
E. Dummit's Math 4571 ∼ Advanced Linear Algebra, Spring 2025 ∼ Homework 8 Solutions

1. Let V be a vector space with scalar �eld F and T : V → V be linear. Identify each of the following statements
as true or false:

(a) If T (v) = λv, then v is an eigenvector of T .

• False : we would need to exclude v = 0 here, since by de�nition v = 0 is not an eigenvector.

(b) Every linear transformation on V has at least one eigenvector.

• False : there are linear transformations with no eigenvectors, e.g., integration on R[x].
(c) If V is �nite-dimensional, every linear transformation on V has at least one eigenvector.

• False : the characteristic polynomial may have no roots in the scalar �eld. For example, the map
T : R2 → R2 with T (x, y) = (y,−x) has no real eigenvalues hence no eigenvectors.

(d) Any two eigenvectors of T are linearly independent.

• False : this is only true if the associated eigenvalues are di�erent.

(e) The sum of two eigenvectors of T is also an eigenvector of T .

• False : usually not, e.g, for T (x, y) = (x, 2y) then (1, 0) and (0, 1) are eigenvectors, but (1, 1) is not.

(f) The sum of two eigenvalues of T is also an eigenvalue of T .

• False : usually not, e.g., for T (x, y) = (x, 2y) then 1 and 2 are eigenvalues, but 3 is not.

(g) If two matrices are similar, then they have the same eigenvectors.

• False : as we showed, if A = QBQ−1 and Av = λv then B(Qv) = λ(Qv). This means the
eigenspaces of A and B are related by left-multiplication by Q, but are not necessarily equal.

(h) If two matrices have the same eigenvalues, then they are similar.

• False : for example, the matrices

[
1 0
0 1

]
and

[
1 1
0 1

]
have the same eigenvalues but are not

similar (the latter is not diagonalizable but the former is).

(i) If two matrices are similar, then they have the same eigenvalues.

• True : similar matrices have the same characteristic polynomial hence the same eigenvalues.

(j) If dim(V ) = n, then T has at most n distinct eigenvalues in F .

• True : the characteristic polynomial p(t) = det(tI −A) has degree n hence at most n roots in F .

(k) If dim(V ) = n, then T has exactly n distinct eigenvalues in F .

• False : the characteristic polynomial may have repeated roots, in which case it would have fewer
than n distinct roots. It may also have irreducible terms of degree > 1, which would further lower
the number of roots.

(l) If the characteristic polynomial of A is p(t) = t(t− 1)2, then the 1-eigenspace of A has dimension 2.

• False : although 1 is a double root of the characteristic polynomial, this means only that the
1-eigenspace can have dimension 1 or 2.

(m) If the characteristic polynomial of A is p(t) = t(t− 1)2, then the only vector v with Av = 3v is v = 0.

• True : such a vector would be an element of the 3-eigenspace, but since 3 is not an eigenvalue of A,
the 3-eigenspace is trivial.

(n) V has a basis β = {v1, . . . ,vn} of eigenvectors of T if and only if T is diagonalizable.

• True : β = {v1, . . . ,vn} is a basis of eigenvectors with eigenvalues λ1, . . . , λn if and only if [T ]ββ is
diagonal with diagonal entries λ1, . . . , λn.
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2. For each matrix A over each �eld F , (i) �nd all eigenvalues of A over F , (ii) �nd a basis for each eigenspace
of A, and (iii) determine whether or not A is diagonalizable over F and if so �nd an invertible matrix Q and
diagonal matrix D such that D = Q−1AQ.

(a) The matrix

[
3 1
−2 5

]
over R.

• The characteristic polynomial is det(tI −A) =
∣∣∣∣ t− 3 −1

2 t− 5

∣∣∣∣ = t2 − 8t+ 17.

• The roots of this polynomial are λ = 4 ± i. Thus, there are no eigenvalues over R , and so it is

not diagonalizable .

(b) The matrix

[
3 1
−2 5

]
over C.

• The characteristic polynomial was calculated above as p(t) = t2 − 8t+ 17.

• Over C, the eigenvalues are λ = 4 + i, 4− i with respective eigenbases

[
1− i
2

]
and

[
1 + i
2

]
.

• The matrix is diagonalizable : we can take D =

[
4 + i 0
0 4− i

]
and Q =

[
1− i 1 + i
2 2

]
.

(c) The matrix

 1 1 −1
−2 3 −2
−1 0 1

 over Q.

• The characteristic polynomial is det(tI −A) =

∣∣∣∣∣∣
t− 1 −1 1
2 t− 3 2
1 0 t− 1

∣∣∣∣∣∣ = (t− 1)(t− 2)2.

• Thus, the eigenvalues are λ = 1, 2, 2 .

• Row-reducing λI −A yields the 1-eigenspace basis

 0
1
1

 , and the 2-eigenspace basis

 −10
1

 .

• Since the 2-eigenspace is only 1-dimensional, the matrix is not diagonalizable .

(d) The matrix

 0 −1 1
0 2 0
−2 −1 3

 over C.

• The characteristic polynomial is det(tI−A) = (t−1)(t−2)2. Thus, the eigenvalues are λ = 1, 2, 2 .

• Row-reducing λI −A yields the 1-eigenbasis

 1
0
1

 and the 2-eigenbasis

 1
0
2

 ,
 −12

0

 .

• Since the sum of the eigenspace dimensions is 3, the matrix is diagonalizable : the diagonalization

is

 1 0 0
0 2 0
0 0 2

 via the matrix Q =

 1 1 −1
0 0 2
1 2 0

.
(e) The matrix

[
−5 9
−4 7

]
over R.

• The characteristic polynomial is det(tI −A) =
∣∣∣∣ t+ 5 −9

4 t− 7

∣∣∣∣ = t2 − 2t+ 1 with roots λ = 1, 1 .

• Row-reducing λI −A = I −A =

[
6 −9
4 −6

]
yields

[
2 −3
0 0

]
, with nullspace basis

[
3
2

]
.

• Since the 1-eigenspace is only 1-dimensional, the matrix is not diagonalizable .
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(f) The matrix

 1 2 3
2 3 1
3 1 2

 over C.

• The characteristic polynomial is det(tI −A) = (t− 6)(t2 − 3) with roots λ = 6,
√
3,−
√
3 .

• Row-reducing λI − A for each of the three possible eigenvalues λ yields that each eigenspace is
1-dimensional.

• Explicitly: 6-eigenbasis

 1
1
1

 ,
√
3-eigenbasis

 −1−√3−1 +
√
3

2

 , −
√
3-eigenbasis

 −1 +√3−1−
√
3

2

 .

• Since the sum of the eigenspace dimensions is 3, the matrix is diagonalizable .

• The diagonalization is

 6 0 0

0
√
3 0

0 0 −
√
3

 via the matrix Q =

 1 −1−
√
3 −1 +

√
3

1 −1 +
√
3 −1−

√
3

1 2 2

.
3. For each operator T : V → V on each vector space V , (i) �nd all its eigenvalues and a basis for each eigenspace,

and (ii) determine whether the operator is diagonalizable and if so, �nd a basis for which [T ]ββ is diagonal:

(a) The map T : Q2 → Q2 given by T (x, y) = (x+ 4y, 3x+ 5y).

• With respect to the standard basis β the associated matrix is A = [T ]ββ =

[
1 4
3 5

]
.

• The characteristic polynomial is p(t) = det(tI−A) = t2−6t−1 = (t−7)(t+1). Hence the eigenvalues

are λ = 7,−1 , and row-reducing yields corresponding eigenbases (2, 3) and (−2, 1) .

• Since the sum of the eigenspace dimensions is 2, the transformation is diagonalizable : the diago-

nalization is

[
7 0
0 −1

]
via the basis β = {(2, 3), (−2, 1)} .

(b) The derivative operator D : P2(R)→ P2(R) given by D(p) = p′.

• With respect to the standard basis β = {1, x, x2}, the associated matrix is [D]ββ =

 0 1 0
0 0 2
0 0 0

.
• Since this matrix is upper-triangular, the eigenvalues are just the diagonal elements λ = 0, 0, 0 .

Row-reducing yields that the 0-eigenspace is 1-dimensional and has basis {1} .

• Since the eigenspace is only 1-dimensional, the transformation is not diagonalizable .

(c) The transpose map T :M2×2(R)→M2×2(R) given by T (M) =MT .

• With standard basis β = {e1,1, e1,2, e2,1, e2,2}, the associated matrix is A = [T ]ββ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.
• The characteristic polynomial is p(t) = det(tI − A) = (t − 1)3(t + 1). Hence the eigenvalues are

λ = 1, 1, 1,−1 .

• Row-reducing yields corresponding eigenbases {
[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
} and {

[
0 1
−1 0

]
} .

Alternatively, one could observe that the 1-eigenspace is the space of symmetric matrices, while the
(−1)-eigenspace is the space of skew-symmetric matrices.

• Since the sum of the eigenspace dimensions is 4, the transformation is diagonalizable : the diago-

nalization is


1

1
1
−1

 via the basis β = {
[

1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1
−1 0

]
} .
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4. Let V = C[0, 2π] with inner product 〈f, g〉 =
´ 2π
0
f(x)g(x) dx. Also de�ne ϕ0(x) =

1√
2π

, and for positive

integers k set ϕ2k−1(x) =
1√
π
cos(kx) and ϕ2k(x) =

1√
π
sin(kx).

(a) Show that {ϕ0, ϕ1, ϕ2, . . . } is an orthonormal set in V . [Hint: Use the product-to-sum identities.]

• First observe that
´ 2π
0

sin(nx) dx = 0 =
´ 2π
0

cos(nx) dx for any integer n 6= 0. Thus, 〈ϕ0, ϕk〉 = 0 for
any k > 0.

• Furthermore, using the product-to-sum identities, we can write

ϕ2aϕ2b =
1

π
sin(ax) sin(bx) =

1

2π
[cos(a− b)x− cos(a+ b)x]

ϕ2a−1ϕ2b =
1

π
cos(ax) sin(bx) =

1

2π
[sin(a− b)x− sin(a+ b)x]

ϕ2a−1ϕ2b−1 =
1

π
cos(ax) cos(bx) =

1

2π
[cos(a− b)x+ cos(a+ b)x]

and so when a 6= b, each inner product 〈ϕ2a, ϕ2b〉, 〈ϕ2a−1, ϕ2b〉, and 〈ϕ2a−1, ϕ2b−1〉 is zero because
both terms integrate to zero (the second also integrates to zero when a = b).

• Furthermore, we have 〈ϕ0, ϕ0〉 =
1

2π

´ 2π
0

1dx = 1, 〈ϕ2k−1, ϕ2k−1〉 =
1

π

´ 2π
0

cos2(kx) dx = 1, and

〈ϕ2k, ϕ2k〉 =
1

π

´ 2π
0

sin2(kx) dx = 1. Thus, the set is orthonormal.

(b) Let f(x) = x. Find ||f || and 〈f, ϕn〉 for each n ≥ 0. (You don't need to give details of the integral
evaluations, just the resulting values.)

• We compute ||f || =
√´ 2π

0
x2 dx =

√
8π3

3
, 〈ϕ0, f〉 =

´ 2π
0

x√
2π

dx =
√
2π3,

with 〈ϕ2k−1, f〉 =
´ 2π
0

x√
π
cos(kx) dx = 0, and 〈ϕ2k, f〉 =

´ 2π
0

x√
π
sin(kx) dx = −2

√
π

k
for k ≥ 1.

(c) With f(x) = x, assuming that f(x) =
∑∞
k=0 〈f, ϕk〉ϕk(x), derive Leibniz's formula

π

4
= 1−1

3
+
1

5
−1

7
+· · · .

[Hint: Set x = π/2.]

• By part (b), the formula yields f(π/2) = π−
∑∞
k=1

2

k
sin(kπ/2) = π−

[
2− 2

3
+

2

5
− 2

7
+ · · ·

]
. Since

f(π/2) = π/2, rearranging yields 1− 1

3
+

1

5
− 1

7
+ · · · = π

4
as claimed.

(d) With f(x) = x, assuming that ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
(see problem 10 of the midterm for why this is a

reasonable statement), �nd the exact value of
∑∞
k=1

1

k2
.

• By part (b), the formula yields 2π3 +
∑∞
k=1

(
−2
√
π

k

)2

=
8π3

3
, so that

∑∞
k=1

4π

k2
=

2π3

3
.

• Dividing by 4π yields
∑∞
k=1

1

k2
=

π2

6
. (This is, in fact, the actual value of this sum!)

Remarks: The identity ||f ||2 =
∑∞
k=0 〈f, ϕk〉

2
is known as Parseval's identity. The problem of computing

the value of the in�nite sum
∑∞
k=1

1
k2 is known as the Basel problem. The correct value was (famously)

�rst identi�ed by Euler, who evaluated the sum by decomposing the function sinπx
πx as the in�nite product∏∞

n=1(1−
x2

n2 ) and then comparing the power series coe�cients of both sides.
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5. Let F be a �eld and let L and R be the left shift and right shift operators on in�nite sequences of elements
of F , de�ned by L(a1, a2, a3, a4, . . . ) = (a2, a3, a4, . . . ) and R(a1, a2, a3, a4, . . . ) = (0, a1, a2, a3, . . . ).

(a) Find all of the eigenvalues and a basis for each eigenspace of L.

• Solving L(a1, a2, a3, a4, . . . ) = (λa1, λa2, λa3, λa4, . . . ) gives (a2, a3, a4, a5, . . . ) = (λa1, λa2, λa3, λa4, . . . )
whence a2 = λa1, a3 = λa2, ... , ai+1 = λai, ....

• It is then easy to see that the λ-eigenspace is 1-dimensional and spanned by the vector (1, λ, λ2, λ3, . . . ).
In particular, every element λ ∈ F is an eigenvalue of L.

(b) Find all of the eigenvalues and a basis for each eigenspace of R.

• SolvingR(a1, a2, a3, a4, . . . ) = (λa1, λa2, λa3, λa4, . . . ) gives (0, a1, a2, a3, . . . ) = (λa1, λa2, λa3, λa4, . . . )
whence λa1 = 0, λa2 = a1, ... , λai+1 = ai.

• If λ 6= 0 then cancelling λ gives ai = 0 for all i (but the zero vector is not an eigenvector by de�nition),
while if λ = 0 then again we see ai = 0 for all i.

• Thus R has no eigenvalues since (a1, a2, a3, . . . ) = λ(0, a1, a2, a3, . . . ) forces a1 = a2 = a3 = · · · = 0.

6. Suppose V is a vector space and S, T : V → V are linear operators on V .

(a) If S and T commute (i.e., ST = TS), show that S maps each eigenspace of T into itself.

• Suppose Tv = λv. Then λ(Sv) = S(λv) = S(Tv) = T (Sv) so Sv is also a λ-eigenvector of T .

(b) If v is an eigenvector of T , show that it is also an eigenvector of Tn for any positive integer n.

• Suppose Tv = λv. Then T 2v = T (Tv) = T (λv) = λ(Tv) = λ2v.

• By repeating this argument (equivalently, by a trivial induction) we see that Tnv = λnv, so v is
also an eigenvector of Tn with corresponding eigenvalue λn.

7. Suppose A is an invertible n × n matrix and that p(t) = tn + an−1t
n−1 + · · · + a1t + a0 is its characteristic

polynomial. Note that a0 = (−1)n det(A) is nonzero.

(a) If B = − 1

a0
(An−1 + an−1A

n−2 + · · ·+ a2A+ a1In), show that AB = In. [Hint: Cayley-Hamilton.]

• By the Cayley-Hamilton theorem, we know that An + an−1A
n−1 + · · ·+ a2A

2 + a1A+ a0In = 0, so
rearranging yields An + an−1A

n−1 + · · ·+ a2A
2 + a1A = −a0In.

• From the de�nition of B, we can multiply through by A to see that

AB = − 1

a0
(An + an−1A

n−1 + · · ·+ a2A
2 + a1A) = −

1

a0
(−a0In) = In, as claimed.

(b) Show that there exists a polynomial q(x) of degree at most n− 1 such that A−1 = q(A).

• By part (a) we see that AB = In so that B = A−1.

• The desired statement is then immediate from the expression in part (a), since the expression for B
is a polynomial in A of degree n− 1.
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8. [Challenge] The goal of this problem is to give some counterexamples for results about orthogonal complements,
projections, best approximations, and adjoints in in�nite-dimensional spaces. Let V be the vector space of
in�nite real sequences {ai}i≥1 = (a1, a2, . . . ) with only �nitely many nonzero terms, with inner product given
by 〈{ai}, {bi}〉 =

∑∞
i=1 aibi. (Note that this sum converges since only �nitely many terms are nonzero.) Let

ei be the ith unit coordinate vector and observe that {ei}i≥1 is an orthonormal basis for V . Now for each
n ≥ 2, let vn = e1 − en and de�ne W = span(v2,v3,v4, . . . ).

(a) Show that e1 6∈W so that W is a proper subspace of V , but that W⊥ = {0}.
• If we have e1 = a2v2 + a3v3 + · · ·+ anvn, then expanding out yields e1 = (a1 + · · ·+ an)e1− a2e2−
a3e3 − · · · − anen so since the ei are linearly independent, we would have a1 + · · ·+ an = 1 and also
a2 = a3 = · · · = an = 0, but this is contradictory. Thus e1 6∈W .

• Next, if w = b1e1 + · · ·+ bnen is an element of W⊥, we have 0 = 〈b1e1 + · · ·+ bnen,vk〉 = b1 − bk.
Thus bk = b1 for all k, but since only �nitely many bk can be nonzero, we must have b1 = b2 = · · · = 0,
and so w = 0.

(b) Show that W⊥ +W 6= V and that (W⊥)⊥ 6=W .

• By (a) we have W⊥ +W =W 6= V , and also (W⊥)⊥ = ({0})⊥ = V 6=W .

(c) For any v 6∈W , show that there does not exist any choice ofw ∈W andw⊥ ∈W⊥ such that v = w+w⊥.
Conclude that there is not a well-de�ned orthogonal projection map of V onto W .

• Suppose we had such w,w⊥. From (a) we know that W⊥ = {0}, so the only possible choice would
be w⊥ = 0. But this would imply v = w which is impossible since v is not in W .

(d) Show that there exists a vector wn ∈W such that ||wn − e1|| = 1/n for any positive integer n. Deduce
that there is no possible best approximation vectorw to e1 insideW (namely with ||w − e1|| ≤ ||w′ − e1||
for all w′ ∈W ).

• Consider the vector wn = (1,−1/n,−1/n, . . . ,−1/n, 0, 0, . . . ) with �rst entry 1 followed by n entries
equal to −1/n, and other entries 0.

• Then ||wn − e1|| = ||(0,−1/n,−1/n, . . . ,−1/n, 0, 0, . . . )|| = n · (1/n)2 = 1/n as desired.

• Since 1/n→ 0 as n→∞, a best approximation vector w would necessarily have ||w − e1|| = 0, but
this is impossible since e1 6∈W .

(e) Let T : V → V be the linear transformation de�ned by setting T (en) =
∑n
i=1 ei for each i ≥ 1. If T had

an adjoint T ∗ : V → V , show that in�nitely many components of T ∗(e1) would be nonzero. Deduce that
T ∗ cannot exist.

• By hypothesis we have 〈ek, T ∗(e1)〉 = 〈T (ek), e1〉 = 〈
∑n
i=1 ei, e1〉 = 1 for each k ≥ 1.

• Conjugating then yields 〈T ∗(e1), ek〉 = 1: but this inner product is the coe�cient of ek in T ∗(e1),
so we would necessarily have T ∗(e1) =

∑∞
k=1 ek. But this vector is not an element of V since it has

in�nitely many nonzero components. This is a contradiction, so T ∗ cannot exist.
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