E. Dummit’s Math 4571 ~ Advanced Linear Algebra, Spring 2025 ~ Homework 8 Solutions

1. Let V be a vector space with scalar field F and 7' : V' — V be linear. Identify each of the following statements
as true or false:

(n)

If T(v) = Av, then v is an eigenvector of T

° : we would need to exclude v = 0 here, since by definition v = 0 is not an eigenvector.
Every linear transformation on V' has at least one eigenvector.

° : there are linear transformations with no eigenvectors, e.g., integration on R|z].

If V is finite-dimensional, every linear transformation on V has at least one eigenvector.

° : the characteristic polynomial may have no roots in the scalar field. For example, the map
T : R? — R? with T'(x,y) = (y, —r) has no real eigenvalues hence no eigenvectors.

Any two eigenvectors of T' are linearly independent.

° : this is only true if the associated eigenvalues are different.
The sum of two eigenvectors of T is also an eigenvector of T'.

. : usually not, e.g, for T'(x,y) = (z,2y) then (1,0) and (0, 1) are eigenvectors, but (1,1) is not.
The sum of two eigenvalues of T' is also an eigenvalue of T'.

. : usually not, e.g., for T(x,y) = (x,2y) then 1 and 2 are eigenvalues, but 3 is not.

If two matrices are similar, then they have the same eigenvectors.

o [False|: as we showed, if 4 = QBQ™! and Av = Av then B(Qv) = A(Qv). This means the
eigenspaces of A and B are related by left-multiplication by @, but are not necessarily equal.

If two matrices have the same eigenvalues, then they are similar.

. 10 1 1 .
. . for example, the matrices { 0 1 } and [ 0 1 } have the same eigenvalues but are not

similar (the latter is not diagonalizable but the former is).

If two matrices are similar, then they have the same eigenvalues.

° : similar matrices have the same characteristic polynomial hence the same eigenvalues.

If dim(V') = n, then T has at most n distinct eigenvalues in F.

. : the characteristic polynomial p(t) = det(tI — A) has degree n hence at most n roots in F.
If dim(V') = n, then T has exactly n distinct eigenvalues in F.

. : the characteristic polynomial may have repeated roots, in which case it would have fewer
than n distinct roots. It may also have irreducible terms of degree > 1, which would further lower
the number of roots.

If the characteristic polynomial of A is p(t) = t(t — 1)?, then the 1-eigenspace of A has dimension 2.

° : although 1 is a double root of the characteristic polynomial, this means only that the
1-eigenspace can have dimension 1 or 2.

If the characteristic polynomial of A is p(t) = t(t — 1)2, then the only vector v with Av = 3v is v = 0.

° : such a vector would be an element of the 3-eigenspace, but since 3 is not an eigenvalue of A,
the 3-eigenspace is trivial.

V has a basis 8 = {vy,...,v,} of eigenvectors of T if and only if T is diagonalizable.
° : B ={v1,...,v,} is a basis of eigenvectors with eigenvalues Ay, ..., \, if and only if [T]g is
diagonal with diagonal entries A1,..., \,.




2. For each matrix A over each field F, (i) find all eigenvalues of A over F, (ii) find a basis for each eigenspace

of A, and (iii) determine whether or not A is diagonalizable over F' and if so find an invertible matrix @ and
diagonal matrix D such that D = Q1 AQ.

(a) The matrix [ 32 é } over R.
. . t—3 -1 )
e The characteristic polynomial is det(¢t] — A) = 9 t_5|= t* — 8t + 17.

e The roots of this polynomial are A\ = 4 & 4. Thus, there are ’no eigenvalues over R |, and so it is

’ not diagonalizable ‘

(b) The matrix [ ! } over C.

-2 5

e The characteristic polynomial was calculated above as p(t) =t — 8¢ + 17.

e Over C, the eigenvalues are A = with respective eigenbases [ 1 ; ! } and [ 1 —2H ] !

e The matrix |is diagonalizable ‘: we can take D = [ 43—1 40_2. } and Q = { 152 1—52 } .

1 1 -1
(¢) The matrix | =2 3 —2 | over Q.
-1 0 1

The characteristic polynomial is det(t] — A)=| 2 t-3 2 |=(t—1)(t—2)2%

Thus, the eigenvalues are A = .

0 -1
e Row-reducing AI — A yields the 1-eigenspace basis 1 | |, and the 2-eigenspace basis 0
1 1

Since the 2-eigenspace is only 1-dimensional, the matrix is | not diagonalizable |.

0o -1 1
(d) The matrix 0 2 0 | overC.
-2 -1 3

e The characteristic polynomial is det(t — A) = (t —1)(¢t — 2)%. Thus, the eigenvalues are \ = m

1 1 -1
e Row-reducing \I — A yields the 1-eigenbasis 0 and the 2-eigenbasis 01, 2
1 2 0
e Since the sum of the eigenspace dimensions is 3, the matrix |is diagonalizable |: the diagonalization
1 00 11 -1
is| 0 2 0 | viathematrix@=1]0 0 2
0 0 2 12 0
. =5
(e) The matrix 4 over R.
e The characteristic polynomial is det(¢t] — A) = [ t? — 2t 4+ 1 with roots A =
4  t-7 o
e Row-reducing A\ —A=1—- A= [ 2 :2 } yields [ (2) _03 }, with nullspace basis [ g } .

e Since the 1-eigenspace is only 1-dimensional, the matrix is ’not diagonalizable ‘




(f) The matrix

e The characteristic polynomial is det(t] — A) = (¢ — 6)(t> — 3) with roots \ =

W N
oW N

N = W

over C.

6,

V3,-V3|

Row-reducing Al — A for each of the three possible eigenvalues A yields that each eigenspace is

1-dimensional.

1

Explicitly: 6-eigenbasis 1

Since the sum of the eigenspace dimensions is 3, the matrix ’ is

The diagonalization is

1

, \/g—eigenbasis

_1_\/§
143
2

6 0 0
0 V3 0
0 0 —V3

via the matrix @ =

, —V/3-eigenbasis
diagonalizable ‘
[1 -1-V3

1 —1++3
! 2

~1++3
_1_\/§
2
—~1+v3
—1-+3

2

3. For each operator T': V' — V on each vector space V, (i) find all its eigenvalues and a basis for each eigenspace,
and (ii) determine whether the operator is diagonalizable and if so, find a basis for which [T]g is diagonal:

(a) The map T : Q? — Q? given by T(z,y) = (x + 4y, 3z + 5y).

e With respect to the standard basis S the associated matrix is A = [T]g = [

1 4
3 5

|

e The characteristic polynomial is p(t) = det(t] —A) = t?—6t—1 = (t—7)(t+1). Hence the eigenvalues
are \ = , and row-reducing yields corresponding eigenbases ’ (2,3) ‘ and ’ (-2,1) ‘

e Since the sum of the eigenspace dimensions is 2, the transformation

nallzation 18 |: 0

0
-1

} via the basis § = |{(2,3), (~2,1)}]

(b) The derivative operator D : P»(R) — P»(R) given by D(p) = p'.

e With respect to the standard basis 8 = {1,z, 22}, the associated matrix is [D]’

is diagonalizable ‘: the diago-

B

010
=0 0 2
0 0 0

e Since this matrix is upper-triangular, the eigenvalues are just the diagonal elements A = m

Row-reducing yields that the O-eigenspace is 1-dimensional and has basis | {1} |

e Since the eigenspace is only 1-dimensional, the transformation is ’not diagonalizable ‘

(c) The transpose map T : Mayo(R) — Mayo(R) given by T(M) = MT.

With standard basis 5 = {e1,1,€1,2, €21, €22}, the associated matrix is A = [T]g

1 0 0 0
0 01 0
01 0 0
0 0 01

The characteristic polynomial is p(t) = det(t] — A) = (t — 1)3(t + 1). Hence the eigenvalues are

Row-reducing yields corresponding eigenbases

(

1 0
0 0

il

0 1
1 0

0 0
0 1

'lo 1]

and {[ _01 (1)

)

Alternatively, one could observe that the 1-eigenspace is the space of symmetric matrices, while the
(—1)-eigenspace is the space of skew-symmetric matrices.

Since the sum of the eigenspace dimensions is 4, the transformation ’is diagonalizable ‘: the diago-

1

nalization is

1

via the basis g =

1 0
0 0

|

il

0 1
10

0 0
0 1

il

1B
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1
4. Let V' = C[0,2n] with inner product (f,g) = [, f(z)g(x)dx. Also define po(z) = Word and for positive
T
% cos(kx) and por(x) = % sin(kx).

(a) Show that {©g,¢1,¢¥2,...} is an orthonormal set in V. [Hint: Use the product-to-sum identities.]

integers k set @or_1(x) =

e First observe that foQﬂ sin(nx)dr =0 = fOQﬂ cos(nz) dx for any integer n # 0. Thus, (@g, ¢x) = 0 for
any k > 0.
e Furthermore, using the product-to-sum identities, we can write

1 1
Yoapar = —sin(ax)sin(bz) = o [cos(a — b)x — cos(a + b)z]
™ 77
1 1
©aa—1p2 = — cos(ax)sin(bz) = Py [sin(a — b)z — sin(a + b)x]
™ T
1 1
V2a—-1p2—1 = — cos(ax)cos(bx) = Py [cos(a — b)x + cos(a + b)z]
™ ™

and so when a # b, each inner product {wau, 2p), {P2a—1,%2p), and {(paa—1,Y2p—1) is zero because
both terms integrate to zero (the second also integrates to zero when a = b).

1 - 1 or
e Furthermore, we have (pq, @o) = 2—f()2 ldz = 1, (Yog_1,P2k-1) = ffOQ cos?(kz)dr = 1, and
™ 7r
1 or . .
(pak, p2) = — f02 sin?(kz) dz = 1. Thus, the set is orthonormal.
T

(b) Let f(x) = z. Find ||f|| and (f,¢,) for each n > 0. (You don’t need to give details of the integral
evaluations, just the resulting values.)

2 x
e We compute ||f|| =1/ |, xde—\/ {po, ) = 0 —%d 273,
2T

. 2n T 2 T .
with (por—1, f) = [, NG cos(kx) dr = 0, and (par, f) = [, NG sin(kz) dx = 2 for k > 1.

1 1 1
(¢) With f(z) = , assuming that f(z) = >, (f, ¢x) ¢k (), derive Leibniz’s formula % = 17§+57§+' .
[Hint: Set z = 7/2.]
. o 2 . 2 2 2 i
e By part (b), the formula yields f(7/2) =7—3,_, z sin(kr/2) =m—|2— -4+ = — - +---|. Since

3 5
. . 1 1 1
f(w/2) = 7/2, rearranging yields 1 — 3 + FT +

(d) With f(z) = x, assuming that ||f||° = Soreo (f, ©r)? (see problem 10 of the midterm for why this is a

™ .
= — as claimed.

reasonable statement), find the exact value of Y- =k

- 2 87 Ar 273
e By part (b), the formula yields 27® + Y7 | (—f) =580 that > 7o, kg = %

1 2
e Dividing by 4« yields > 70, — = | (This is, in fact, the actual value of this sum!
LR L6

Remarks: The identity ||f||* = oo (S, ©r)? is known as Parseval’s identity. The problem of computing
the value of the infinite sum ) ;- le is known as the Basel problem. The correct value was (famously)

first identified by Euler, who evaluated the sum by decomposing the function $87% a5 the infinite product

I, (1— nz) and then comparing the power series coefficients of both 51des.




5. Let F be a field and let L and R be the left shift and right shift operators on infinite sequences of elements
of F, defined by L(a1,as,as,a4,...) = (as,a3,a4,...) and R(ay,as,as,aq,...) = (0,a1,a2,as,...).

(a) Find all of the eigenvalues and a basis for each eigenspace of L.
e Solving L(ay, as,as, a4, ...) = (a1, Aag, Aag, Aag, . .. ) gives (az, as, aq, as, ...) = (Aai, Aag, Aas, Aay, .. .)
whence ay = Aay, ag = Aag, ... , Gi41 = Aa;, ...
e It is then easy to see that the A-eigenspace is 1-dimensional and spanned by the vector (1, \, A2, A3, ...).
In particular, every element A € F' is an eigenvalue of L.
(b) Find all of the eigenvalues and a basis for each eigenspace of R.
e Solving R(a1, az,as,aq,...) = (Aa1, Aag, Aas, Aag, . ..) gives (0, a1, a2,as,...) = (Aa1, Aag, Aas, Aag, . ..)
whence A\a; =0, Aag = aq, ... , Aaj+1 = a;.
e If )\ =£ 0 then cancelling A gives a; = 0 for all ¢ (but the zero vector is not an eigenvector by definition),
while if A = 0 then again we see a; = 0 for all 3.
e Thus R has no eigenvalues since (a1, a9, as,...) = A(0,a1,as2,as,...) forces a1 =as =az =---=0.

6. Suppose V is a vector space and S,T : V — V are linear operators on V.

(a) If S and T commute (i.e., ST = TS), show that S maps each eigenspace of T into itself.

e Suppose T'v = Av. Then A(Sv) = S(Av) = S(Tv) = T(Sv) so Sv is also a A-eigenvector of T.
(b) If v is an eigenvector of T, show that it is also an eigenvector of T™ for any positive integer n.

e Suppose T'v = Av. Then T?v = T(Tv) = T(Av) = A\(Tv) = A\?v.

e By repeating this argument (equivalently, by a trivial induction) we see that T"v = A"v, so v is
also an eigenvector of T with corresponding eigenvalue A\".

7. Suppose A is an invertible n X n matrix and that p(t) = t" + An_1t" "' + -+ ait + ag is its characteristic
polynomial. Note that ag = (—1)" det(A) is nonzero.

1
ao
e By the Cayley-Hamilton theorem, we know that A" 4+ a,_1 A" ' 4+ -+ +axA? + a1 A+ agl,, = 0, so

rearranging yields A" + a,_1 A" '+ + a2 A% + a1 A = —apl,.
e From the definition of B, we can multiply through by A to see that
AB = —aiO(A" tan 1AV 4 fap A F g A) = —a—lo(—aofn) = I, as claimed.

(a) f B=—-—(A""1+a, 1A" 2+ ... +asA+ a11l,), show that AB = I,,. [Hint: Cayley-Hamilton.]

(b) Show that there exists a polynomial g(x) of degree at most n — 1 such that A=! = ¢(A4).

e By part (a) we see that AB = I,, so that B = A1,

e The desired statement is then immediate from the expression in part (a), since the expression for B
is a polynomial in A of degree n — 1.




8. [Challenge] The goal of this problem is to give some counterexamples for results about orthogonal complements,
projections, best approximations, and adjoints in infinite-dimensional spaces. Let V be the vector space of
infinite real sequences {a;};>1 = (a1, aq,...) with only finitely many nonzero terms, with inner product given
by ({ai},{bi}) = > ;= aib;. (Note that this sum converges since only finitely many terms are nonzero.) Let
e; be the ith unit coordinate vector and observe that {e;};>1 is an orthonormal basis for V. Now for each
n > 2, let v, = e; — e, and define W = span(va, vs, vy,...).

(a) Show that e; ¢ W so that W is a proper subspace of V, but that W+ = {0}.

e If we have e; = agva +agvs+-- -+ a, vy, then expanding out yields e; = (a1 + -+ a,)e; — ases —

azes — - - - — ap€y, SO since the e; are linearly independent, we would have a1 + - - - 4+ a, = 1 and also
as =az = --- = a, =0, but this is contradictory. Thus e; ¢ W.

e Next, if w = bje; + -+ + bpe, is an element of W+, we have 0 = (bje; + -+ + bpe,, Vi) = by — by.
Thus by, = by for all k, but since only finitely many by can be nonzero, we must have by = by = --- =0,

and so w = 0.
(b) Show that W+ + W # V and that (W) # W.
e By (a) we have W+ +W =W # V, and also (W+)+ = ({0})* =V #W.

(c) For any v & W, show that there does not exist any choice of w € W and w € W+ such that v = w+w.
Conclude that there is not a well-defined orthogonal projection map of V' onto W.

e Suppose we had such w, w'. From (a) we know that W+ = {0}, so the only possible choice would
be w = 0. But this would imply v = w which is impossible since v is not in .

(d) Show that there exists a vector w,, € W such that ||w,, — e1|| = 1/n for any positive integer n. Deduce
that there is no possible best approximation vector w to e; inside W (namely with ||w — e1|| < ||w' — eq]]
for all w' € W).

e Consider the vector w, = (1,—-1/n,—1/n,...,—1/n,0,0,...) with first entry 1 followed by n entries
equal to —1/n, and other entries 0.

e Then ||w,, —e|| = [|/(0,—1/n,~1/n,...,—1/n,0,0,...)|| =n-(1/n)? = 1/n as desired.

e Since 1/n — 0 as n — 00, a best approximation vector w would necessarily have ||w — e;|| = 0, but

this is impossible since e; &€ W.
(e) Let T : V — V be the linear transformation defined by setting T'(e,,) = > .-, €; for each ¢ > 1. If T had
an adjoint T* : V' — V, show that infinitely many components of 7*(e;) would be nonzero. Deduce that
T* cannot exist.
e By hypothesis we have (ex,T*(e1)) = (T'(ex),e1) = (>, €;,e1) = 1 for each k > 1.
e Conjugating then yields (T*(e1),er) = 1: but this inner product is the coefficient of e; in T™*(e;),
so we would necessarily have T*(e1) = >_,—, ex. But this vector is not an element of V since it has
infinitely many nonzero components. This is a contradiction, so 7™ cannot exist.




