- 1. Let V be a finite-dimensional vector space with scalar field F and $T: V \to V$ be linear. Identify each of the following statements as true or false:
 - (a) If $\dim(V) = n$ and T has n distinct eigenvalues in F, then T is diagonalizable.
 - True: if T has n distinct eigenvalues, then each eigenspace must have dimension 1. But then each eigenvalue's multiplicity is equal to the dimension of its eigenspace, so T is diagonalizable.
 - (b) If $\dim(V) = n$ and T is diagonalizable, then T has n distinct eigenvalues in F.
 - False: there are diagonalizable linear transformations with repeated eigenvalues, such as the identity transformation (all its eigenvalues are 1, but it is clearly diagonalizable).
 - (c) If A is a diagonalizable $n \times n$ matrix, then so is $A + I_n$.
 - True: if $Q^{-1}AQ = D$ is diagonal, then $Q^{-1}(A + I_n)Q = D + I_n$ is also diagonal.
 - (d) For any scalar λ , the λ -eigenspace of T is a subspace of the generalized λ -eigenspace of T.
 - True: every λ -eigenvector is a generalized λ -eigenvector, so the λ -eigenspace is a subset (hence a subspace) of the generalized λ -eigenspace.
 - (e) For any λ , a chain of generalized λ -eigenvectors is linearly independent.
 - True : we proved this in the course of showing that the generalized λ -eigenspace has a chain basis.
 - (f) There always exists a basis β of V consisting of generalized eigenvectors of T.
 - False: we must also know that the eigenvalues of T all lie in the scalar field F. For example, the linear transformation T(x,y) = (y, -x) has no such basis when $F = \mathbb{R}$, since its eigenvalues are $\pm i$.
 - (g) If all eigenvalues of T lie in F, then there exists a basis β of V of generalized eigenvectors for T.
 - True : this was proven in class.
 - (h) There always exists some basis β of V such that the matrix $[T]^{\beta}_{\beta}$ is in Jordan canonical form.
 - False: we must also know that the eigenvalues of T all lie in the scalar field F. For example, the linear transformation T(x, y) = (y, -x) has no such basis when $F = \mathbb{R}$, since its eigenvalues are $\pm i$.
 - (i) Every matrix $A \in M_{n \times n}(\mathbb{C})$ has a Jordan canonical form.
 - True: here, because the eigenvalues of A all lie in \mathbb{C} (because \mathbb{C} is algebraically closed), we know that A has a Jordan canonical form.
 - (j) If a matrix is diagonalizable, then its Jordan canonical form is diagonal.
 - True: if a matrix is diagonalizable then its Jordan canonical form will be the diagonalization.
 - (k) If the Jordan canonical form of a matrix is diagonal, then the matrix is diagonalizable.
 - True: since the matrix is similar to its Jordan form, that means the matrix is similar to a diagonal matrix, which is to say, it is diagonalizable.
 - (l) Two matrices are similar if and only if they have equivalent Jordan canonical forms.
 - True : every matrix is similar to its Jordan canonical form, and similarity is transitive.
 - (m) If J is the Jordan canonical form of A, then $J + I_n$ is the Jordan canonical form of $A + I_n$.
 - True: if $PAP^{-1} = J$ then $P(A + I_n)P^{-1} = J + I_n$, and $J + I_n$ is also in Jordan canonical form.
 - (n) If J is the Jordan canonical form of A, then J^2 is the Jordan canonical form of A^2 .
 - False: although the Jordan form of A^2 is conjugate to J^2 , J^2 need not be in Jordan form.

- 2. For each matrix $M \in M_{n \times n}(\mathbb{C})$, find a basis for each of its generalized eigenspaces:
 - (a) $\begin{bmatrix} -4 & 9 \\ -4 & 8 \end{bmatrix}$.
 - The characteristic polynomial is $det(tI M) = (t 2)^2$ so the eigenvalues are $\lambda = 2, 2$.

• We see that $(2I_2 - M)^2 = \begin{bmatrix} -4 & 9 \\ -4 & 8 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, so every vector is a generalized 2-eigenvector: thus we can take any basis, such as $\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

(b)
$$\begin{bmatrix} 1 & 1 & 1 \\ -2 & 4 & 2 \\ 2 & -2 & 0 \end{bmatrix}$$

• The characteristic polynomial is $det(tI - M) = (t - 1)(t - 2)^2$ so the eigenvalues are $\lambda = 1, 2, 2$.

• First,
$$I_2 - M = \begin{bmatrix} 0 & -1 & -1 \\ 2 & -3 & -2 \\ -2 & 2 & 1 \end{bmatrix}^{RREF} \begin{bmatrix} 1 & 0 & 1/2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
 giving generalized 1-eigenbasis $\begin{bmatrix} -1 \\ -2 \\ 2 \end{bmatrix}$.
• $(2I_2 - M)^2 = \begin{bmatrix} 1 & -1 & -1 \\ 2 & -2 & -2 \\ -2 & 2 & 2 \end{bmatrix}^{RREF} \begin{bmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ giving generalized 2-eigenbasis $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$.

$$1 \quad 2 \quad 0 \\ 1 \quad 0 \quad -2$$

• The characteristic polynomial is $det(tI - M) = t^2(t - 1)$ so the eigenvalues are $\lambda = 0, 0, 1$.

• First, $(-M)^2 =$	$\begin{bmatrix} -3\\5\\-1 \end{bmatrix}$	$-3 \\ 5 \\ -1$		$\stackrel{RREF}{\rightarrow}$	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$\begin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$	giving generalized 0-eigenbasis		$\begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix},$	$\left[\begin{array}{c} -1\\ 1\\ 0 \end{array}\right]$	
• Also, $I_2 - M =$	$\begin{bmatrix} 0\\ 1\\ -1 \end{bmatrix}$	$\begin{array}{c}1\\-1\\0\end{array}$	5 - 8 3	$\stackrel{RREF}{\rightarrow}$	$\left[\begin{array}{c}1\\0\\0\end{array}\right]$	$egin{array}{c} 0 \ 1 \ 0 \end{array}$	$egin{array}{c} -3 \\ 5 \\ 0 \end{array}$	giving generalized 1-eigenbas	sis	$\begin{bmatrix} 3\\-5\\1 \end{bmatrix}$		

3. Suppose the characteristic polynomial of the 5×5 matrix A is $p(t) = t^3(t-1)^2$.

(a) Find the eigenvalues of A, and list all possible dimensions for each of the corresponding eigenspaces.

- The eigenvalues are t = 0, 0, 0, 1, 1. The possible dimensions of the 0-eigenspace are 1, 2, 3 while the possible dimensions of the 1-eigenspace are 1, 2.
- (b) Find the determinant and trace of A.
 - The determinant is the product of the eigenvalues (with multiplicity), which by (a) is $0^{3}1^{2} = \boxed{0}$ and the trace is the sum of the eigenvalues (with multiplicity), which by (a) is $3 \cdot 0 + 2 \cdot 1 = \boxed{2}$.
- (c) List all possible Jordan canonical forms of A up to equivalence.
 - For the 0-blocks, the possible sizes are 1-1-1, 2-1, or 3, and for the 1-blocks, the possible sizes are 1-1 or 2.

- (d) If $\ker(A)$ and $\ker(A I)$ are both 2-dimensional, what is the Jordan canonical form of A?
 - If ker(A) is 2-dimensional then the 0-eigenspace has dimension 2, which means there are 2 Jordan blocks with eigenvalue 0, which therefore have sizes 2 and 1.
 - By the same logic, there are 2 Jordan blocks with eigenvalue 1, which therefore have sizes 1 and 1.

(e) If A^3 is diagonalizable but A^2 is not, what is the Jordan canonical form of A?

- The Jordan forms of A^2 and A^3 can be computed from the square and cube of the Jordan form of A.
- For the 1-blocks, since $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^3 = \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix}$, we see that if A has a 1-block of size 2, then A^3 would also have a 1-block of size 2 hence not be diagonalizable. So A must have two 1-blocks of size 1.

• For the 0-blocks, since
$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}^2$$
 if A had three blocks of

size 1 or blocks of sizes 1 and 2, then A^2 would be diagonalizable. However since 0

$$\begin{bmatrix} 1\\ 0 \end{bmatrix}^2 =$$

1

0

 $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 \\ 0 \end{bmatrix}^3 = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \text{ if the block had size 3 then } A^2 \text{ would not be diagonalizable but } A^3 \text{ would.}$

- 4. Find the Jordan canonical form of each matrix A over \mathbb{C} .
 - (a) $A = \begin{bmatrix} -6 & 9 \\ -4 & 6 \end{bmatrix}$.
 - The characteristic polynomial is $det(tI A) = t^2$, so the eigenvalues are $\lambda = 0, 0$.
 - We can calculate $\operatorname{rank}(-A) = 1$ and $\operatorname{rank}(-A)^2 = 0$.
 - This means there is 1 Jordan block of size 2, so the Jordan canonical form is
 - Alternatively, we could see this just by observing that the matrix is not diagonalizable, since then the only possible Jordan canonical form is the one listed above.

(b)
$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$

- The characteristic polynomial is det $(tI A) = (t 7)(t^2 7)$, so the eigenvalues are $\lambda = 7, -\sqrt{7}, \sqrt{7}$.
- Since the matrix is diagonalizable (either from the eigenvalue list, or because it is a real symmetric

matrix), the Jordan form is the diagonalization

$$\begin{bmatrix} 7 \\ \sqrt{7} \\ -\sqrt{7} \end{bmatrix}$$

(c) $A = \begin{bmatrix} 5 & 1 \\ -2 & 7 \end{bmatrix}$.

- The characteristic polynomial is $det(tI A) = t^2 12t + 37$, so the eigenvalues are $\lambda = 6 \pm i$.
- Since the eigenvalues are distinct, the matrix is diagonalizable, and the diagonalization $\begin{bmatrix} 6+i \\ 6-i \end{bmatrix}$

is also the Jordan canonical form.

(d)
$$A = \begin{bmatrix} 1 & 1 & -1 \\ -2 & 3 & -2 \\ -1 & 0 & 1 \end{bmatrix}$$
.

- The characteristic polynomial is $det(tI A) = (t 1)(t 2)^2$, so the eigenvalues are $\lambda = 1, 2, 2$.
- Since 1 is a single eigenvalue, it must appear in a block of size 1.
- Also, we can calculate $\operatorname{rank}(2I A) = 2$ and $\operatorname{rank}(2I A)^2 = \operatorname{rank}(2I A)^3 = 1$.
- This means there is 1 Jordan 1-block of size 2, so the Jordan canonical form is
- Alternatively, we could see this just by observing that the matrix is not diagonalizable, since then the only possible Jordan canonical form is the one listed above.

(e)
$$A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 1 & 0 \\ 4 & 5 & 2 \end{bmatrix}$$
.

- The characteristic polynomial is $det(tI A) = t^3 6t^2 + 12t 8$, whose roots are $\lambda = 2, 2, 2$.
- This means all Jordan blocks have eigenvalue 2. To find the sizes, we calculate rank(2I A) = 2, rank $(2I A)^2 = 1$, rank $(2I A)^3 = 0$. So there is only one Jordan block and it has size 3, so the

Jordan canonical form is

(f)
$$A = \begin{bmatrix} 3 & 1 & 0 \\ -1 & 1 & 0 \\ 3 & 3 & 2 \end{bmatrix}$$
.

- The characteristic polynomial is $det(tI A) = t^3 6t^2 + 12t 8$, whose roots are $\lambda = 2, 2, 2$.
- This means all Jordan blocks have eigenvalue 2. To find the sizes, we calculate $\operatorname{rank}(2I A) = 1$, $\operatorname{rank}(2I A)^2 = 0$.
- This means there are two Jordan blocks of sizes 1 and 2, so the Jordan canonical form is

 $2 \ 1$

$$\begin{bmatrix} 2 & 1 \\ & 2 \\ & & 2 \end{bmatrix}$$

 $2 \ 1$

(g)
$$A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 2 & 2 & -7 & -1 \\ 0 & 0 & 2 & 0 \\ 2 & 1 & -2 & 0 \end{bmatrix}$$

- The characteristic polynomial is $det(tI A) = (t 1)^3(t 2)$ so the eigenvalues are $\lambda = 1, 1, 1, 2$.
- Since 2 is a single eigenvalue, it must occur in a single Jordan block of size 1.

 $1 \\
 2$

 $\begin{array}{cc} 1 & 1 \\ & 1 \end{array}$

- Also, we compute $\operatorname{rank}(A I) = 2$, $\operatorname{rank}(A I)^2 = \operatorname{rank}(A I)^3 = 1$. This means that for $\lambda = 1$, there is Jordan block of size 1 and one block of size 2.
- Hence the Jordan form is

5. The goal of this problem is to find the Jordan form of the $n \times n$ "all 1s" matrix over an arbitrary field F. So

let $n \ge 2$ and let $A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{bmatrix}$.

- (a) Show that the 0-eigenspace of A has dimension n-1 and find a basis for it.
 - Note that the 0-eigenspace is the same as the nullspace, which we can find by row-reducing.
 - The reduced row-echelon form of A is clearly $\begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$, which has n-1 non-pivot columns.
 - Thus, the 0-eigenspace has dimension n-1 and has a basis (1, -1, 0, ..., 0), (1, 0, -1, 0, ..., 0), ..., (1, 0, 0, ..., 0, -1).
- (b) If the characteristic of F does not divide n, find the remaining nonzero eigenvalue of A and a basis for the corresponding eigenspace, and show that A is diagonalizable. [Hint: Calculate the trace of A.]
 - Since the characteristic polynomial has degree n, there must be exactly one additional eigenvalue.
 - Since the trace of A is equal to n, we see that the sum of all the eigenvalues is n, so the other eigenvalue must be n.
 - It is then quite easy to see that (1, 1, ..., 1) is an *n*-eigenvector for A.
 - There are thus two eigenspaces, the 0-eigenspace of dimension n-1 and the *n*-eigenspace of dimension 1. Since the sum of the eigenspace dimensions is n, A is diagonalizable.
- (c) If the characteristic of F does divide n, show that A is not diagonalizable, and find its Jordan canonical form. [Hint: Note that char(F) dividing n is the same as saying that n = 0 in F.]
 - By the same logic as in part (b), since the trace of A is equal to n, the other eigenvalue must be n.
 - But now n = 0 in F, so in fact there is only one eigenvalue, namely, $\lambda = 0$.
 - From the calculation in (a), the 0-eigenspace only has dimension n-1, so since it is now the only eigenspace, we conclude that A is not diagonalizable.
 - For the Jordan form, we see that all eigenvalues are 0 and that the dimension of the 0-eigenspace is n-1. The only possibility, therefore, is that there are n-2 Jordan blocks of size 1 and 1 Jordan

	0	T	0		0	1
	0	0	0		0	
block of size 2, meaning the Jordan form is	:	:	: : •.	:	·	
	0	0	•		0	
	_ U	0			0_	

- 6. Suppose V is finite-dimensional and $T: V \to V$ is a projection, so that $T^2 = T$.
 - (a) Show that the only possible eigenvalues of T are 0 and 1.
 - Suppose **v** is an eigenvector of T with eigenvalue λ , so that $T(\mathbf{v}) = \lambda \mathbf{v}$.
 - Then $\lambda^2 \mathbf{v} = T^2(\mathbf{v}) = T(\mathbf{v}) = \lambda \mathbf{v}$, so $(\lambda^2 \lambda)\mathbf{v} = \mathbf{0}$. Since $\mathbf{v} \neq \mathbf{0}$ this means $\lambda^2 = \lambda$, so $\lambda = 0, 1$.
 - (b) Show that T is diagonalizable. [Hint: See homework 6.]
 - As shown in problem 5 of homework 6, if β is a basis for ker(T) followed by a basis for im(T), then $[T]^{\beta}_{\beta}$ is diagonal with diagonal entries all 0s (for the kernel elements) and 1s (for the image elements). This β is a diagonalizing basis for T.
 - (c) Suppose A and B are projection maps on V of the same rank. Show that A and B are similar. Deduce that up to equivalence given by similarity, there are $\dim(V) + 1$ different projection maps on V.
 - From (a) and (b) together, we can characterize a projection map up to similarity by its diagonalization, whose diagonal entries must be either 0s or 1s.
 - If $\dim(V) = n$, there are clearly n + 1 such matrices (with n zero entries, n 1 zero entries, ..., 1 zero entry, 0 zero entries) and each of these matrices has a different rank: namely, 0, 1, ..., n 1, n. Thus, up to similarity, there are n + 1 different projection maps on V.

- 7. Let $A \in M_{n \times n}(\mathbb{C})$.
 - (a) Show that any Jordan-block matrix is similar to its transpose. [Hint: Reverse the Jordan basis.]
 - Suppose J is the associated matrix $[T]^{\beta}_{\beta}$ for a linear transformation T with ordered basis $\beta = \{\mathbf{v}_0, \mathbf{v}_1, \dots, \mathbf{v}_n\}$: then $T\mathbf{v}_0 = \lambda \mathbf{v}_0$ and $T\mathbf{v}_k = \lambda \mathbf{v}_k + \mathbf{v}_{k-1}$.
 - Therefore, with the ordered basis $\gamma = \{\mathbf{v}_n, \mathbf{v}_{n-1}, \dots, \mathbf{v}_0\}$, we see $[T]_{\gamma}^{\gamma} = \begin{bmatrix} \lambda & & \\ 1 & \cdots & \\ & \ddots & \lambda \\ & & 1 & \lambda \end{bmatrix}$. Hence

J is similar to its transpose. (Explicitly, $J^T = Q^{-1}JQ$, where Q is the "backwards diagonal" matrix.)

- (b) If J is a matrix in Jordan canonical form, show that J is similar to its transpose.
 - Suppose J is in Jordan canonical form with blocks J_1, \ldots, J_d .
 - By part (a) each of the Jordan blocks is similar to its transpose: say, with $J_i^T = Q_i^{-1} J_i Q_i$.

- (c) Show that A is similar to its transpose.
 - By definition, A is similar to its Jordan canonical form J.
 - By part (b), J is similar to J^T , and then by taking transposes, J^T is similar to A^T , since if $A = Q^{-1}JQ$ then $A^T = (Q^{-1}JQ)^T = Q^T J^T (Q^{-1})^T = Q^T J^T (Q^T)^{-1}$. Thus, A is similar to A^T .
- 8. [Challenge] The goal of this problem is to prove various results about eigenvalues of complex matrices and stochastic matrices. Let $A \in M_{n \times n}(\mathbb{C})$, define $\rho_i(A)$ to be the sum of the absolute values of the entries in the *i*th row of A, and define $\rho(A) = \max_{1 \le i \le n} \rho_i(A)$.
 - (a) Define the *i*th Gershgorin disk C_i to be the disc in C centered at a_{i,i} with radius r_i(A) = ρ_i(A) |a_{i,i}|. Prove Gershgorin's disc theorem: every eigenvalue of A is contained in one of the Gershgorin disks of A. [Hint: If **v** = (x₁,...,x_n) is an eigenvector where x_k has the largest absolute value among the entries of **v**, show that |λx_k a_{k,k}x_k| ≤ r_i(A) |x_k| by noting that λx_k is the kth component of A**v**.]
 - Suppose $\mathbf{v} = (x_1, \ldots, x_n)$ is an eigenvector with eigenvalue λ : then by taking the kth component of $A\mathbf{v} = \lambda \mathbf{v}$ we see that $\sum_{j=1}^{n} a_{k,j} x_j = \lambda x_k$.
 - Thus, $|\lambda x_k a_{k,k} x_k| = \left|\sum_{j=1}^n a_{k,j} x_j a_{k,k} x_j\right| = \left|\sum_{j \neq k} a_{k,j} x_j\right| \le \sum_{j \neq k} |a_{k,j}| |x_j| \le \sum_{j \neq k} |a_{k,j}| |x_k| = (\rho_i(A) |a_{k,k}|) |x_k| = r_i(A) |x_k|$, where we used the triangle inequality at the first \le and the fact that $|x_j| \le |x_k|$ for each j in the second \le .
 - Since $|x_k| > 0$ because $\mathbf{v} \neq \mathbf{0}$, dividing through by $|x_k|$ yields $|\lambda a_{k,k}| \leq r_i(A)$: in other words, λ lies within a Gershgorin disk of A. This holds for all eigenvalues λ , so all eigenvalues lie within Gershgorin disks of A.
 - (b) For any eigenvalue λ of $A \in M_{n \times n}(\mathbb{C})$, prove that $|\lambda| \leq \rho(A)$.
 - By Gershgorin's disc theorem from (a), we have $|\lambda a_{k,k}| \le \rho_k(A) |a_{k,k}|$ for some k.
 - Then by the triangle inequality, we have $|\lambda| \leq |\lambda a_{k,k}| + |a_{k,k}| = \rho_k(A)$. Since the maximum of a set is greater than or equal to all of the elements, this immediately yields $|\lambda| \leq \max_{1 \leq i \leq n} \rho_i(A)$.
 - (c) Prove that if $A \in M_{n \times n}(\mathbb{R})$ has positive entries and there exists an eigenvalue λ such that $|\lambda| = \rho(A)$, then $\lambda = \rho(A)$ and the λ -eigenspace is 1-dimensional and spanned by the vector $\mathbf{v} = (1, 1, ..., 1)$. [Hint: Analyze when equality can hold in (a) and (b).]
 - If $|\lambda| = \rho(A)$ in part (b), then we must have equality in the triangle inequality: $|\lambda| = |\lambda a_{k,k}| + |a_{k,k}|$. This occurs if and only if λ is real and $\lambda \ge a_{k,k}$, so since $a_{k,k}$ this means λ is a positive real number. Since $\rho(A)$ is also a positive real number, this means $\lambda \ge \rho(A)$.

- Furthermore, if $\mathbf{v} = (x_1, x_2, \dots, x_k)$ is a corresponding eigenvector (which is necessarily real, since λ is real), then to get equality in the argument for (a), we must have $\left|\sum_{j \neq k} a_{k,j} x_j\right| = \sum_{j \neq k} |a_{k,j}| |x_j|$ and also $|x_j| = |x_k|$ for each j. The first equality requires equality in the triangle inequality, meaning that all of the terms $a_{k,j} x_j$ have the same sign, and the second equality requires all of the x_j to have the same absolute value.
- Since all of the entries of A are positive, these two statements together are equivalent to $x_1 = x_2 = \cdots = x_n$, meaning that **v** is a scalar multiple of $(1, 1, \ldots, 1)$. This means that the λ -eigenspace is 1-dimensional and spanned by $\mathbf{v} = (1, 1, \ldots, 1)$.
- (d) If M is a stochastic matrix (i.e., with nonnegative real entries and columns summing to 1), show that every eigenvalue λ of M has $|\lambda| \leq 1$. Also show that if M has all entries positive, then the only eigenvalue of M of absolute value 1 is $\lambda = 1$, and the 1-eigenspace has dimension 1. [Hint: Consider M^T .]
 - Note that M^T has rows with nonnegative entries all summing to 1, and it has the same eigenvalues as M. Thus, $\rho_i(M^T) = 1$ for each i, so by (b), we immediately obtain $|\lambda| \leq 1$.
 - Furthermore, since $M^T \mathbf{v} = \mathbf{v}$ where $\mathbf{v} = (1, 1, ..., 1)$ we see that 1 is indeed an eigenvalue of M^T hence also of M.
 - Therefore, by (c), all other eigenvalues of M have absolute value less than 1, and the 1-eigenspace of M^T (hence also of M) is 1-dimensional.