate the trace of A.]

• Since the characteristic polynomial has degree n, there must be exactly one additional eigenvalue.

• Since the trace of A is equal to n, we see that the sum of all the eigenvalues is n, so the other
eigenvalue must be n.

• It is then quite easy to see that (1, 1, . . . , 1) is an n-eigenvector for A.

• There are thus two eigenspaces, the 0-eigenspace of dimension n−1 and the n-eigenspace of dimension
1. Since the sum of the eigenspace dimensions is n, A is diagonalizable.

(c) If the characteristic of F does divide n, show that A is not diagonalizable, and �nd its Jordan canonical
form. [Hint: Note that char(F ) dividing n is the same as saying that n = 0 in F .]

• By the same logic as in part (b), since the trace of A is equal to n, the other eigenvalue must be n.

• But now n = 0 in F , so in fact there is only one eigenvalue, namely, λ = 0.

• From the calculation in (a), the 0-eigenspace only has dimension n − 1, so since it is now the only
eigenspace, we conclude that A is not diagonalizable.

• For the Jordan form, we see that all eigenvalues are 0 and that the dimension of the 0-eigenspace is
n − 1. The only possibility, therefore, is that there are n − 2 Jordan blocks of size 1 and 1 Jordan

block of size 2, meaning the Jordan form is


0 1 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 · · · · · · 0

.

6. Suppose V is �nite-dimensional and T : V → V is a projection, so that T 2 = T .

(a) Show that the only possible eigenvalues of T are 0 and 1.

• Suppose v is an eigenvector of T with eigenvalue λ, so that T (v) = λv.

• Then λ2v = T 2(v) = T (v) = λv, so (λ2 − λ)v = 0. Since v 6= 0 this means λ2 = λ, so λ = 0, 1.

(b) Show that T is diagonalizable. [Hint: See homework 6.]

• As shown in problem 5 of homework 6, if β is a basis for ker(T ) followed by a basis for im(T ), then

[T ]ββ is diagonal with diagonal entries all 0s (for the kernel elements) and 1s (for the image elements).
This β is a diagonalizing basis for T .

(c) Suppose A and B are projection maps on V of the same rank. Show that A and B are similar. Deduce
that up to equivalence given by similarity, there are dim(V ) + 1 di�erent projection maps on V .

• From (a) and (b) together, we can characterize a projection map up to similarity by its diagonaliza-
tion, whose diagonal entries must be either 0s or 1s.

• If dim(V ) = n, there are clearly n + 1 such matrices (with n zero entries, n − 1 zero entries, ... , 1
zero entry, 0 zero entries) and each of these matrices has a di�erent rank: namely, 0, 1, ... , n − 1,
n. Thus, up to similarity, there are n+ 1 di�erent projection maps on V .
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7. Let A ∈Mn×n(C).

(a) Show that any Jordan-block matrix is similar to its transpose. [Hint: Reverse the Jordan basis.]

• Suppose J is the associated matrix [T ]ββ for a linear transformation T with ordered basis β =
{v0,v1, . . . ,vn}: then Tv0 = λv0 and Tvk = λvk + vk−1.

• Therefore, with the ordered basis γ = {vn,vn−1, . . . ,v0}, we see [T ]γγ =


λ
1 . . .

. . . λ
1 λ

. Hence
J is similar to its transpose. (Explicitly, JT = Q−1JQ, where Q is the �backwards diagonal� matrix.)

(b) If J is a matrix in Jordan canonical form, show that J is similar to its transpose.

• Suppose J is in Jordan canonical form with blocks J1, . . . , Jd.

• By part (a) each of the Jordan blocks is similar to its transpose: say, with JTi = Q−1i JiQi.

• Then forQ =

 Q1

. . .
Qd

 we seeQ−1JQ =

 Q−11

. . .
Q−1d

 J1
. . .

Jd

 Q1

. . .
Qd

 = Q−11 J1Q1

. . .
Q−1d JdQd

 =

 JT1
. . .

JTd

 = JT . Thus, J is similar to its transpose.

(c) Show that A is similar to its transpose.

• By de�nition, A is similar to its Jordan canonical form J .

• By part (b), J is similar to JT , and then by taking transposes, JT is similar to AT , since if A =
Q−1JQ then AT = (Q−1JQ)T = QTJT (Q−1)T = QTJT (QT )−1. Thus, A is similar to AT .

8. [Challenge] The goal of this problem is to prove various results about eigenvalues of complex matrices and
stochastic matrices. Let A ∈Mn×n(C), de�ne ρi(A) to be the sum of the absolute values of the entries in the
ith row of A, and de�ne ρ(A) = max1≤i≤n ρi(A).

(a) De�ne the ith Gershgorin disk Ci to be the disc in C centered at ai,i with radius ri(A) = ρi(A)− |ai,i|.
Prove Gershgorin's disc theorem: every eigenvalue of A is contained in one of the Gershgorin disks of A.
[Hint: If v = (x1, . . . , xn) is an eigenvector where xk has the largest absolute value among the entries of
v, show that |λxk − ak,kxk| ≤ ri(A) |xk| by noting that λxk is the kth component of Av.]

• Suppose v = (x1, . . . , xn) is an eigenvector with eigenvalue λ: then by taking the kth component of
Av = λv we see that

∑n
j=1 ak,jxj = λxk.

• Thus, |λxk − ak,kxk| =
∣∣∣∑n

j=1 ak,jxj − ak,kxj
∣∣∣ = ∣∣∣∑j 6=k ak,jxj

∣∣∣ ≤∑j 6=k |ak,j | |xj | ≤
∑
j 6=k |ak,j | |xk| =

(ρi(A) − |ak,k|) |xk| = ri(A) |xk|, where we used the triangle inequality at the �rst ≤ and the fact
that |xj | ≤ |xk| for each j in the second ≤.

• Since |xk| > 0 because v 6= 0, dividing through by |xk| yields |λ− ak,k| ≤ ri(A): in other words,
λ lies within a Gershgorin disk of A. This holds for all eigenvalues λ, so all eigenvalues lie within
Gershgorin disks of A.

(b) For any eigenvalue λ of A ∈Mn×n(C), prove that |λ| ≤ ρ(A).
• By Gershgorin's disc theorem from (a), we have |λ− ak,k| ≤ ρk(A)− |ak,k| for some k.

• Then by the triangle inequality, we have |λ| ≤ |λ− ak,k|+ |ak,k| = ρk(A). Since the maximum of a
set is greater than or equal to all of the elements, this immediately yields |λ| ≤ max1≤i≤n ρi(A).

(c) Prove that if A ∈ Mn×n(R) has positive entries and there exists an eigenvalue λ such that |λ| = ρ(A),
then λ = ρ(A) and the λ-eigenspace is 1-dimensional and spanned by the vector v = (1, 1, . . . , 1). [Hint:
Analyze when equality can hold in (a) and (b).]

• If |λ| = ρ(A) in part (b), then we must have equality in the triangle inequality: |λ| = |λ− ak,k|+|ak,k|.
This occurs if and only if λ is real and λ ≥ ak,k, so since ak,k this means λ is a positive real number.
Since ρ(A) is also a positive real number, this means λ = ρ(A).
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• Furthermore, if v = (x1, x2, . . . , xk) is a corresponding eigenvector (which is necessarily real, since λ

is real), then to get equality in the argument for (a), we must have
∣∣∣∑j 6=k ak,jxj

∣∣∣ =∑j 6=k |ak,j | |xj |
and also |xj | = |xk| for each j. The �rst equality requires equality in the triangle inequality, meaning
that all of the terms ak,jxj have the same sign, and the second equality requires all of the xj to have
the same absolute value.

• Since all of the entries of A are positive, these two statements together are equivalent to x1 = x2 =
· · · = xn, meaning that v is a scalar multiple of (1, 1, . . . , 1). This means that the λ-eigenspace is
1-dimensional and spanned by v = (1, 1, . . . , 1).

(d) If M is a stochastic matrix (i.e., with nonnegative real entries and columns summing to 1), show that
every eigenvalue λ ofM has |λ| ≤ 1. Also show that ifM has all entries positive, then the only eigenvalue
of M of absolute value 1 is λ = 1, and the 1-eigenspace has dimension 1. [Hint: Consider MT .]

• Note that MT has rows with nonnegative entries all summing to 1, and it has the same eigenvalues
as M . Thus, ρi(M

T ) = 1 for each i, so by (b), we immediately obtain |λ| ≤ 1.

• Furthermore, since MTv = v where v = (1, 1, . . . , 1) we see that 1 is indeed an eigenvalue of MT

hence also of M .

• Therefore, by (c), all other eigenvalues of M have absolute value less than 1, and the 1-eigenspace
of MT (hence also of M) is 1-dimensional.
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