- 1. Let V be a vector space with scalar field F and $T: V \to V$ be linear. Identify each of the following statements as true or false:
 - (a) If $T(\mathbf{v}) = \lambda \mathbf{v}$, then \mathbf{v} is an eigenvector of T.

• False: we would need to exclude $\mathbf{v} = \mathbf{0}$ here, since by definition $\mathbf{v} = \mathbf{0}$ is not an eigenvector.

- (b) Every linear transformation on V has at least one eigenvector.
 - False: there are linear transformations with no eigenvectors, e.g., integration on $\mathbb{R}[x]$.
- (c) If V is finite-dimensional, every linear transformation on V has at least one eigenvector.
 - False: the characteristic polynomial may have no roots in the scalar field. For example, the map $T: \mathbb{R}^2 \to \mathbb{R}^2$ with T(x, y) = (y, -x) has no real eigenvalues hence no eigenvectors.
- (d) Any two eigenvectors of T are linearly independent.
 - False: this is only true if the associated eigenvalues are different.
- (e) The sum of two eigenvectors of T is also an eigenvector of T.
 - False: usually not, e.g. for T(x, y) = (x, 2y) then (1, 0) and (0, 1) are eigenvectors, but (1, 1) is not.
- (f) The sum of two eigenvalues of T is also an eigenvalue of T.
 - False : usually not, e.g., for T(x, y) = (x, 2y) then 1 and 2 are eigenvalues, but 3 is not.
- (g) If two matrices are similar, then they have the same eigenvectors.
 - False: as we showed, if $A = QBQ^{-1}$ and $A\mathbf{v} = \lambda \mathbf{v}$ then $B(Q\mathbf{v}) = \lambda(Q\mathbf{v})$. This means the eigenspaces of A and B are related by left-multiplication by Q, but are not necessarily equal.
- (h) If two matrices have the same eigenvalues, then they are similar.
 - False: for example, the matrices $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ have the same eigenvalues but are not similar (the latter is not diagonalizable but the former is).
- (i) If two matrices are similar, then they have the same eigenvalues.
 - True : similar matrices have the same characteristic polynomial hence the same eigenvalues.
- (j) If $\dim(V) = n$, then T has at most n distinct eigenvalues in F.
 - True: the characteristic polynomial $p(t) = \det(tI A)$ has degree n hence at most n roots in F.
- (k) If $\dim(V) = n$, then T has exactly n distinct eigenvalues in F.
 - False: the characteristic polynomial may have repeated roots, in which case it would have fewer than n distinct roots. It may also have irreducible terms of degree > 1, which would further lower the number of roots.
- (l) If the characteristic polynomial of A is $p(t) = t(t-1)^2$, then the 1-eigenspace of A has dimension 2.
 - False: although 1 is a double root of the characteristic polynomial, this means only that the 1-eigenspace can have dimension 1 or 2.
- (m) If the characteristic polynomial of A is $p(t) = t(t-1)^2$, then the only vector **v** with $A\mathbf{v} = 3\mathbf{v}$ is $\mathbf{v} = \mathbf{0}$.
 - True: such a vector would be an element of the 3-eigenspace, but since 3 is not an eigenvalue of A, the 3-eigenspace is trivial.
- (n) V has a basis $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ of eigenvectors of T if and only if T is diagonalizable.
 - <u>True</u>: $\beta = {\mathbf{v}_1, \dots, \mathbf{v}_n}$ is a basis of eigenvectors with eigenvalues $\lambda_1, \dots, \lambda_n$ if and only if $[T]^{\beta}_{\beta}$ is diagonal with diagonal entries $\lambda_1, \dots, \lambda_n$.

- 2. For each matrix A over each field F, (i) find all eigenvalues of A over F, (ii) find a basis for each eigenspace of A, and (iii) determine whether or not A is diagonalizable over F and if so find an invertible matrix Q and diagonal matrix D such that $D = Q^{-1}AQ$.
 - (a) The matrix $\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$ over \mathbb{R} .
 - The characteristic polynomial is $det(tI A) = \begin{vmatrix} t 3 & -1 \\ 2 & t 5 \end{vmatrix} = t^2 8t + 17.$
 - The roots of this polynomial are $\lambda = 4 \pm i$. Thus, there are no eigenvalues over \mathbb{R} , and so it is not diagonalizable.
 - (b) The matrix $\begin{bmatrix} 3 & 1 \\ -2 & 5 \end{bmatrix}$ over \mathbb{C} .
 - The characteristic polynomial was calculated above as $p(t) = t^2 8t + 17$.
 - Over \mathbb{C} , the eigenvalues are $\lambda = \boxed{4+i, 4-i}$ with respective eigenbases $\boxed{\left[\begin{array}{c}1-i\\2\end{array}\right]}$ and $\boxed{\left[\begin{array}{c}1+i\\2\end{array}\right]}$

• The matrix is diagonalizable: we can take $D = \begin{bmatrix} 4+i & 0\\ 0 & 4-i \end{bmatrix}$ and $Q = \begin{bmatrix} 1-i & 1+i\\ 2 & 2 \end{bmatrix}$.

(c) The matrix
$$\begin{bmatrix} 1 & 1 & -1 \\ -2 & 3 & -2 \\ -1 & 0 & 1 \end{bmatrix}$$
 over \mathbb{Q} .

- The characteristic polynomial is $\det(tI A) = \begin{vmatrix} t 1 & -1 & 1 \\ 2 & t 3 & 2 \\ 1 & 0 & t 1 \end{vmatrix} = (t 1)(t 2)^2.$
- Thus, the eigenvalues are $\lambda = 1, 2, 2$.

• Row-reducing $\lambda I - A$ yields the 1-eigenspace basis $\begin{vmatrix} 0 \\ 1 \\ 1 \end{vmatrix}$, and the 2-eigenspace basis $\begin{vmatrix} -1 \\ 0 \\ 1 \end{vmatrix}$

• Since the 2-eigenspace is only 1-dimensional, the matrix is not diagonalizable .

(d) The matrix $\begin{bmatrix} 0 & -1 & 1 \\ 0 & 2 & 0 \\ -2 & -1 & 3 \end{bmatrix}$ over \mathbb{C} .

• The characteristic polynomial is $det(tI - A) = (t - 1)(t - 2)^2$. Thus, the eigenvalues are $\lambda = 1, 2, 2$

• Row-reducing $\lambda I - A$ yields the 1-eigenbasis $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$ and the 2-eigenbasis $\begin{bmatrix} 1\\0\\2 \end{bmatrix}$, $\begin{bmatrix} -1\\2\\0 \end{bmatrix}$.

• Since the sum of the eigenspace dimensions is 3, the matrix is diagonalizable: the diagonalization is $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ via the matrix $Q = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$.

(e) The matrix $\begin{bmatrix} -5 & 9 \\ -4 & 7 \end{bmatrix}$ over \mathbb{R} .

- The characteristic polynomial is $\det(tI A) = \begin{vmatrix} t+5 & -9 \\ 4 & t-7 \end{vmatrix} = t^2 2t + 1$ with roots $\lambda = \boxed{1,1}$.
- Row-reducing $\lambda I A = I A = \begin{bmatrix} 6 & -9 \\ 4 & -6 \end{bmatrix}$ yields $\begin{bmatrix} 2 & -3 \\ 0 & 0 \end{bmatrix}$, with nullspace basis $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$.
- Since the 1-eigenspace is only 1-dimensional, the matrix is not diagonalizable

(f) The matrix
$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix}$$
 over \mathbb{C} .

- The characteristic polynomial is det $(tI A) = (t 6)(t^2 3)$ with roots $\lambda = 6, \sqrt{3}, -\sqrt{3}$
- Row-reducing $\lambda I A$ for each of the three possible eigenvalues λ yields that each eigenspace is 1-dimensional.

• Explicitly: 6-eigenbasis	$\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \sqrt{3}\text{-eigenbasis}$	$\begin{bmatrix} -1 - \sqrt{3} \\ -1 + \sqrt{3} \\ 2 \end{bmatrix}, -\sqrt{3} \text{-eigenbasis} \begin{bmatrix} -1 + \sqrt{3} \\ -1 - \sqrt{3} \\ 2 \end{bmatrix}.$	
• Since the sum of the eigenspace dimensions is 3, the matrix is diagonalizable.			
• The diagonalization is	$\begin{bmatrix} 6 & 0 & 0 \\ 0 & \sqrt{3} & 0 \\ 0 & 0 & -\sqrt{3} \end{bmatrix}$ via t	the matrix $Q = \begin{bmatrix} 1 & -1 - \sqrt{3} & -1 + \sqrt{3} \\ 1 & -1 + \sqrt{3} & -1 - \sqrt{3} \\ 1 & 2 & 2 \end{bmatrix}$.	

- 3. For each operator $T: V \to V$ on each vector space V, (i) find all its eigenvalues and a basis for each eigenspace, and (ii) determine whether the operator is diagonalizable and if so, find a basis for which $[T]^{\beta}_{\beta}$ is diagonal:
 - (a) The map $T: \mathbb{Q}^2 \to \mathbb{Q}^2$ given by T(x, y) = (x + 4y, 3x + 5y).
 - With respect to the standard basis β the associated matrix is $A = [T]_{\beta}^{\beta} = \begin{vmatrix} 1 & 4 \\ 3 & 5 \end{vmatrix}$.
 - The characteristic polynomial is $p(t) = \det(tI A) = t^2 6t 1 = (t 7)(t + 1)$. Hence the eigenvalues are $\lambda = \boxed{7, -1}$, and row-reducing yields corresponding eigenbases $\boxed{(2,3)}$ and $\boxed{(-2,1)}$.
 - Since the sum of the eigenspace dimensions is 2, the transformation is diagonalizable: the diagonalization is $\begin{bmatrix} 7 & 0 \\ 0 & -1 \end{bmatrix}$ via the basis $\beta = \boxed{\{(2,3), (-2,1)\}}$.
 - (b) The derivative operator $D: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ given by D(p) = p'.
 - With respect to the standard basis $\beta = \{1, x, x^2\}$, the associated matrix is $[D]_{\beta}^{\beta} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.
 - Since this matrix is upper-triangular, the eigenvalues are just the diagonal elements $\lambda = [0, 0, 0]$. Row-reducing yields that the 0-eigenspace is 1-dimensional and has basis [1].
 - Since the eigenspace is only 1-dimensional, the transformation is not diagonalizable.
 - (c) The transpose map $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ given by $T(M) = M^T$.
 - With standard basis $\beta = \{e_{1,1}, e_{1,2}, e_{2,1}, e_{2,2}\}$, the associated matrix is $A = [T]_{\beta}^{\beta} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - The characteristic polynomial is $p(t) = \det(tI A) = (t 1)^3(t + 1)$. Hence the eigenvalues are $\lambda = 1, 1, 1, 1, -1$.
 - Row-reducing yields corresponding eigenbases $\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right] \right\}$ and $\left\{ \left[\begin{array}{cc} 0 & 1 \\ -1 & 0 \end{array} \right] \right\}$ Alternatively, one could observe that the 1-eigenspace is the space of symmetric matrices, while the (-1)-eigenspace is the space of skew-symmetric matrices.
 - Since the sum of the eigenspace dimensions is 4, the transformation is diagonalizable : the diago-

nalization is $\begin{bmatrix} 1 & & \\ & 1 & \\ & & 1 \\ & & & -1 \end{bmatrix}$ via the basis β =	$\left[\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \left[\begin{array}{c} 0 & 1 \\ 1 & 0 \end{array} \right], \left[\begin{array}{c} 0 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{c} 0 & 0 \\ -1 & 0 \end{array} \right] \right\} \right].$
---	--

- 4. Let $V = C[0, 2\pi]$ with inner product $\langle f, g \rangle = \int_0^{2\pi} f(x)g(x) dx$. Also define $\varphi_0(x) = \frac{1}{\sqrt{2\pi}}$, and for positive integers k set $\varphi_{2k-1}(x) = \frac{1}{\sqrt{\pi}} \cos(kx)$ and $\varphi_{2k}(x) = \frac{1}{\sqrt{\pi}} \sin(kx)$.
 - (a) Show that $\{\varphi_0, \varphi_1, \varphi_2, ...\}$ is an orthonormal set in V. [Hint: Use the product-to-sum identities.]
 - First observe that $\int_0^{2\pi} \sin(nx) dx = 0 = \int_0^{2\pi} \cos(nx) dx$ for any integer $n \neq 0$. Thus, $\langle \varphi_0, \varphi_k \rangle = 0$ for any k > 0.
 - Furthermore, using the product-to-sum identities, we can write

$$\varphi_{2a}\varphi_{2b} = \frac{1}{\pi}\sin(ax)\sin(bx) = \frac{1}{2\pi}\left[\cos(a-b)x - \cos(a+b)x\right]$$
$$\varphi_{2a-1}\varphi_{2b} = \frac{1}{\pi}\cos(ax)\sin(bx) = \frac{1}{2\pi}\left[\sin(a-b)x - \sin(a+b)x\right]$$
$$\varphi_{2a-1}\varphi_{2b-1} = \frac{1}{\pi}\cos(ax)\cos(bx) = \frac{1}{2\pi}\left[\cos(a-b)x + \cos(a+b)x\right]$$

and so when $a \neq b$, each inner product $\langle \varphi_{2a}, \varphi_{2b} \rangle$, $\langle \varphi_{2a-1}, \varphi_{2b} \rangle$, and $\langle \varphi_{2a-1}, \varphi_{2b-1} \rangle$ is zero because both terms integrate to zero (the second also integrates to zero when a = b).

- Furthermore, we have $\langle \varphi_0, \varphi_0 \rangle = \frac{1}{2\pi} \int_0^{2\pi} 1 dx = 1$, $\langle \varphi_{2k-1}, \varphi_{2k-1} \rangle = \frac{1}{\pi} \int_0^{2\pi} \cos^2(kx) dx = 1$, and $\langle \varphi_{2k}, \varphi_{2k} \rangle = \frac{1}{\pi} \int_0^{2\pi} \sin^2(kx) dx = 1$. Thus, the set is orthonormal.
- (b) Let f(x) = x. Find ||f|| and $\langle f, \varphi_n \rangle$ for each $n \ge 0$. (You don't need to give details of the integral evaluations, just the resulting values.)

• We compute
$$||f|| = \sqrt{\int_0^{2\pi} x^2 \, dx} = \sqrt{\frac{8\pi^3}{3}}, \ \langle \varphi_0, f \rangle = \int_0^{2\pi} \frac{x}{\sqrt{2\pi}} \, dx = \sqrt{2\pi^3},$$

with $\langle \varphi_{2k-1}, f \rangle = \int_0^{2\pi} \frac{x}{\sqrt{\pi}} \cos(kx) \, dx = 0,$ and $\langle \varphi_{2k}, f \rangle = \int_0^{2\pi} \frac{x}{\sqrt{\pi}} \sin(kx) \, dx = -\frac{2\sqrt{\pi}}{k}$ for $k \ge 1$.

- (c) With f(x) = x, assuming that $f(x) = \sum_{k=0}^{\infty} \langle f, \varphi_k \rangle \varphi_k(x)$, derive Leibniz's formula $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots$. [Hint: Set $x = \pi/2$.]
 - By part (b), the formula yields $f(\pi/2) = \pi \sum_{k=1}^{\infty} \frac{2}{k} \sin(k\pi/2) = \pi \left[2 \frac{2}{3} + \frac{2}{5} \frac{2}{7} + \cdots\right]$. Since $f(\pi/2) = \pi/2$, rearranging yields $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + \cdots = \frac{\pi}{4}$ as claimed.
- (d) With f(x) = x, assuming that $||f||^2 = \sum_{k=0}^{\infty} \langle f, \varphi_k \rangle^2$ (see problem 10 of the midterm for why this is a reasonable statement), find the exact value of $\sum_{k=1}^{\infty} \frac{1}{k^2}$.
 - By part (b), the formula yields $2\pi^3 + \sum_{k=1}^{\infty} \left(-\frac{2\sqrt{\pi}}{k}\right)^2 = \frac{8\pi^3}{3}$, so that $\sum_{k=1}^{\infty} \frac{4\pi}{k^2} = \frac{2\pi^3}{3}$.
 - Dividing by 4π yields $\sum_{k=1}^{\infty} \frac{1}{k^2} = \left\lfloor \frac{\pi^2}{6} \right\rfloor$. (This is, in fact, the actual value of this sum!)
- **Remarks:** The identity $||f||^2 = \sum_{k=0}^{\infty} \langle f, \varphi_k \rangle^2$ is known as <u>Parseval's identity</u>. The problem of computing the value of the infinite sum $\sum_{k=1}^{\infty} \frac{1}{k^2}$ is known as the Basel problem. The correct value was (famously) first identified by Euler, who evaluated the sum by decomposing the function $\frac{\sin \pi x}{\pi x}$ as the infinite product $\prod_{n=1}^{\infty} (1 \frac{x^2}{n^2})$ and then comparing the power series coefficients of both sides.

- 5. Let F be a field and let L and R be the left shift and right shift operators on infinite sequences of elements of F, defined by $L(a_1, a_2, a_3, a_4, \ldots) = (a_2, a_3, a_4, \ldots)$ and $R(a_1, a_2, a_3, a_4, \ldots) = (0, a_1, a_2, a_3, \ldots)$.
 - (a) Find all of the eigenvalues and a basis for each eigenspace of L.
 - Solving $L(a_1, a_2, a_3, a_4, \dots) = (\lambda a_1, \lambda a_2, \lambda a_3, \lambda a_4, \dots)$ gives $(a_2, a_3, a_4, a_5, \dots) = (\lambda a_1, \lambda a_2, \lambda a_3, \lambda a_4, \dots)$ whence $a_2 = \lambda a_1, a_3 = \lambda a_2, \dots, a_{i+1} = \lambda a_i, \dots$
 - It is then easy to see that the λ -eigenspace is 1-dimensional and spanned by the vector $(1, \lambda, \lambda^2, \lambda^3, ...)$. In particular, every element $\lambda \in F$ is an eigenvalue of L.
 - (b) Find all of the eigenvalues and a basis for each eigenspace of R.
 - Solving $R(a_1, a_2, a_3, a_4, ...) = (\lambda a_1, \lambda a_2, \lambda a_3, \lambda a_4, ...)$ gives $(0, a_1, a_2, a_3, ...) = (\lambda a_1, \lambda a_2, \lambda a_3, \lambda a_4, ...)$ whence $\lambda a_1 = 0, \lambda a_2 = a_1, ..., \lambda a_{i+1} = a_i$.
 - If $\lambda \neq 0$ then cancelling λ gives $a_i = 0$ for all i (but the zero vector is not an eigenvector by definition), while if $\lambda = 0$ then again we see $a_i = 0$ for all i.
 - Thus R has no eigenvalues since $(a_1, a_2, a_3, \dots) = \lambda(0, a_1, a_2, a_3, \dots)$ forces $a_1 = a_2 = a_3 = \dots = 0$.
- 6. Suppose V is a vector space and $S, T: V \to V$ are linear operators on V.
 - (a) If S and T commute (i.e., ST = TS), show that S maps each eigenspace of T into itself.
 - Suppose $T\mathbf{v} = \lambda \mathbf{v}$. Then $\lambda(S\mathbf{v}) = S(\lambda \mathbf{v}) = S(T\mathbf{v}) = T(S\mathbf{v})$ so $S\mathbf{v}$ is also a λ -eigenvector of T.
 - (b) If **v** is an eigenvector of T, show that it is also an eigenvector of T^n for any positive integer n.
 - Suppose $T\mathbf{v} = \lambda \mathbf{v}$. Then $T^2\mathbf{v} = T(T\mathbf{v}) = T(\lambda \mathbf{v}) = \lambda(T\mathbf{v}) = \lambda^2 \mathbf{v}$.
 - By repeating this argument (equivalently, by a trivial induction) we see that $T^n \mathbf{v} = \lambda^n \mathbf{v}$, so \mathbf{v} is also an eigenvector of T^n with corresponding eigenvalue λ^n .
- 7. Suppose A is an invertible $n \times n$ matrix and that $p(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_1t + a_0$ is its characteristic polynomial. Note that $a_0 = (-1)^n \det(A)$ is nonzero.
 - (a) If $B = -\frac{1}{a_0}(A^{n-1} + a_{n-1}A^{n-2} + \dots + a_2A + a_1I_n)$, show that $AB = I_n$. [Hint: Cayley-Hamilton.]
 - By the Cayley-Hamilton theorem, we know that $A^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A + a_0I_n = 0$, so rearranging yields $A^n + a_{n-1}A^{n-1} + \cdots + a_2A^2 + a_1A = -a_0I_n$.
 - From the definition of B, we can multiply through by A to see that
 - $AB = -\frac{1}{a_0}(A^n + a_{n-1}A^{n-1} + \dots + a_2A^2 + a_1A) = -\frac{1}{a_0}(-a_0I_n) = I_n, \text{ as claimed.}$
 - (b) Show that there exists a polynomial q(x) of degree at most n-1 such that $A^{-1} = q(A)$.
 - By part (a) we see that $AB = I_n$ so that $B = A^{-1}$.
 - The desired statement is then immediate from the expression in part (a), since the expression for B is a polynomial in A of degree n-1.

- 8. [Challenge] The goal of this problem is to give some counterexamples for results about orthogonal complements, projections, best approximations, and adjoints in infinite-dimensional spaces. Let V be the vector space of infinite real sequences $\{a_i\}_{i\geq 1} = (a_1, a_2, ...)$ with only finitely many nonzero terms, with inner product given by $\langle \{a_i\}, \{b_i\} \rangle = \sum_{i=1}^{\infty} a_i b_i$. (Note that this sum converges since only finitely many terms are nonzero.) Let \mathbf{e}_i be the *i*th unit coordinate vector and observe that $\{\mathbf{e}_i\}_{i\geq 1}$ is an orthonormal basis for V. Now for each $n \geq 2$, let $\mathbf{v}_n = \mathbf{e}_1 \mathbf{e}_n$ and define $W = \operatorname{span}(\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \ldots)$.
 - (a) Show that $\mathbf{e}_1 \notin W$ so that W is a proper subspace of V, but that $W^{\perp} = \{\mathbf{0}\}$.
 - If we have $\mathbf{e}_1 = a_2\mathbf{v}_2 + a_3\mathbf{v}_3 + \cdots + a_n\mathbf{v}_n$, then expanding out yields $\mathbf{e}_1 = (a_1 + \cdots + a_n)\mathbf{e}_1 a_2\mathbf{e}_2 a_3\mathbf{e}_3 \cdots a_n\mathbf{e}_n$ so since the \mathbf{e}_i are linearly independent, we would have $a_1 + \cdots + a_n = 1$ and also $a_2 = a_3 = \cdots = a_n = 0$, but this is contradictory. Thus $\mathbf{e}_1 \notin W$.
 - Next, if $\mathbf{w} = b_1 \mathbf{e}_1 + \cdots + b_n \mathbf{e}_n$ is an element of W^{\perp} , we have $0 = \langle b_1 \mathbf{e}_1 + \cdots + b_n \mathbf{e}_n, \mathbf{v}_k \rangle = b_1 b_k$. Thus $b_k = b_1$ for all k, but since only finitely many b_k can be nonzero, we must have $b_1 = b_2 = \cdots = 0$, and so $\mathbf{w} = \mathbf{0}$.
 - (b) Show that $W^{\perp} + W \neq V$ and that $(W^{\perp})^{\perp} \neq W$.
 - By (a) we have $W^{\perp} + W = W \neq V$, and also $(W^{\perp})^{\perp} = (\{\mathbf{0}\})^{\perp} = V \neq W$.
 - (c) For any $\mathbf{v} \notin W$, show that there does not exist any choice of $\mathbf{w} \in W$ and $\mathbf{w}^{\perp} \in W^{\perp}$ such that $\mathbf{v} = \mathbf{w} + \mathbf{w}^{\perp}$. Conclude that there is not a well-defined orthogonal projection map of V onto W.
 - Suppose we had such w, w[⊥]. From (a) we know that W[⊥] = {0}, so the only possible choice would be w[⊥] = 0. But this would imply v = w which is impossible since v is not in W.
 - (d) Show that there exists a vector $\mathbf{w}_n \in W$ such that $||\mathbf{w}_n \mathbf{e}_1|| = 1/n$ for any positive integer n. Deduce that there is no possible best approximation vector \mathbf{w} to \mathbf{e}_1 inside W (namely with $||\mathbf{w} \mathbf{e}_1|| \le ||\mathbf{w}' \mathbf{e}_1||$ for all $\mathbf{w}' \in W$).
 - Consider the vector $\mathbf{w}_n = (1, -1/n, -1/n, \dots, -1/n, 0, 0, \dots)$ with first entry 1 followed by n entries equal to -1/n, and other entries 0.
 - Then $||\mathbf{w}_n \mathbf{e}_1|| = ||(0, -1/n, -1/n, \dots, -1/n, 0, 0, \dots)|| = n \cdot (1/n)^2 = 1/n$ as desired.
 - Since $1/n \to 0$ as $n \to \infty$, a best approximation vector **w** would necessarily have $||\mathbf{w} \mathbf{e}_1|| = 0$, but this is impossible since $\mathbf{e}_1 \notin W$.
 - (e) Let $T: V \to V$ be the linear transformation defined by setting $T(\mathbf{e}_n) = \sum_{i=1}^n \mathbf{e}_i$ for each $i \ge 1$. If T had an adjoint $T^*: V \to V$, show that infinitely many components of $T^*(\mathbf{e}_1)$ would be nonzero. Deduce that T^* cannot exist.
 - By hypothesis we have $\langle \mathbf{e}_k, T^*(\mathbf{e}_1) \rangle = \langle T(\mathbf{e}_k), \mathbf{e}_1 \rangle = \langle \sum_{i=1}^n \mathbf{e}_i, \mathbf{e}_1 \rangle = 1$ for each $k \ge 1$.
 - Conjugating then yields $\langle T^*(\mathbf{e}_1), \mathbf{e}_k \rangle = 1$: but this inner product is the coefficient of \mathbf{e}_k in $T^*(\mathbf{e}_1)$, so we would necessarily have $T^*(\mathbf{e}_1) = \sum_{k=1}^{\infty} \mathbf{e}_k$. But this vector is not an element of V since it has infinitely many nonzero components. This is a contradiction, so T^* cannot exist.